Liquid Chromatographic Strategies for Separation of Bioactive Compounds in Food Matrices
Abstract
:1. Introduction
2. Liquid Chromatography Modes
2.1. Reversed Phase Chromatography
2.2. Ion Exchange Chromatography
2.3. Hydrophilic Interaction Liquid Chromatography
2.4. Affinity Chromatography
2.5. Countercurrent Chromatography
3. Multidimensional Chromatography
4. Analysis of Bioactive Compounds
4.1. Separation of Bioactive Compounds by One-Dimensional Chromatography
4.2. Separation of Bioactive Compounds by Counter Current Chromatography
4.3. Separation of Bioactive Compounds by Multidimensional Chromatography
5. Analysis of Protein-Derived Bioactive Peptides
5.1. Separation of Bioactive Peptides by One-Dimensional Chromatography
5.2. Separation of Bioactive Peptides by Multidimensional Chromatography
5.2.1. Off-Line Separation
5.2.2. On-Line Separation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Montone, C.M.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res. Int. 2017, 100, 28–52. [Google Scholar] [CrossRef] [PubMed]
- Bruni, R.; Brighenti, V.; Caesar, L.K.; Bertelli, D.; Cech, N.B.; Pellati, F. Analytical methods for the study of bioactive compounds from medicinally used Echinacea species. J. Pharm. Biomed. Anal. 2018, 160, 443–477. [Google Scholar] [CrossRef] [PubMed]
- Grand-Guillaume Perrenoud, A.; Guillarme, D.; Boccard, J.; Veuthey, J.L.; Barron, D.; Moco, S. Ultra-high performance supercritical fluid chromatography coupled with quadrupole-time-of-flight mass spectrometry as a performing tool for bioactive analysis. J. Chromatogr. A 2016. [Google Scholar] [CrossRef] [PubMed]
- Desfontaine, V.; Guillarme, D.; Francotte, E.; Nováková, L. Supercritical fluid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 2015, 113, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Lesellier, E.; West, C. The many faces of packed column supercritical fluid chromatography—A critical review. J. Chromatogr. A 2015, 1382, 2–46. [Google Scholar] [CrossRef] [PubMed]
- Gibitz Eisath, N.; Sturm, S.; Stuppner, H. Supercritical Fluid Chromatography in Natural Product Analysis—An Update. Planta Med. 2018, 84, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Amorim-Carrilho, K.T.; Cepeda, A.; Fente, C.; Regal, P. Review of methods for analysis of carotenoids. TrAC Trends Anal. Chem. 2014, 56, 49–73. [Google Scholar] [CrossRef]
- Mercadante, A.Z.; Rodrigues, D.B.; Petry, F.C.; Mariutti, L.R.B. Carotenoid esters in foods—A review and practical directions on analysis and occurrence. Food Res. Int. 2017, 99, 830–850. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, D.; Donato, P.; Dugo, P.; Mondello, L. Recent Analytical Techniques Advances in the Carotenoids and Their Derivatives Determination in Various Matrixes. J. Agric. Food Chem. 2018, 66, 3302–3307. [Google Scholar] [CrossRef] [PubMed]
- Cacciola, F.; Dugo, P.; Mondello, L. Multidimensional liquid chromatography in food analysis. TrAC Trends Anal. Chem. 2017, 96, 116–123. [Google Scholar] [CrossRef]
- Nolvachai, Y.; Marriott, P.J. GC for flavonoids analysis: Past, current, and prospective trends. J. Sep. Sci. 2013, 36, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, G.C.; Rostagno, M.A.; Gomes, M.T.M.S.; Meireles, M.A.A. Fast Analysis of Bioactive Compounds by Reverse Phase Liquid Chromatography; American Chemical Society: Washington, DC, USA, 2014; Volume 1185, ISBN 9780841229761. [Google Scholar]
- Borges, E.M.; Rostagno, M.A.; Meireles, M.A.A. Sub-2 μm fully porous and partially porous (core-shell) stationary phases for reversed phase liquid chromatography. RSC Adv. 2014, 4, 22875–22887. [Google Scholar] [CrossRef]
