Essential Oils from Humulus Lupulus scCO2 Extract by Hydrodistillation and Microwave-Assisted Hydrodistillation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sample Preparation
2.3. Microwave-Assisted Hydrodistillation (MAHD)
2.4. Hydrodistillation (HD)
3. Analytical Procedure
3.1. Supercritical Fluid Chromatography (SFC)
3.1.1. Quantification
3.1.2. Partial Method Validation
3.2. Gas Chromatography (GC-MS/MS)
3.2.1. Quantification
3.2.2. Partial Method Validation
4. Results and Discussion
4.1. Material for Extraction
4.2. Extraction Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cermak, P.; Paleckova, V.; Houska, M.; Strohalm, J.; Novotna, P.; Mıkyska, A.; Jurkova, M.; Sikorova, M. Inhibitory effects of fresh hops on Helicobacter pylori strains. Czech J. Food Sci. 2015, 33, 302–307. [Google Scholar] [CrossRef]
- Skorek, U.; Hubicki, Z.; Rój, E. Intensification of the use of hop extract for beer production. Chemik Sci.-Tech.-Market. 2011, 65, 160–163. [Google Scholar]
- Biendl, M.; Engelhard, B.; Forster, A.; Gahr, A.; Lutz, A.; Mitter, W.; Schmidt, R.; Schönberger, C. Hops: Their Cultivation, Composition and Usage; Fachverlag Hans Carl: Nuremberg, Germany, 2014. [Google Scholar]
- Biendl, M.; Pinzl, C. Hops and health. German Hop Museum Wolnzach 2013, 1–123. [Google Scholar] [CrossRef]
- Luzak, B.; Kassassir, H.; Rój, E.; Stańczyk, L.; Watala, C.; Golanski, J. Xanthohumol from hop cones (Humulus lupulus L.) prevents ADP-induced platelet reactivity. Arch. Physiol. Biochem. 2017, 123, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, N.; Yamaguchi, K.; Ono, M. In vitro evaluation of antibacterial anticollagenase and antioxidant activities of hop components (Humulus lupulus) addressing acne vulgaris. Phytomedicine 2009, 16, 369–376. [Google Scholar] [CrossRef] [PubMed]
- Rój, E.; Tadić, V.M.; Mišić, D.; Žižović, I.; Arsić, I.; Dobrzyńska-Inger, A.; Kostrzewa, D. Supercritical carbon dioxide hops extract with antimicrobial properties. Open Chem. 2017, 13, 1157–1171. [Google Scholar] [CrossRef]
- Jeyaratnam, N.; Abdurahman, H.N.; Ramesh, K.; Azhari, H.N.; Yuvaraj, A.R.; Akindoyo, J.O. Essential oil from Cinnamomum cassia bark through hydrodistillation and advanced microwave assisted hydrodistillation. Ind. Crop. Prod. 2016, 92, 57–66. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Rezaei, K. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from Thymus vulgaris L. Food Chem. 2008, 109, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Gavahian, M.; Farahnaky, A.; Farhoosh, R.; Javidnia, K.; Shahidi, F. Extraction of essential oils from Mentha piperita using advanced techniques: Microwave versus ohmic assisted hydrodistillation. Food Bioprod. Process. 2015, 94, 50–58. [Google Scholar] [CrossRef]
- Kusuma, H.S.; Mahfud, M. Kinetic studies on extraction of essential oil from sandalwood (Santalum album) by microwave air-hydrodistillation method. Alex. Eng. J. 2017, 57, 1163–1172. [Google Scholar] [CrossRef]
