Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. High-Performance Liquid Chromatography Method Optimization and Validation
2.2. Quantification of Phenolic Compounds in EVOO Sample and Their Identification
2.3. Antioxidant Activity of Sample Extracts
3. Materials and Methods
3.1. Chemicals
3.2. Samples
3.3. Extraction of Phenolic Compounds
3.4. Determination of Total Phenolic Content
3.5. Antioxidant Activity
3.5.1. FRAP Assay
3.5.2. ORAC Assay
3.5.3. DPPH Radical Scavenging Assay
3.5.4. TEAC Assay
3.6. HPLC-DAD-ESI-MS Analysis of Phenolic Compounds
3.7. HPLC-DAD Quantitative Analysis Method Validation
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Council Regulation (EC) No 1513/2001 of 23 July 2001 Amending Regulations No 136/66/EEC and (EC) No 1638/98 as Regards the Extension of the Period of Validity of the Aid Scheme and the Quality Strategy for Olive Oil. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32001R1513 (accessed on 25 October 2018).
- Regulation (EU) no 1151/2012 of the European Parliament and of the Council of 21 November 2012 on Quality Schemes for Agricultural Products and Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32012R1151 (accessed on 25 October 2018).
- Peršurić, Ž.; Saftić, L.; Mašek, T.; Pavelić, S.K. Comparison of triacylglycerol analysis by MALDI-TOF/MS, fatty acid analysis by GC-MS and non-selective analysis by NIRS in combination with chemometrics for determination of extra virgin olive oil geographical origin. A case study. LWT 2018, 95, 326–332. [Google Scholar] [CrossRef]
- Ouni, Y.; Taamalli, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Zarrouk, M. Characterization and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC-ESITOF MS method. Food Chem. 2011, 127, 1263–1267. [Google Scholar] [CrossRef] [PubMed]
- Servili, M.; Sordini, B.; Esposto, S.; Urbani, S.; Veneziani, G.; Di Maio, I.; Selvaggini, R.; Taticchi, A. Biological Activities of Phenolic Compounds of Extra VirginOlive Oil. Antioxidants 2014, 3, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Mazzotti, F.; Benabdelkamel, H.; Di Donna, L.; Maiuolo, L.; Napoli, A.; Sindona, G. Assay of tyrosol and hydroxytyrosol in olive oil by tandem mass spectrometry and isotope dilution method. Food Chem. 2012, 135, 1006–1010. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef]
- Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Laganà, A. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QToF mass spectrometry. Food Chem. 2014, 158, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Lerma-García, M.J.; Lantano, C.; Chiavaro, E.; Cerretani, L.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Classification of extra virgin olive oils according totheir geographical origin using phenolic compound profiles obtained bycapillary electrochromatography. Food Res. Int. 2009, 42, 1446–1452. [Google Scholar] [CrossRef]
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils bysolid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef]
- Rotondi, A.; Bendini, A.; Cerretani, L.; Mari, M.; Lercker, G.; Gallina-Toschi, T. Effect of olive ripening degree on the oxidative stability andorganoleptic properties of Cv. Nostrana di Brisighella extra virgin olive oil. J. Agric. Food Chem. 2004, 52, 3649–3654. [Google Scholar] [CrossRef]
- Aturki, Z.; Fanali, S.; D’Orazio, G.; Rocco, A.; Rosati, C. Analysis of phenoliccompounds in extra virgin olive oil by using reversed-phase capillary electrochromatography. Electrophoresis 2008, 29, 1643–1650. [Google Scholar] [CrossRef]