- Guillarme, D.; Ruta, J.; Rudaz, S.; Veuthey, J.-L. New trends in fast and high-resolution liquid chromatography: A critical comparison of existing approaches. Anal. Bioanal. Chem. 2010, 397, 1069–1082. [Google Scholar] [CrossRef] [PubMed]
- Gritti, F.; Guiochon, G. Diffusion models in chromatographic columns packed with fully and superficially porous particles. Chem. Eng. Sci. 2011, 66, 3773–3781. [Google Scholar] [CrossRef]
- Miyabe, K.; Guiochon, G. Characterization of monolithic columns for HPLC. J. Sep. Sci. 2004, 27, 853–873. [Google Scholar] [CrossRef] [PubMed]
- Hormann, K.; Müllner, T.; Bruns, S.; Höltzel, A.; Tallarek, U. Morphology and separation efficiency of a new generation of analytical silica monoliths. J. Chromatogr. A 2012, 1222, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; McCalley, D.V. Core–Shell, Ultrasmall Particles, Monoliths, and Other Support Materials in High-Performance Liquid Chromatography. Anal. Chem. 2016, 88, 279–298. [Google Scholar] [CrossRef] [PubMed]
- Fanali, C.; Dugo, L.; Dugo, P.; Mondello, L. Capillary-liquid chromatography (CLC) and nano-LC in food analysis. TrAC Trends Anal. Chem. 2013, 52, 226–238. [Google Scholar] [CrossRef]
- Vailaya, A.; Horváth, C. Retention in reversed-phase chromatography: Partition or adsorption? J. Chromatogr. A 1998, 829, 1–27. [Google Scholar] [CrossRef]
- Vailaya, A. Fundamentals of Reversed Phase Chromatography: Thermodynamic and Exothermodynamic Treatment. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 965–1054. [Google Scholar] [CrossRef]
- Lenca, N. Reversed-phase liquid chromatography. Liq. Chromatogr. 2017, 91–123. [Google Scholar] [CrossRef]
- La Barbera, G.; Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Comprehensive polyphenol profiling of a strawberry extract (Fragaria × ananassa) by ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 2127–2142. [Google Scholar] [CrossRef] [PubMed]
- Zenezini Chiozzi, R.; Capriotti, A.L.; Cavaliere, C.; Ferraris, F.; La Barbera, G.; Piovesana, S.; Laganà, A. Evaluation of column length and particle size effect on the untargeted profiling of a phytochemical mixture by using UHPLC coupled to high-resolution mass spectrometry. J. Sep. Sci. 2017, 40, 2541–2557. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Montone, C.M.; Piovesana, S.; Zenezini Chiozzi, R.; Laganà, A. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry. Talanta 2018, 179, 792–802. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Pascale, R.; Carbone, C.F.; Acquavia, M.A.; Cataldi, T.R.I.; Schmitt-Kopplin, P.; Buchicchio, A.; Russo, D.; Milella, L. Determination of soyasaponins in Fagioli di Sarconi beans (Phaseolus vulgaris L.) by LC-ESI-FTICR-MS and evaluation of their hypoglycemic activity. Anal. Bioanal. Chem. 2018, 410, 1561–1569. [Google Scholar] [CrossRef] [PubMed]
- Díaz-de-Cerio, E.; Aguilera-Saez, L.M.; Gómez-Caravaca, A.M.; Verardo, V.; Fernández-Gutiérrez, A.; Fernández, I.; Arráez-Román, D. Characterization of bioactive compounds of Annona cherimola L. leaves using a combined approach based on HPLC-ESI-TOF-MS and NMR. Anal. Bioanal. Chem. 2018, 410, 3607–3619. [Google Scholar] [CrossRef] [PubMed]
- Benvenuti, S.; Brighenti, V.; Pellati, F. High-performance liquid chromatography for the analytical characterization of anthocyanins in Vaccinium myrtillus L. (bilberry) fruit and food products. Anal. Bioanal. Chem. 2018, 410, 3559–3571. [Google Scholar] [CrossRef] [PubMed]
- Di Palma, S.; Hennrich, M.L.; Heck, A.J.R.; Mohammed, S. Recent advances in peptide separation by multidimensional liquid chromatography for proteome analysis. J. Proteom. 2012, 75, 3791–3813. [Google Scholar] [CrossRef] [PubMed]
- McCalley, D.V. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J. Chromatogr. A 2017, 1523, 49–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alpert, A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196. [Google Scholar] [CrossRef]