- Abdurahman, H.N.; Ranitha, M.; Azhari, H.N. Extraction and characterization of essential oil from Ginger (Zingiber Officinale Roscoe) and Lemongrass (Cymbopogon citratus) by microwave-assisted hydrodistillation. Int. J. Chem. Environ. 2013, 4, 221–226. [Google Scholar]
- Farzaneh, V.; Carvalho, I.S. Modelling of microwave assisted extraction (MAE) of anthocyanins (TMA). J. Appl. Res. Med. Aromat. Plants 2017, 6, 92–100. [Google Scholar] [CrossRef]
- Karakaya, S.; El, S.N.; Karagozlu, N.; Sahin, S.; Sumnu, G.; Bayramoglu, B. Microwave-assisted hydrodistillation of essential oil from rosemary. J. Food. Sci. Technol. 2014, 51, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Fargat, A.; Benmoussa, H.; Bachoual, R.; Nasfi, Z.; Elfalleh, W.; Romdhane, M.; Bouajila, J. Efficiency of the optimized microwave assisted extractions on the yield, chemical composition and biological activities of Tunisian Rosmarinus officinalis L. essential oil. Food Bioprod. Process. 2017, 105, 224–233. [Google Scholar]
- Wei, L.; Zhang, Y.; Jiang, B. Comparison of microwave-assisted hydrodistillation with the traditional hydrodistillation method in the extraction of essential oils from dwarfed Cinnamomum camphora var. Linaolifera Fujita leaves and twigs. Adv. J. Food Sci. Technol. 2013, 5, 1436–1442. [Google Scholar]
- Franco-Vega, A.; Ramirez-Corona, N.; Palou, E.; Lopez-Malo, A. Estimation of mass transfer coefficients of the extraction process of essential oil from orange peel using microwave assisted extraction. J. Food Eng. 2016, 170, 136–143. [Google Scholar] [CrossRef]
- Yang, X.; Lederer, C.; McDaniel, M.; Deinzer, M. Hydrolysis products of caryophyllene oxide in hops and beer. J. Agric. Food Chem. 1993, 41, 2082–2085. [Google Scholar] [CrossRef]
- Hartsel, J.A.; Eades, J.; Hickory, B.; Makriyannis, A. Cannabis sativa and hemp. In Nutraceuticals; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Rufino, A.T.; Ribeiro, M.; Sousa, C.; Judas, F.; Salgueiro, L.; Cavaleiro, C.; Mendes, A.F. Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E.-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur. J. Pharmacol. 2015, 750, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, E.S.; Passos, G.F.; Medeiros, R.; da Cunha, F.M.; Ferreira, J.; Campos, M.M.; Pianowski, L.F.; Calixto, J.B. Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Routray, W.; Orsat, V. Microwave-assisted extraction of flavonoids: A review. Food Bioprocess Technol. 2011, 5, 409–424. [Google Scholar] [CrossRef]
- Ligor, M.; Stankevičius, M.; Wenda-Piesik, A.; Obelevičius, K.; Ragažinskienė, O.; Stanius, Ž.; Maruška, A.; Buszewski, B. Comparative gas chromatographic-mass spectrometric evaluation of hop (Humulus lupulus L.) essential oils and extracts obtained using different sample preparation methods. Food Anal. Method 2014, 7, 1433–1442. [Google Scholar] [CrossRef]
- Flament, I.; Chevalier, C.; Keller, U. Extraction and chromatography of food constituents with supercritical CO2. In Flavour Science and Technology; Martens, M., Dalen, G.A., Russwurm, H., Chichester, H.R., Jr., Eds.; Wiley: New York, NY, USA, 1987; pp. 151–163. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Sample Name | Charge Mass (g) | Extract Mass (g) | Water Mass (g) | Residue Mass (g) * |
