A Novel Method for the Determination of Vancomycin in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application in Patients with Diabetic Foot Infections
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals, Reagents and Samples
2.2. Apparatus
2.3. Preparation of Quality Controls and Standard Solutions
2.4. HPLC-Q-Trap-MS Conditions
2.5. Sample Source and Pretreatment
2.6. Method Validation
2.6.1. Specificity
2.6.2. Linearity and Sensitivity
2.6.3. Precision, Accuracy and Matrix Effect
2.6.4. Recovery
2.6.5. Stability
3. Results
3.1. HPLC-MS Instrument Method Development
3.2. Sample Extraction Method Development
3.2.1. Optimization of the Pretreatment Method
3.2.2. Effects of Different Conditions on the Recovery
3.3. Method Validation
3.3.1. Specificity
3.3.2. Calibration and LOQ
3.3.3. Precision and Accuracy
3.3.4. Extraction recovery
3.3.5. Stability
3.4. Clinical Application
3.4.1. Patients and Methods
3.4.2. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Citron, D.M.; Goldstein, E.J.; Merriam, C.V.; Lipsky, B.A.; Abramson, M.A. Bacteriology of moderate-to-severe diabetic foot infections and in vitro activity of antimicrobial agents. J. Clin. Microbiol. 2007, 45, 2819–2828. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Aragón-Sánchez, J.; Diggle, M.; Embil, J.; Kono, S.; Lavery, L. International Working Group on the Diabetic Foot (IWGDF). IWGDF guidance on the diagnosis and management of foot infections in persons with diabetes. Diabetes-Metab. Res. 2016, 32, 45–74. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Berendt, A.R.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; LeFrock, J.L.; Lew, D.P.; Mader, J.T.; Norden, C.; et al. Diagnosis and treatment of diabetic foot infections. Clin. Infect. Dis. 2004, 39, 885–910. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A. Empirical therapy for diabetic foot infections: Are there clinical clues to guide antibiotic selection? Clin. Microbiol. Infect. 2007, 13, 351–353. [Google Scholar] [CrossRef] [PubMed]
- Courtney, P.M.; Melnic, C.M.; Zimmer, Z.; Anari, J.; Lee, G.C. Addition of vancomycin to cefazolin prophylaxis is associated with acute kidney injury after primary joint arthroplasty. Clin. Orthop. Relat. R. 2015, 473, 2197–2203. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.S.; Sud, A.; O’Sullivan, M.V.; Robinson, J.O.; Ferguson, P.E.; Foo, H.; Kirby, A. Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: A pilot multicenter randomized controlled trial. Clin. Infect. Dis. 2015, 62, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Wiskirchen, D.E.; Shepard, A.; Kuti, J.L.; Nicolau, D.P. Determination of tissue penetration and pharmacokinetics of linezolid in patients with diabetic foot infections using in vivo microdialysis. Antimicrob. Agents Chemother. 2011. [Google Scholar] [CrossRef] [PubMed]
- Skhirtladze, K.; Hutschala, D.; Fleck, T.; Thalhammer, F.; Ehrlich, M.; Vukovich, T.; Tschernko, E.M. Impaired target site penetration of vancomycin in diabetic patients following cardiac surgery. Antimicrob. Agents Chemother. 2006, 50, 1372–1375. [Google Scholar] [CrossRef] [PubMed]
- Payne, C.J.; Thomson, A.H.; Stearns, A.T.; Watson, D.G.; Zhang, T.; Kingsmore, D.B.; Binning, A.S. Pharmacokinetics and tissue penetration of vancomycin continuous infusion as prophylaxis for vascular surgery. J. Antimicrob. Chemother. 2011, 66, 2624–2627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Housman, S.T.; Bhalodi, A.A.; Shepard, A.; Nugent, J.; Nicolau, D.P. Vancomycin tissue pharmacokinetics in patients with lower-limb infections via in vivo microdialysis. J. Am. Podiat. Med. ASSN 2015, 105, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Hempel, G. Development and validation of an HPLC method for the determination of vancomycin in human plasma and its comparison with an immunoassay (PETINIA). SpringerPlus 2016, 5, 124. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Y.; Zhou, B. High-throughput determination of vancomycin in human plasma by a cost-effective system of two-dimensional liquid chromatography. J. Chromatogr. A 2017, 1499, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Barco, S.; Castagnola, E.; Gennai, I.; Barbagallo, L.; Loy, A.; Tripodi, G.; Cangemi, G. Ultra high performance liquid chromatography-tandem mass spectrometry vs. commercial immunoassay for determination of vancomycin plasma concentration in children. Possible implications for everyday clinical practice. J. Chemother. 2016, 28, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, Y.; Wu, S.; Wang, S.; Zhao, X.; Zhou, T.; Fan, G. Determination of Vancomycin in Human Serum by Cyclodextrin-Micellar Electrokinetic Capillary Chromatography (CD-MEKC) and Application for PDAP Patients. Molecules 2017, 22, 538. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.C.; Thang, L.Y.; Quirino, J.P.; See, H.H. Monitoring of vancomycin in human plasma via portable microchip electrophoresis with contactless conductivity detector and multi-stacking strategy. J. Chromatogr. A 2017, 1485, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Khataee, A.; Lotfi, R.; Hasanzadeh, A. A novel permanganate–morin–CdS quantum dots flow injection chemiluminescence system for sensitive determination of vancomycin. RSC Adv. 2015, 5, 82645–82653. [Google Scholar] [CrossRef]
- Odekerken, J.C.; Logister, D.M.; Assabre, L.; Arts, J.J.; Walenkamp, G.H.; Welting, T.J. ELISA-based detection of gentamicin and vancomycin in protein-containing samples. SpringerPlus 2015, 4, 614. [Google Scholar] [CrossRef] [PubMed]
- Khataee, A.R.; Hasanzadeh, A.; Iranifam, M.; Fathinia, M.; Hanifehpour, Y.; Joo, S.W. CuO nanosheets-enhanced flow-injection chemiluminescence system for determination of vancomycin in water, pharmaceutical and human serum. Spectrochim. Acta Part A 2014, 122, 737–743. [Google Scholar] [CrossRef] [PubMed]
- König, K.; Kobold, U.; Fink, G.; Leinenbach, A.; Dülffer, T.; Thiele, R.; Vogeser, M. Quantification of vancomycin in human serum by LC-MS/MS. Clin. Chem. Lab. Med. 2013, 51, 1761–1769. [Google Scholar] [CrossRef] [PubMed]
- Parker, S.L.; Guerra Valero, Y.C.; Ordóñez Mejia, J.L.; Roger, C.; Lipman, J.; Roberts, J.A.; Wallis, S.C. An LC–MS/MS method to determine vancomycin in plasma (total and unbound), urine and renal replacement therapy effluent. Bioanalysis 2017, 9, 911–924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Moore, G.A.; Young, S.W. Determination of vancomycin in human plasma, bone and fat by liquid chromatography/tandem mass spectrometry. J Anal. Bioanal. Tech. 2014, 5. [Google Scholar] [CrossRef]
- Oyaert, M.; Peersman, N.; Kieffer, D.; Deiteren, K.; Smits, A.; Allegaert, K.; Pauwels, S. Novel LC–MS/MS method for plasma vancomycin: Comparison with immunoassays and clinical impact. Clin. Chim. Acta 2015, 441, 63–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmitt, V.; Szeitz, A.; Klassen, T.L.; Häfeli, U.O. An Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Method for the Quantification of Vancomycin Requiring Only 2 µL of Rabbit Serum. Am. J. Anal. Chem. 2017, 8, 553. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Q.; Wang, M.; Fu, S.; Zhang, Q.; Zhang, Z.; Zhao, H.; Liu, Y.; Huang, Z.; Xie, Z.; et al. Using UHPLC Q-Trap/MS as a complementary technique to in-depth mine UPLC Q-TOF/MS data for identifying modified nucleosides in urine. J. Chromatogr. B 2017, 1051, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Cho, S.H.; Song, Y.H.; Nam, M.S.; Kim, C.W. Direct injection LC–MS/MS method for the determination of teicoplanin in human plasma. J. Chromatogr. B 2016, 1008, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.E.; Zhang, Y.; Li, Y.; Ling, Y.; Li, H.N.; Li, S.H.; Jiang, S.J.; Ren, Z.Q.; Huang, Z.Q.; Zhang, F. Determination of gardenia yellow colorants in soft drink, pastry, instant noodles with ultrasound-assisted extraction by high performance liquid chromatography-electrospray ionization tandem mass spectrum. J. Chromatogr. A 2016, 1446, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Park, M.H.; Byeon, J.J.; Shin, S.H.; Kim, N.; Park, Y.; Lee, B.I.; Choi, J.; Shin, Y.G. Rapid and simultaneous quantification of a mixture of biopharmaceuticals by a liquid chromatography/quadrupole time-of-flight mass spectrometric method in rat plasma following cassette-dosing. Rapid Commun. Mass Spectrom. 