- Jandera, P.; Janás, P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography—A review. Anal. Chim. Acta 2017, 967, 12–32. [Google Scholar] [CrossRef] [PubMed]
- Marrubini, G.; Appelblad, P.; Maietta, M.; Papetti, A. Hydrophilic interaction chromatography in food matrices analysis: An updated review. Food Chem. 2018, 257, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Hage, D.S.; Anguizola, J.A.; Li, R.; Matsuda, R.; Papastavros, E.; Pfaunmiller, E.; Sobansky, M.; Zheng, X. Affinity Chromatography. In Liquid Chromatography: Applications; Fanali, S., Haddad, P.R., Poole, C.F., Schoenmakers, P., Lloyd, D., Eds.; Elsevier: Waltham, MA, USA, 2013; pp. 1–23. ISBN 9780124158061. [Google Scholar]
- Huang, X.Y.; Ignatova, S.; Hewitson, P.; Di, D.L. An overview of recent progress in elution mode of counter current chromatography. TrAC Trends Anal. Chem. 2016, 77, 214–225. [Google Scholar] [CrossRef] [Green Version]
- Michel, T.; Destandau, E.; Elfakir, C. New advances in countercurrent chromatography and centrifugal partition chromatography: Focus on coupling strategy. Anal. Bioanal. Chem. 2014, 406, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Bojczuk, M.; Żyżelewicz, D.; Hodurek, P. Centrifugal partition chromatography—A review of recent applications and some classic references. J. Sep. Sci. 2017, 40, 1597–1609. [Google Scholar] [CrossRef] [PubMed]
- Berthod, A.; Maryutina, T.; Spivakov, B.; Shpigun, O.; Sutherland, I.A. Countercurrent chromatography in analytical chemistry (IUPAC Technical Report). Pure Appl. Chem. 2009, 81, 355–387. [Google Scholar] [CrossRef] [Green Version]
- Schröder, M.; Vetter, W. High-speed counter-current chromatographic separation of phytosterols. Anal. Bioanal. Chem. 2011, 400, 3615–3623. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Pan, Y. Recent trends in counter-current chromatography. TrAC Trends Anal. Chem. 2012, 40, 15–27. [Google Scholar] [CrossRef]
- Gilar, M.; Olivova, P.; Daly, A.E.; Gebler, J.C. Orthogonality of separation in two-dimensional liquid chromatography. Anal. Chem. 2005, 77, 6426–6434. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, C.; Zhao, X.; Mao, S.; Wu, Y.; Fan, G. Comprehensive two-dimensional high performance liquid chromatography system with immobilized liposome chromatography column and monolithic column for separation of the traditional Chinese medicine Schisandra chinensis. Anal. Chim. Acta 2012, 713, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Harnedy, P.A.; O’Keeffe, M.B.; Fitzgerald, R.J. Purification and identification of dipeptidyl peptidase (DPP) IV inhibitory peptides from the macroalga Palmaria palmata. Food Chem. 2015, 172, 400–406. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Mu, T.-H. Identification and characterization of antioxidant peptides from sweet potato protein hydrolysates by Alcalase under high hydrostatic pressure. Innov. Food Sci. Emerg. Technol. 2017, 43, 92–101. [Google Scholar] [CrossRef]
- das Neves Costa, F.; Leitão, G.G. Strategies of solvent system selection for the isolation of flavonoids by countercurrent chromatography. J. Sep. Sci. 2010, 33, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Pokora, M.; Zambrowicz, A.; Dąbrowska, A.; Eckert, E.; Setner, B.; Szołtysik, M.; Szewczuk, Z.; Zabłocka, A.; Polanowski, A.; Trziszka, T.; et al. An attractive way of egg white protein by-product use for producing of novel anti-hypertensive peptides. Food Chem. 2014, 151, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Guijarro-Díez, M.; García, M.C.; Crego, A.L.; Marina, M.L. Off-line two dimensional isoelectrofocusing-liquid chromatography/mass spectrometry (time of flight) for the determination of the bioactive peptide lunasin. J. Chromatogr. A 2014, 1371, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, Q.