- Tasioula-Margari, M.; Tsabolatidou, E. Extraction, Separation, and Identification of Phenolic Compounds in Virgin Olive Oil by HPLC-DAD and HPLC-MS. Antioxidants 2015, 4, 548–562. [Google Scholar] [CrossRef] [Green Version]
- Fu, S.; Segura-Carretero, A.; Arráez-Román, D.; Menéndez, J.A.; De La Torre, A.; Fernández-Gutiérrez, A. Tentative characterization of novel phenoliccompounds in extra virgin olive oils by rapid-resolution liquid chromatographycoupled with mass spectrometry. J. Agric. Food Chem. 2009, 57, 11140–11147. [Google Scholar] [CrossRef]
- Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Cerretani, L.; Bendini, A.; SeguraCarretero, A.; Fernández-Gutiérrez, A. Protective effects of extra virginolive oil phenolics on oxidative stability in the presence or absence of copperions. J. Agric. Food Chem. 2006, 54, 7984–7991. [Google Scholar] [CrossRef]
- Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Gallina-Toschi, T.; Fernandez-Gutierrez, A. Analytical determination of polyphenols in olive oils. J. Sep. Sci. 2005, 28, 837–858. [Google Scholar] [CrossRef] [PubMed]
- Tasioula-Margari, M.; Okogeri, O. Isolation and characterization of virgin olive oil phenoliccompounds by HPLC/UV and GC-MS. J. Food Sci. 2001, 66, 530–534. [Google Scholar] [CrossRef]
- Gómez Caravaca, A.M.; Carrasco Pancorbo, A.; Cañabate Díaz, B.; Segura Carretero, A.; Fernández Gutiérrez, A. Electrophoretic identification and quantitation of compounds in the polyphenolic fraction of extra-virgin olive oil. Electrophoresis 2005, 26, 3538–3551. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Carrasco-Pancorboa, A.; Oliveras-Ferraros, C.; Vázquez-Martínb, A.; Menéndezb, J.A.; Segura-Carreteroa, A.; Fernández-Gutiérreza, A. Characterization and quantification of phenolic compounds of extra-virgin olive oils with anticancer properties by a rapid and resolutive LC-ESI-TOF MS method. J. Pharm. Biomed. Anal. 2010, 51, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Christophoridou, S.; Dais, P. Novel Approach to the detection and quantification of phenoliccompounds in olive oil based on 31P nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 2006, 54, 656–664. [Google Scholar] [CrossRef]
- Bayram, B.; Esatbeyoglu, T.; Schulze, N.; Ozcelik, B.; Frank, J.; Rimbach, G. Comprehensive analysis of polyphenols in 55 extra virgin olive oils by HPLC-ECD and their correlation with antioxidant activities. Plant Foods Hum. Nutr. 2012, 67, 326–336. [Google Scholar] [CrossRef]
- McDonald, S.; Prenzler, P.D.; Antolovich, M.; Robards, K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001, 73, 73–84. [Google Scholar] [CrossRef]
- Hrncirik, K.; Fritsche, S. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid. Sci. Technol. 2004, 106, 540–549. [Google Scholar] [CrossRef]
- Leporini, M.; Loizzo, M.R.; Tenuta, M.C.; Falco, T.; Sicari, V.; Pellicano, T.M.; Tundis, R. Calabrian extra-virgin olive oil from Frantoio cultivar: Chemical composition and health properties. Emir. J. Food Agric. 2018, 30, 631–637. [Google Scholar]
- Mulinacci, N.; Valletta, A.; Pasqualetti, V.; Innocenti, M.; Giuliani, C.; Bellumori, M.; De Angelis, G.; Carnevale, A.; Locato, V.; Di Venanzio, C.; et al. Effects of ionizing radiation on bioactive plant extracts useful for preventing oxidative damages. Nat. Prod. Res. 2018. [Google Scholar] [CrossRef]