---|---|---|---|---|
Marynka_275W | 603.34 | 150.25 | 402.51 | 50.58 |
Marynka _295W | 605.99 | 150.99 | 404.99 | 50.01 |
Marynka_335W | 602.71 | 150.47 | 402.16 | 50.08 |
Marynka_395W | 608.65 | 156.00 | 401.94 | 50.71 |
Marynka_Deryng | 602.61 | 151.83 | 400.78 | 50.00 |
Compound | Linearity Range (μg/mL) | R2 | LOD (μg/mL) | LOQ (μg/mL) | Concentration (μg/mL) | RSD % (n = 3) | |
---|---|---|---|---|---|---|---|
Repeatability | Intermediate Precision | ||||||
β-myrcene | 62.5–1000 | 0.998 | 0.89 | 2.23 | 75 | 2.16 | 3.87 |
100 | 1.02 | 2.91 | |||||
200 | 0.72 | 2.36 | |||||
α-humulene | 31.125–500 | 0.998 | 0.78 | 1.95 | 75 | 2.00 | 3.12 |
100 | 1.27 | 2.74 | |||||
200 | 0.50 | 2.03 |
Compound | Linearity Range [μg/mL] | R2 | LOD [ng/mL] | LOQ [ng/mL] | Concentration [μg/mL] | RSD % (n = 3) | |
---|---|---|---|---|---|---|---|
Repeatability | Intermediate Precision | ||||||
β-myrcene | 10–200 | 0.999 | 1.8 | 4.6 | 50 | 2.36 | 3.25 |
100 | 1.54 | 2.84 | |||||
200 | 0.98 | 1.99 | |||||
α-humulene | 1–50 | 0.999 | 2.5 | 8.0 | 50 | 2.47 | 3.17 |
100 | 1.69 | 2.99 | |||||
200 | 1.12 | 2.39 |
Sample Name | Raw Material Mass (g) | Total Oil Amount (mg) | Yield (wt%) | Extraction Time (min) | Energy Consumption (kWh) |
---|---|---|---|---|---|
Marynka_275W | 603.34 | 2248.14 | 1.50 | 46 | 0.215 |
Marynka_295W | 605.99 | 2720.97 | 1.80 | 40 | 0.200 |
Marynka_335W | 602.71 | 5676.44 | 3.77 | 30 | 0.170 |
Marynka_395W | 608.65 | 4723.37 | 3.03 | 20 | 0.134 |
Marynka_Deryng | 602.61 | 2807.31 | 1.90 | 276 | 1.897 |
Sample Name | β-Myrcene | α-Humulene | ||
---|---|---|---|---|
UPC2 (wt%) | GC-MS/MS (wt%) | UPC2 (wt%) | GC-MS/MS (wt%) | |
Marynka-275W | 89.32 | 88.89 | 10.14 | 10.56 |
Marynka-295W | 74.13 | 75.02 | 8.23 | 8.01 |
Marynka-335W | 77.24 | 77.36 | 9.33 | 9.47 |
Marynka-395W | 75.12 | 74.66 | 7.36 | 7.96 |
Marynka-Deryng | 84.73 | 84.99 | 1.59 | 1.87 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyśkiewicz, K.; Gieysztor, R.; Konkol, M.; Szałas, J.; Rój, E. Essential Oils from Humulus Lupulus scCO2 Extract by Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules 2018, 23, 2866. https://doi.org/10.3390/molecules23112866
Tyśkiewicz K, Gieysztor R, Konkol M, Szałas J, Rój E. Essential Oils from Humulus Lupulus scCO2 Extract by Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules. 2018; 23(11):2866. https://doi.org/10.3390/molecules23112866
Chicago/Turabian StyleTyśkiewicz, Katarzyna, Roman Gieysztor, Marcin Konkol, Jan Szałas, and Edward Rój. 2018. "Essential Oils from Humulus Lupulus scCO2 Extract by Hydrodistillation and Microwave-Assisted Hydrodistillation" Molecules 23, no. 11: 2866. https://doi.org/10.3390/molecules23112866
APA StyleTyśkiewicz, K., Gieysztor, R., Konkol, M., Szałas, J., & Rój, E. (2018). Essential Oils from Humulus Lupulus scCO2 Extract by Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules, 23(11), 2866. https://doi.org/10.3390/molecules23112866