-S.; Chan, C.-O.; Mok, D.K.-W.; Yi, L.-Z.; Chau, F.-T. Identifying bioactive components in natural products through chromatographic fingerprint. Anal. Chim. Acta 2015, 870, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.-B.; Qin, Y.-H.; Yun, Y.-H.; Lu, H.-M.; Chen, X.-Q.; Liang, Y.-Z. Separation of nine compounds from Salvia plebeia R.Br. using two-step high-speed counter-current chromatography with different elution modes. J. Sep. Sci. 2014, 37, 2118–2125. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Wang, S.; Li, Z.; Chen, C.; Hou, J.; Xu, D.; Wang, R.; Lin, Y.; Luo, J.; Kong, L. Bioactivity-guided cut countercurrent chromatography for isolation of lysine-specific demethylase 1 inhibitors from Scutellaria baicalensis Georgi. Anal. Chim. Acta 2018, 1016, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Gutzeit, D.; Winterhalter, P.; Jerz, G. Application of preparative high-speed counter-current chromatography/electrospray ionization mass spectrometry for a fast screening and fractionation of polyphenols. J. Chromatogr. A 2007, 1172, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Hou, Z.; Xu, D.; Yao, S.; Luo, J.; Kong, L. An application of high-speed counter-current chromatography coupled with electrospray ionization mass spectrometry for separation and online identification of coumarins from Peucedanum praeruptorum Dunn. J. Chromatogr. B 2009, 877, 2571–2578. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Fan, P.; Feng, S.; Shao, P.; Sun, P.; He, J.; Fan, P.; Feng, S.; Shao, P.; Sun, P. Isolation and Purification of Two Isoflavones from Hericium erinaceum Mycelium by High-Speed Counter-Current Chromatography. Molecules 2018, 23, 560. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.Y.; Xu, Q.; Xue, X.Y.; Zhang, F.F.; Liang, X.M. Characterization of polymethoxylated flavones in Fructus aurantii by off-line two-dimensional liquid chromatography/electrospray ionization-ion trap mass spectrometry. J. Pharm. Biomed. Anal. 2009, 49, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Kalili, K.M.; De Villiers, A. Systematic optimisation and evaluation of on-line, off-line and stop-flow comprehensive hydrophilic interaction chromatography × reversed phase liquid chromatographic analysis of procyanidins, Part I: Theoretical considerations. J. Chromatogr. A 2013, 1289, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Kalili, K.M.; De Villiers, A. Systematic optimisation and evaluation of on-line, off-line and stop-flow comprehensive hydrophilic interaction chromatography × reversed phase liquid chromatographic analysis of procyanidins. Part II: Application to cocoa procyanidins. J. Chromatogr. A 2013, 1289, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Kalili, K.M.; De Smet, S.; van Hoeylandt, T.; Lynen, F.; de Villiers, A. Comprehensive two-dimensional liquid chromatography coupled to the ABTS radical scavenging assay: A powerful method for the analysis of phenolic antioxidants. Anal. Bioanal. Chem. 2014, 406, 4233–4242. [Google Scholar] [CrossRef] [PubMed]
- Cacciola, F.; Giuffrida, D.; Utczas, M.; Mangraviti, D.; Dugo, P.; Menchaca, D.; Murillo, E.; Mondello, L. Application of Comprehensive Two-Dimensional Liquid Chromatography for Carotenoid Analysis in Red Mamey (Pouteria sapote) Fruit. Food Anal. Methods 2016, 9, 2335–2341. [Google Scholar] [CrossRef]
- Dugo, P.; Herrero, M.; Giuffrida, D.; Kumm, T.; Dugo, G.; Mondello, L. Application of comprehensive two-dimensional liquid chromatography to elucidate the native carotenoid composition in red orange essential oil. J. Agric. Food Chem. 2008, 56, 3478–3485. [Google Scholar] [CrossRef] [PubMed]