- Antonini, E.; Farina, A.; Leone, A.; Mazzara, E.; Urban, S.; Selvaggini, R.; Servili, M.; Ninfali, P. Phenolic compounds and quality parameters of family farming versus protected designation of origin (PDO) extra-virgin olive oils. J. Food Comp. Anal. 2015, 43, 75–81. [Google Scholar] [CrossRef]
- Gambacorta, G.; Faccia, M.; Trani, A.; Lamacchia, C.; Gomes, T. Phenolic composition and antioxidant activity of Southern Italian monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 2012, 114, 958–967. [Google Scholar] [CrossRef]
- Galvano, F.; La Fauci, L.; Graziani, G.; Ferracane, R.; Masella, R.; Di Giacomo, C.; Scacco, A.; D’Archivio, M.; Vanella, L.; Galvano, G. Phenolic Compounds and Antioxidant Activity of Italian Extra Virgin Olive Oil Monti Iblei. J. Med. Food 2007, 4, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Tuberoso, C.I.G.; JerkoviT, I.; Maldini, M.; Serreli, G. Phenolic Compounds, Antioxidant Activity, and Other Characteristics of Extra Virgin Olive Oils from Italian Autochthonous Varieties Tonda di Villacidro, Tonda di Cagliari, Semidana, and Bosana. J. Chem. 2016, 4, 1–7. [Google Scholar] [CrossRef]
- Veneziani, G.; Esposto, S.; Taticchi, A.; Urbani, S.; Selvaggini, R.; Sordini, B.; Servili, M. Characterization of phenolic and volatile composition of extra virgin olive oil extracted from six Italian cultivars using a cooling treatment of olive paste. LWT Food Sci. Technol. 2018, 87, 523–528. [Google Scholar] [CrossRef]
- Nescatelli, R.; Bonanni, R.C.; Bucci, R.; Magrì, A.L.; Magrì, A.D.; Marini, F. Geographical traceability of extra virgin olive oils from Sabina PDO by chromatographic fingerprinting of the phenolic fraction coupled to chemometrics. Chemometr. Intell. Lab. 2014, 139, 175–180. [Google Scholar] [CrossRef]
- Bonoli, M.; Montanucci, M.; Toschi, T.G.; Lercker, G. Fast separation and determination of tyrosol, hydroxytyrosol and other phenolic compounds in extra-virgin olive oil by capillary zone electrophoresis with ultraviolet-diode array detection. J. Chromatogr. A 2003, 1011, 163–172. [Google Scholar] [CrossRef]
- Luque-Muñoz, A.; Tapia, R.; Haidour, A.; Justicia, J.; Cuerva, J.M. Quantification of oleacein and oleuropein aglycone in olive oil using deuterated surrogates by normal-phase ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2018. [Google Scholar] [CrossRef] [PubMed]
- Bakhouche, A.; Lozano-Sánchez, J.; Beltrán-Debón, R.; Joven, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic characterization and geographical classification of commercial Arbequina extra-virgin olive oils produced in southern Catalonia. Food Res. Int. 2013, 50, 401–408. [Google Scholar] [CrossRef]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Direct measurement of oleocanthal and oleacein levels in olive oil by quantitative 1H-NMR. establishment of a new index for the characterization of extra virgin olive oils. J. Agric. Food Chem. 2012, 60, 11696–11703. [Google Scholar] [CrossRef]
- Sánchez de Medina, V.; Priego-Capote, F.; de Castro, M.D. Characterization of monovarietal virgin olive oils by phenols profiling. Talanta 2015, 132, 424–432. [Google Scholar] [CrossRef] [PubMed]
- Malheiro, R.; Rodrigues, N.; Pereira, J.A. Olive Oil Phenolic Composition as Affected by Geographic Origin, Olive Cultivar, and Cultivation Systems. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; Elsevier: Chicago, IL, USA, 2015; pp. 93–121. [Google Scholar]