2018, 32, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.K.; Chen, Y.L.; Chen, K.; Zhang, X.L.; Du, G.H.; He, B.; Li, D.K.; Liu, Y.N.; Yang, K.H.; Zhang, Y.Y.; et al. Therapeutic drug monitoring of vancomycin: A guideline of the Division of Therapeutic Drug Monitoring, Chinese Pharmacological Society. J. Antimicrob. Chemother. 2016, 71, 3020–3025. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.; Sileanu, F.E.; Murugan, R.; Lucko, N.; Shaw, A.D.; Clermont, G. Classifying AKI by urine output versus serum creatinine level. J. Am. Soc. Nephrol. 2015, 26, 2231–2238. [Google Scholar] [CrossRef] [PubMed]
- Athyros, V.G.; Katsiki, N.; Karagiannis, A.; Mikhailidis, D.P. Statins can improve proteinuria and glomerular filtration rate loss in chronic kidney disease patients, further reducing cardiovascular risk. Fact or fiction? Expert Opin. Pharmacother. 2015, 16, 1449–1461. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; Putt, M.T.; Boots, R.J.; Lipman, J. ARC-augmented renal clearance. Curr. Pharm. Biotechnol. 2011, 12, 2020–2029. [Google Scholar] [CrossRef] [PubMed]
- Baptista, J.P.; Sousa, E.; Martins, P.J.; Pimentel, J.M. Augmented renal clearance in septic patients and implications for vancomycin optimisation. Int. J. Antimicrob. Agents 2012, 39, 420–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minkutė, R.; Briedis, V.; Steponavičiūtė, R.; Vitkauskienė, A.; Mačiulaitis, R. Augmented renal clearance–an evolving risk factor to consider during the treatment with vancomycin. J. Clin. Pharm. Ther. 2013, 38, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; Varghese, J.M.; Altukroni, M.; Briscoe, S.; McWhinney, B.C.; Ungerer, J.P.; Roberts, J.A. Subtherapeutic initial β-lactam concentrations in select critically ill patients. Chest 2012, 142, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Udy, A.A.; Roberts, J.A.; Lipman, J. Implications of augmented renal clearance in critically ill patients. Nat. Rev. Nephrol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Deresinski, S.; Rybak, M.; Lomaestro, B.; Rotschafer, J.C. (Eds.) Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2016, 63, 3–4. [Google Scholar]
- Kullar, R.; Davis, S.L.; Levine, D.P.; Rybak, M.J. Impact of vancomycin exposure on outcomes in patients with methicillin-resistant Staphylococcus aureus bacteremia: Support for consensus guidelines suggested targets. Clin. Infect. Dis. 2011, 52, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Claus, B.O.; Hoste, E.A.; Colpaert, K.; Robays, H.; Decruyenaere, J.; De Waele, J.J. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J. Crit. Care 2013, 28, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: A systematic review. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [PubMed]
- Melsom, T.; Schei, J.; Stefansson, V.T.N.; Solbu, M.D.; Jenssen, T.G.; Mathisen, U.D.; Eriksen, B.O. Prediabetes and risk of glomerular hyperfiltration and albuminuria in the general nondiabetic population: A prospective cohort study. Am. J. Kidney Dis. 2016, 67, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, S.; Shen, C. Augmented renal clearance in critical illness: an important consideration in drug dosing. Pharmaceutics 2017, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Cachat, F.; Combescure, C.; Cauderay, M.; Girardin, E.; Chehade, H. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin. J. Am. Soc. Nephrol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Spadaro, S.; Berselli, A.; Fogagnolo, A.; Capuzzo, M.; Ragazzi, R.; Marangoni, E.; Volta, C.A. Evaluation of a protocol for vancomycin administration in critically patients with and without kidney dysfunction. BMC Anesthesiol. 2015, 15, 95. [Google Scholar] [CrossRef] [PubMed]