- Cacciola, F.; Donato, P.; Giuffrida, D.; Torre, G.; Dugo, P.; Mondello, L. Ultra high pressure in the second dimension of a comprehensive two-dimensional liquid chromatographic system for carotenoid separation in red chili peppers. J. Chromatogr. A 2012, 14, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Zenezini Chiozzi, R.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Piovesana, S.; Samperi, R.; Laganà, A. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nanoHPLC-high resolution mass spectrometry. Anal. Bioanal. Chem. 2016, 408, 5657–5666. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Foglia, P.; Piovesana, S.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Development of an analytical strategy for the identification of potential bioactive peptides generated by in vitro tryptic digestion of fish muscle proteins. Anal. Bioanal. Chem. 2015, 407, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Caruso, G.; Cavaliere, C.; Samperi, R.; Ventura, S.; Zenezini Chiozzi, R.; Laganà, A. Identification of potential bioactive peptides generated by simulated gastrointestinal digestion of soybean seeds and soy milk proteins. J. Food Compos. Anal. 2015, 44, 205–213. [Google Scholar] [CrossRef]
- Montone, C.M.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Piovesana, S.; Zenezini Chiozzi, R.; Laganà, A. Peptidomic strategy for purification and identification of potential ACE-inhibitory and antioxidant peptides in Tetradesmus obliquus microalgae. Anal. Bioanal. Chem. 2018, 410, 3573–3586. [Google Scholar] [CrossRef] [PubMed]
- Vásquez-Villanueva, R.; Marina, M.L.; García, M.C. Identification by hydrophilic interaction and reversed-phase liquid chromatography-tandem mass spectrometry of peptides with antioxidant capacity in food residues. J. Chromatogr. A 2016, 1428, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Zenezini Chiozzi, R.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Piovesana, S.; Laganà, A. Identification of three novel angiotensin-converting enzyme inhibitory peptides derived from cauliflower by-products by multidimensional liquid chromatography and bioinformatics. J. Funct. Foods 2016, 27, 262–273. [Google Scholar] [CrossRef]
- Montone, C.M.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Piovesana, S.; Zenezini Chiozzi, R.; Laganà, A. Characterization of antioxidant and angiotensin-converting enzyme inhibitory peptides derived from cauliflower by-products by multidimensional liquid chromatography and bioinformatics. J. Funct. Foods 2018, 44, 40–47. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Strategies for the discovery and identification of food protein-derived biologically active peptides. Trends Food Sci. Technol. 2017, 69, 289–305. [Google Scholar] [CrossRef]
- Samperi, R.; Capriotti, A.L.; Cavaliere, C.; Colapicchioni, V.; Chiozzi, R.Z.; Laganà, A. Food Proteins and Peptides. Compr. Anal. Chem. 2015, 68, 309–357. [Google Scholar] [CrossRef]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Montone, C.M.; Zenezini Chiozzi, R.; Laganà, A. Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal. Bioanal. Chem. 2018, 410, 3425–3444. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Piovesana, S.; Samperi, R.; Laganà, A. Recent trends in the analysis of bioactive peptides in milk and dairy products. Anal. Bioanal. Chem. 2016, 408, 2677–2685. [Google Scholar] [CrossRef] [PubMed]
- Lemes, A.C.; Sala, L.; Ores, J.D.C.; Braga, A.R.C.; Egea, M.B.; Fernandes, K.F. A review of the latest advances in encrypted bioactive peptides from protein-richwaste. Int. J. Mol. Sci. 2016, 17, 950. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Zhu, Y.; Shi, Z. Detection of lunasin in quinoa (Chenopodium quinoa, Willd) and the in vitro evaluation of its antioxidant and anti-inflammatory activities. J. Sci. Food Agric. 2017, 28, 303–325. [Google Scholar] [CrossRef] [PubMed]