- Gómez-Caravaca, A.M.; Lozano-Sánchez, J.; Contreras Gámez, M.D.M.; Segura Carretero, A. Bioactive phenolic compounds from olea europaea: A challenge for analytical chemistry. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; Elsevier: Chicago, IL, USA, 2015; pp. 261–298. [Google Scholar]
- Dimitrios, B. Olive Fruit, Table Olives, and Olive Oil Bioactive Constituents. In Olive and Olive Oil Bioactive Constituents; Boskou, D., Ed.; Elsevier: Chicago, IL, USA, 2015; pp. 1–30. ISBN 978-1-63067-041-2. [Google Scholar]
- Olmo-García, L.; Fernández-Fernández, C.; Hidalgo, A.; Vílchez, P.; Fernández-Gutiérrez, A.; Marchal, R.; Carrasco-Pancorbo, A. Evaluating the reliability of specific and global methods to assess the phenolic content of virgin olive oil: Do they drive to equivalent results? J. Chromatogr. A 2018. [Google Scholar] [CrossRef]
- Trombetta, D.; Smeriglio, A.; Marcoccia, D.; Giofrè, S.V.; Toscano, G.; Mazzotti, F.; Giovanazzi, A.; Lorenzetti, S. Analytical Evaluation and Antioxidant Properties of Some Secondary Metabolites in Northern Italian Mono- and Multi-Varietal Extra Virgin Olive Oils (EVOOs) from Early and Late Harvested Olives. Int. J. Mol. Sci. 2017, 18, 797. [Google Scholar] [CrossRef] [PubMed]
- Karkoula, E.; Skantzari, A.; Melliou, E.; Magiatis, P. Quantitative Measurement of Major Secoiridoid Derivatives in Olive. J. Agric. Food Chem. 2014, 62, 600–607. [Google Scholar] [CrossRef]
- Celano, R.; Piccinelli, A.L.; Pugliese, A.; Carabetta, S.; Di Sanzo, R.; Rastrelli, L.; Russo, M. Insights into Analysis of Phenolic Secoiridoids in Extra Virgin Olive Oil. J. Agric. Food Chem. 2018, 66, 6053–6063. [Google Scholar] [CrossRef]
- Sicari, V. Antioxidant potential of extra virgin olive oils extracted from three different varieties cultivated in the Italian province of Reggio Calabria. Appl. Bot. Food Qual. 2017, 90, 76–82. [Google Scholar]
- Reboredo-Rodríguez, P.; González-Barreiro, C.; Cancho-Grande, B.; Forbes-Hernández, T.Y.; Gasparrini, M.; Afrin, S.; Cianciosi, D.; Carrasco-Pancorbo, A.; Simal-Gándara, J.; Giampieri, F.; et al. Characterization of phenolic extracts from Brava extra virgin olive oils and their cytotoxic effects on MCF-7 breast cancer cells. Food Chem. Toxicol. 2018, 119, 73–85. [Google Scholar] [CrossRef]
- Baiano, A.; Gambacorta, G.; Terracone, C.; Previtali, M.A.; Lamacchia, C.; La Notte, E. Changes in Phenolic Content and Antioxidant Activity of Italian Extra-Virgin Olive Oils during Storage. J. Food Sci. 2009, 74, 177–183. [Google Scholar] [CrossRef]
- Ricciutelli, M.; Marconi, S.M.; Boarelli, C.; Caprioli, G.; Sagratini, G.; Ballini, R.; Fiorini, D. Olive oil polyphenols: A quantitative method by high-performance liquid-chromatography-diode-array detection for their determination and the assessment of the related health claim. J. Chromatogr. 2017, 1481, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Fu, L.; Xu, B.T.; Xu, X.R.; Qin, X.S.; Gan, R.Y.; Li, H.B. Antioxidant Capacities and Total Phenolic Contents of 56 Wild Fruits from South China. Molecules 2010, 15, 8602–8617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padmanabhan, P.; Jangle, S.N. Evaluation of DPPH Radical Scavenging Activity and Reducing Power of Four Selected Medicinal Plants and Their Combinations. Int. J. Pharm. Sci. Drug. Res. 2012, 4, 143–146. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ‘‘Antioxidant Power’’: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Sample Availability: Samples of the olive oils are available from the authors. |