- Kees, M.G.; Hilpert, J.W.; Gnewuch, C.; Kees, F.; Voegeler, S. Clearance of vancomycin during continuous infusion in Intensive Care Unit patients: Correlation with measured and estimated creatinine clearance and serum cystatin C. Int. J. Antimicrob. Agents 2010, 36, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Paul, S.K.; Akova, M.; Bassetti, M.; De Waele, J.J.; Dimopoulos, G.; Rello, J. DALI: Defining antibiotic levels in intensive care unit patients: Are current β-lactam antibiotic doses sufficient for critically ill patients? Clin. Infect. Dis. 2014, 58, 1072–1083. [Google Scholar] [CrossRef] [PubMed]
- Gruden, G.; Barutta, F.; Kunos, G.; Pacher, P. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol. 2016, 173, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Hallow, M.; Vallon, V. Mathematical Model-based Analysis of the Acute and Chronic Mechanisms of Diabetic Hyperfiltration. Faseb J. 2016, 30, 740–746. [Google Scholar]
- Levine, D.Z. Can rodent models of diabetic kidney disease clarify the significance of early hyperfiltration? Recognizing clinical and experimental uncertainties. Clin. Sci. 2008, 114, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Pavkov, M.E.; Nelson, R.G.; Knowler, W.C.; Cheng, Y.; Krolewski, A.S.; Niewczas, M.A. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int. 2015, 87, 812–819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Concentration (ng/mL) | Intraday (n = 7) | Interday (n = 7) | ||||
---|---|---|---|---|---|---|
Measured Conc (ng/mL) | Precision, RSD (%) | Accuracy (%) | Measured Conc (ng/mL) | Precision RSD (%) | Accuracy (%) | |
400 | 396.66 ± 22.17 | 3.21 | 99.17 | 394.38 ± 23.75 | 4.11 | 98.60 |
20 | 20.98 ± 1.52 | 5.17 | 104.90 | 21.14 ± 1.91 | 5.86 | 105.70 |
2 | 2.10 ± 0.19 | 6.67 | 105.00 | 1.99 ± 0.18 | 7.14 | 99.50 |
Analyte | Concentration (ng/mL) | Extraction Recovery (%) | |
---|---|---|---|
Mean ± SD | RSD | ||
Vancomycin | 400 | 99.72 ± 2.23 | 1.26 |
20 | 94.94 ± 3.88 | 1.59 | |
2 | 92.51 ± 4.18 | 3.67 |
Storage Condition | Concentration (ng/L) | Mean ± SD (ng/L) | RSD % |
---|---|---|---|
Autosampler (4 °C) temperature for 24 h | 2 | 2.20 ± 0.21 | 8.76 |
20 | 21.67 ± 1.92 | 8.13 | |
400 | 408.16 ± 7.88 | 2.19 | |
Room temperature (25 °C) for 24 h | 2 | 2.24 ± 0.25 | 3.33 |
20 | 22.14 ± 2.24 | 6.51 | |
400 | 406.12 ± 6.92 | 2.26 | |
−80 °C for 30 days | 2 | 2.29 ± 0.24 | 8.91 |
20 | 21.01 ± 1.73 | 8.77 | |
400 | 420.11 ± 7.95 | 2.11 | |
Freezing and thawing cycles | 2 | 2.30 ± 0.21 | 8.12 |
20 | 22.18 ± 1.77 | 6.51 | |
400 | 411.187 ± 9.91 | 1.52 |
DFI Group (n = 50) | Nondiabetic Group (n = 50) | χ2/t | p | |
---|---|---|---|---|
Samples of achieving target trough concentration | 18(36.0%) | 40(80.0%) | 5.386 | 0.020 |
Trough Concentration of vancomycin (μg/mL) | 8.20 ± 2.83 | 15.8 ± 5.43 | 3.781 | 0.004 |
ClCr (mL/min) | 126.14 ± 42.36 | 105.76 ± 38.66 | 2.891 | 0.005 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Yang, Z.-H.; Li, G.-H. A Novel Method for the Determination of Vancomycin in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application in Patients with Diabetic Foot Infections. Molecules 2018, 23, 2939. https://doi.org/10.3390/molecules23112939
Liu M, Yang Z-H, Li G-H. A Novel Method for the Determination of Vancomycin in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application in Patients with Diabetic Foot Infections. Molecules. 2018; 23(11):2939. https://doi.org/10.3390/molecules23112939
Chicago/Turabian StyleLiu, Min, Zhi-Hui Yang, and Guo-Hui Li. 2018. "A Novel Method for the Determination of Vancomycin in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application in Patients with Diabetic Foot Infections" Molecules 23, no. 11: 2939. https://doi.org/10.3390/molecules23112939
APA StyleLiu, M., Yang, Z. -H., & Li, G. -H. (2018). A Novel Method for the Determination of Vancomycin in Serum by High-Performance Liquid Chromatography-Tandem Mass Spectrometry and Its Application in Patients with Diabetic Foot Infections. Molecules, 23(11), 2939. https://doi.org/10.3390/molecules23112939