- Piovesana, S.; Capriotti, A.L.; Cavaliere, C.; La Barbera, G.; Samperi, R.; Zenezini Chiozzi, R.; Laganà, A. Peptidome characterization and bioactivity analysis of donkey milk. J. Proteom. 2015, 119. [Google Scholar] [CrossRef] [PubMed]
- Donato, P.; Cacciola, F.; Sommella, E.; Fanali, C.; Dugo, L.; Dachà, M.; Campiglia, P.; Novellino, E.; Dugo, P.; Mondello, L. Online comprehensive RPLC × RPLC with mass spectrometry detection for the analysis of proteome samples. Anal. Chem. 2011, 83, 2485–2491. [Google Scholar] [CrossRef] [PubMed]
- Sommella, E.; Pepe, G.; Ventre, G.; Pagano, F.; Manfra, M.; Pierri, G.; Ismail, O.; Ciogli, A.; Campiglia, P. Evaluation of two sub-2μm stationary phases, core-shell and totally porous monodisperse, in the second dimension of on-line comprehensive two dimensional liquid chromatography, a case study: Separation of milk peptides after expiration date. J. Chromatogr. A 2015, 1375, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Foglia, P.; Piovesana, S.; Ventura, S. Chromatographic methods coupled to mass spectrometry detection for the determination of phenolic acids in plants and fruits. J. Liq. Chromatogr. Relat. Technol. 2015, 38. [Google Scholar] [CrossRef]
Sample | Compounds | Separation Conditions | Detector | Results | Ref. |
---|---|---|---|---|---|
Fragaria × ananassa | flavonoids, phenolic acids, dihydrochalcones, ellagitannins, proanthocyanidins | RP: core–shell C18 column (100 mm × 2.1 mm, 2.6 μm); 40 °C, water/ACN both with 0.1% FA (v/v), 600 μL min−1 | hybrid quadrupole-Orbitrap | 113 compounds tentatively identified, 18 compounds identified | [23] |
Fragaria × ananassa | anthocyanins, dihydrochalcones, dihydroflavonols, dihydroflavanols, flavanones, flavan-3-ols, proanthocyanidins, ellagitannins | 2 × C18 columns, (100 × 2.1 mm, 2.6 μm) 40 °C, water/ACN both with 0.1% FA (v/v), 600 μL min−1 | hybrid quadrupole-Orbitrap | 89 compounds tentatively identified | [24] |
Brassica oleracea L. var. botrytis | glucosinolates | 2 in series C18 columns, (100 × 2.1 mm, 2.6 μm) 40 °C, water/ACN both with 0.1% FA (v/v), 600 μL min−1 | hybrid quadrupole-Orbitrap | 51 compounds tentatively identified | [25] |
Phaseolus vulgaris | soyasaponins | C18 column (150 × 4.6 mm, 2.6 μm), water/ACN both with 0.1% FA (v/v), 800 μL min−1 | Fourier transform ion cyclotron resonance MS + infrared multiphoton dissociation | 8 compounds | [26] |
Annona cherimola Mill. | sugars, amino acids, phenolic acids and derivatives, flavonoids, phenylpropanoids, other polar compounds | C18 column (4.6 mm × 100 mm, 2.7 μm), 25 °C, water with 1% acetic acid (v/v, phase A)/ACN (phase B), 0.8 mL min−1 | TOF MS | 77 compounds | [27] |
Vaccinium myrtillus L. | anthocyanins | C18 (150 × 4.6 mm, 5 μm), 25 °C, (A) water/FA (9:1, v/v, phase A), MeOH/water/FA (5:4:1, v/v/v, phase B), 1 mL min−1 | DAD, ESI-MS | 14 compounds | [28] |
commercial crude β-sitosterol standard (purity ∼60%) | phytosterols | HSCCC, solvent system: n-hexane/MeOH/aqueous silver nitrate solution (34:24:1, v/v/v), 1000 rpm, 1 mL min−1 | GC-MS | sitostanol (>99%) and β-sitosterol (∼99%), mixture of campesterol and stigmasterol | [39] |
Schisandra chinensis | lignans | on-line MD-LC (1) immobilized liposome chromatography (200 mm × 4.6 mm, 5µm); 10 mmol L−1 ammonium acetate (pH 6.8), 1.0 mL min−1, 25 °C. (2) monolithic C18 (100 mm × 4.6 mm), water/ACN, 3.0 mL min−1. | DAD, ESI-MS | >40 compounds separated, 14 identified | [42] |
Palmaria palmata | Antidiabetic (dipeptidyl peptidase IV inhibitor) peptides | Off-line MD-LC (1) C18 semi-preparative column (250 × 15 mm, 10 μm) water/ACN both with 0.1% FA, 5 mL min−1 (2) C18 column (2.1 × 50 mm, 1.7 μm) water/ACN both with 0.1% FA, 0.2 mL min−1 | ESI-MS | 3 bioactive peptides | [43] |
Sweet potato | antioxidant peptides | Off-line MD-LC (1) C18 column (21.2 × 150 mm), water/ACN both with 0.1% TFA, 10 mL min−1 (2) C18 column (75 μm × 150 mm; 5 μm), water/ACN both with 0.1% FA, 300 nL min−1 | LTQ linear ion trap | 5 peptides | [44] |
Egg | ACE-inhibitor peptides | Off-line MD-LC (1) gel filtration chromatography GF-250 (250 mm × 4.6 mm); 0.02 mol L−1 phosphate buffer (pH 7.2) with 0.2% NaCl, 30 °C, 0.5 mL min−1. (2) C18 column (50 mm × 1.8 mm), water/ACN with both 0.1% TFA, 1 mL min−1, 30 °C. | DAD; MALDI TOF/TOF | 113 compounds tentatively identified, 18 compounds identified | [46] |
Soybean | Lunasin | (1) isoelectrofocusing (2) C18 column (100 mm × 2.1 mm, 2.7μm), water/ACN both with 0.3% (v/v) acetic acid, 0.4 mL min−1, 30 °C | ESI-QTOF-MS | Lunasin | [47] |
Radix Puerariae Lobatae | main bioactive signatures | C18 column (150 × 4.6 mm, 5 μm), water/MeOH both with 0.1% phosphoric acid or ACN/0.3% acetic acid | DAD, SIS–iPLS | 9 main bioactive signatures | [48] |
Salvia plebeia R.Br. | polyphenols | two-step HSCCC, three solvent systems: n-hexane/ethyl acetate/ethanol/water (4:6.5:3:7, v/v), methyl tert-butyl ether/ethyl acetate/n-butanol/MeOH/water (6:4:1:2:8, v/v), n-hexane/ethyl acetate/MeOH/water (5:5.5:5:5, v/v) | HPLC-DAD | 9 compounds | [49] |
Scutellaria baicalensis Georgi | lysine-specific demethylase 1 inhibitors | HSCCC, solvent system: ethyl acetate/MeOH/water | HPLC-DAD | 6 natural lysine-specific demethylase 1 inhibitors | [50] |
Hippophaë rhamnoides L. ssp. rhamnoides | polyphenols | MD-HSCCC, solvent system: n-hexane/n-butanol/water (1:1:2, v/v/v) | MS (direct coupling) | 5 compounds | [51] |
Peucedanum praeruptorum Dunn | coumarins | HSCCC, solvent system: light petroleum/ethyl acetate/MeOH/water (5:5:6:4, v/v) | MS (direct coupling) | 7 compounds | [52] |
Hericium erinaceum | isoflavones | HSCCC, solvent system: chloroform/dichloromethane/MeOH/water (4:2:3:2, v/v/v/v) | Infrared spectroscopy, MS, nuclear magnetic resonance | 2 compounds | [53] |
Fructus aurantii | polymethoxylated flavones | Off-line MD-LC (1) C8 column (250 mm × 4.6 mm, 5 μm), 30 °C, water/MeOH, 0.25 mL min−1 (2) C18 column (250 mm × 4.6 mm, 5 μm), 30 °C, water/MeOH, 0.25 mL min−1 | DAD, ESI-MS | 42 compounds tentatively identified | [54] |
Cocoa | procyanidins | Off-line, stop-flow or on-line MD-LC (1) HILIC Diol-100 column (250 mm × 1 mm, 5 μm), ACN/acetic acid (99:1, v/v, phase A), MeOH/water/acetic acid (94.05:4.95:1, v/v/v, phase B) (2) C18 column (50 mm × 4.6 mm, 1.8 μm), water/ACN both with 0.1% FA | DAD | Comparative study | [55,56] |
Cocoa, red grape seed and green tea | phenolics | On-line MD-LC (1) HILIC Diol-100 column (250 mm × 1 mm, 5 μm), ACN/acetic acid (99:1, v/v, phase A), MeOH/water/acetic acid (94.05:4.95:1, v/v/v, phase B), 25 μL min−1 (2) C18 column (50 mm × 4.6 mm, 2.6 μm), 0.1% FA/acetonitrile, 1.5 mL min−1 | DAD, ESI-MS | Comparative study | [57] |
Pouteria sapote | carotenoids | On-line MD-LC (1) Cyano column (250 × 1.0 mm I.D., 5-μm), n-hexane/butyl acetate/acetone (80:15:5, v/v/v, phase B), n-hexane (phase A), 10 μL min−1 (2) C18 column (50 × 4.6 mm, 2.7 μm), 2-propanol (phase A), water/ACN (90:10, v/v, phase B), 3 mL min−1 | DAD, MS | 23 compounds identified | [58] |
Red Orange Essential Oil | carotenoids | On-line MD-LC (1) Cyano column (250 × 1.0 mm, 5-μm), n-hexane/butyl acetate/acetone (80:15:5, v/v/v, phase B), n-hexane (phase A), 10 μL min−1 (2) C18 column (100 × 4.6 mm, 2.7 μm), 2-propanol (phase A), water/ACN (20:80, v/v, phase B), 5 mL min−1 | DAD, MS | 37 compounds | [59] |
Red chili peppers | carotenoids | On-line MD-LC (1) Cyano column (250 × 1.0 mm, 5-μm), n-hexane/butyl acetate/acetone (80:15:5, v/v/v, phase B), n-hexane (phase A), 10 μL min−1 (2) 2 × C18 columns (30 × 4.6 mm, 2.7 μm), 2-propanol (phase A), water/ACN (20:80, v/v, phase B), 5 mL min−1 | DAD, ion trap-TOF | 33 compounds | [60] |
Donkey milk | antioxidant and ACE-inhibitor peptides | Off-line MD-LC (1) polymeric RP (4.6 × 250 mm, 5 μm), water/ACN both with 0.1% FA; 1 mL min−1 (2) HILIC column (100 × 2.1 mm, 2.6 μm), ACN/5 mmol L−1 HCOONH4 (50:50, v/v, phase B), ACN/5 mmol L−1 HCOONH4 (90:10, v/v, phase A); 300 μL min−1 (3) C18 (500 × 0.75 mm, 2 μm), water/ACN both with 0.1% FA, 200 µL min−1 | DAD, hybrid Orbitrap | 2 antioxidant peptides, 2 ACE-inhibitor peptides | [61] |
Dicentrarchus labrax | Known bioactive peptides | C18 column (500 × 0.75 mm, 2 μm) water/ACN both with 0.1% FA, 200 µL min−1 | hybrid Orbitrap | 44 peptides antimicrobial peptides | [62] |
Soybean seeds and milk | Known bioactive peptides | C18 column (500 × 0.75 mm, 2 μm) water/ACN both with 0.1% FA, 200 µL min−1 | hybrid Orbitrap | 24 antimicrobial peptides | [63] |
Tetradesmus obliquus microalgae | ACE-inhibitor and antioxidant peptides | Off-line MD-LC (1) polymeric C18 (19 × 250 mm, 5 μm), water/MeOH both with 0.1% TFA, 17 mL min−1 (2) C18 column (10 × 250 mm, 5 μm), 10 mmol L−1 HCOONH4 (pH 10, phase A), MeOH/water (90:10, v/v, with 10 mmol L−1 HCOONH4, pH 10), 7 mL min−1 (3) C18 column (500 × 0.75 mm, 2 μm), water/ACN both with 0.1% FA, 200 µL min−1 | DAD, hybrid Orbitrap | 4 ACE-inhibitor peptides | [64] |
Peach byproducts | antioxidant peptides | Off-line MD-LC (1) C18 column (100 mm × 2.1 mm, 2.7 μm), 0.3% (v/v) acetic acid (phase A), ACN with 0.3% (v/v) acetic acid (phase B), 0.3 mL min−1 (2) silica HILIC (100 × 2.1 mm, 2.7 μm), ACN with 65 mmol L−1 ammonium acetate (phase A), 65 mmol L−1 ammonium acetate (phase B), 0.3 mL min−1 | Q-TOF | 18 peptides | [65] |
Cauliflower byproducts | ACE-inhibitor peptides | (1) polymeric C18 column (19 × 250 mm, 5 μm), water/ACN both with 0.1% FA, 1 mL min−1 (2) HILIC (100 × 2.1 mm, 2.6 μm), ACN/5 mmol L−1 HCOONH4 (50:50, v/v; phase B), ACN/5 mmol L−1 HCOONH4 (90:10, v/v, phase A), 300 µL min−1 (3) C18 column (25 × 0.75 mm, 2.2 μm), water/ACN both with 0.1% FA, 250 µL min−1 | DAD, hybrid Orbitrap | 3 ACE-inhibitor peptides | [66] |
Cauliflower by-products | antioxidant and ACE-inhibitor peptides | Off-line MD-LC (1) polymeric C18 column (19 × 250 mm, 5 μm), water/MeOH both with 0.1% TFA, 17 mL min−1 (2) C18 column (25 × 0.75 mm, 2.2 μm), water/ACN both with 0.1% FA, 250 µL min−1 | DAD, hybrid Orbitrap | 4 peptides | [67] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavaliere, C.; Capriotti, A.L.; La Barbera, G.; Montone, C.M.; Piovesana, S.; Laganà, A. Liquid Chromatographic Strategies for Separation of Bioactive Compounds in Food Matrices. Molecules 2018, 23, 3091. https://doi.org/10.3390/molecules23123091
Cavaliere C, Capriotti AL, La Barbera G, Montone CM, Piovesana S, Laganà A. Liquid Chromatographic Strategies for Separation of Bioactive Compounds in Food Matrices. Molecules. 2018; 23(12):3091. https://doi.org/10.3390/molecules23123091
Chicago/Turabian StyleCavaliere, Chiara, Anna Laura Capriotti, Giorgia La Barbera, Carmela Maria Montone, Susy Piovesana, and Aldo Laganà. 2018. "Liquid Chromatographic Strategies for Separation of Bioactive Compounds in Food Matrices" Molecules 23, no. 12: 3091. https://doi.org/10.3390/molecules23123091
APA StyleCavaliere, C., Capriotti, A. L., La Barbera, G., Montone, C. M., Piovesana, S., & Laganà, A. (2018). Liquid Chromatographic Strategies for Separation of Bioactive Compounds in Food Matrices. Molecules, 23(12), 3091. https://doi.org/10.3390/molecules23123091