SICILY mg kg−1 | PUGLIA mg kg−1 | TUSCANY mg kg−1 | LAZIO mg kg−1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Compounds | [M − H]− (m/z) | Range | Average | SD | Range | Average | SD | Range | Average | SD | Range | Average | SD |
Phenolic alcohols a | |||||||||||||
Hydroxytyrosol | 153 | 9.20–62.7 | 36.68 | 20.73 | 1.30–53.41 | 21.76 | 20.02 | 0.72–38.64 | 13.49 | 11.44 | 2.61–24.43 | 14.50 | 8.02 |
Tyrosol | 137 | 0.03–62.30 | 23.08 | 22.81 | 0.32–41.88 | 12.77 | 17.35 | 0.88–14.02 | 4.96 | 4.42 | 0.34–12.83 | 6.01 | 5.46 |
All | 20.45–125.00 | 59.76 | 70.27 | 1.90–95.29 | 34.54 | 107.51 | 1.7–47.68 | 18.45 | 73.38 | 3.40–37.26 | 20.51 | 57.26 | |
Phenolic acids | |||||||||||||
Vanillic acid b | 167 | 0.94–2.90 | 1.68 | 0.77 | 1.07–2.50 | 1.90 | 0.49 | 0.71–3.02 | 1.65 | 0.80 | 0.98–3.06 | 1.87 | 0.85 |
p-cumaric acid c | 163 | 0.99–3.10 | 1.75 | 0.70 | 1.26–1.49 | 1.36 | 0.12 | 1.20–3.66 | 1.70 | 0.72 | 1.19–2.36 | 1.68 | 0.37 |
All | 2.01–3.93 | 3.44 | 41.63 | 2.33–3.85 | 3.27 | 15.78 | 2.13–6.68 | 3.35 | 39.15 | 2.31–5.42 | 3.56 | 32.41 | |
Secoiridoids d | |||||||||||||
Elenolic acid | 241 | 1.99–30.75 | 10.59 | 10.60 | 2.21–12.13 | 6.31 | 3.71 | 1.63–17.90 | 7.24 | 4.99 | 1.41–9.92 | 5.46 | 3.56 |
Hydroxydecarboxymethyl elenolic acid | 199 | 5.10–41.70 | 18.00 | 13.96 | 2.90–16.51 | 7.94 | 4.37 | 2.29–22.83 | 9.45 | 6.01 | 2.59–27.93 | 12.94 | 9.22 |
Hydroxydecarboxymethyl oleuropein aglycon | 335 | 11.36–67.90 | 23.08 | 22.08 | 3.06–18.24 | 12.31 | 5.11 | 8.59–19.57 | 12.49 | 3.65 | 11.70–24.29 | 18.38 | 4.83 |
dialdehydic form of oleuropein aglycon (3,4-DHPEA-EDA) | 319 | 93.10–992.77 | 374.83 | 319.20 | 278.00–839.10 | 619.01 | 171.14 | 87.7–1235.24 | 689.43 | 385.35 | 332.08–1546.61 | 840.17 | 418.75 |
Oleuropein aglycon (3,4-DHPEA) | 377 | 20.41–63.81 | 36.99 | 17.02 | 104.95–387.61 | 187.20 | 110.34 | 30.72–923.83 | 294.75 | 330.87 | 26.84–135.81 | 59.29 | 41.85 |
Oleuropein aglycon | 377 | 164.67–655.31 | 347.58 | 180.26 | 333.70–996.01 | 631.16 | 216.29 | 156.9–660.10 | 479.55 | 151.13 | 390.09–912.35 | 565.01 | 209.01 |
Ligstroside aglycone (p-HPEA-EA) | 361 | 80.83–180.11 | 126.06 | 43.32 | 205.90–786.98 | 434.66 | 235.19 | 124.36–899.48 | 326.90 | 245.74 | 152.81–218.13 | 188.14 | 24.97 |
Oleuropein aglycon | 377 | 21.89–375.80 | 147.79 | 122.33 | 747.46–1682.89 | 1163.66 | 385.34 | 233.93–1468.91 | 746.51 | 489.56 | 160.89–623.65 | 354.40 | 196.96 |
Ligstroside aglycone (p-HPEA-EA) isomer | 361 | 23.03–216.15 | 85.38 | 68.49 | 324.35–990.64 | 591.86 | 23.39 | 84.20–569.69 | 247.05 | 148.29 | 106.82–412.32 | 191.93 | 120.60 |
All | 470.89–2162.66 | 1170.34 | 52.73 | 2670.68–5033.75 | 3654.14 | 22.90 | 1087.60–5300.79 | 2813.40 | 55.37 | 1276.01–3296.84 | 2235.75 | 37.44 | |
Flavonoids | |||||||||||||
Apigenin e | 269 | 1.05–1.04 | 1.22 | 0.15 | 1.21–2.19 | 1.66 | 0.29 | 1.20–2.57 | 1.78 | 0.45 | 1.42–2.91 | 1.98 | 0.56 |
Luteolin f | 285 | 11.58–13.07 | 12.34 | 0.69 | 12.98–16.82 | 14.12 | 1.28 | 12.57–15.47 | 13.82 | 0.93 | 12.17–15.45 | 14.25 | 1.59 |
All | 12.64–14.30 | 13.57 | 6.00 | 140.19–18.65 | 15.79 | 8.76 | 13.91–17.35 | 15.60 | 8.13 | 13.9–18.36 | 16.24 | 11.55 | |
Unknown d | |||||||||||||
Unknown 1 | 411 | 21.33–188.10 | 88.28 | 61.32 | 25.32–141.19 | 106.50 | 34.98 | 19.22–164.89 | 93.03 | 53.36 | 22.42–144.63 | 99.92 | 52.95 |
Unknown 2 | 292 | 25.24–182.70 | 101.76 | 74.27 | 25.38–320.7 | 125.98 | 117.61 | 16.53–271.78 | 118.08 | 87.14 | 21.51–368.49 | 182.33 | 147.61 |
Unknown 3 | 324 | 128.10–270.96 | 205.26 | 49.08 | 67.42–491.75 | 259.56 | 138.14 | 73.93–286.62 | 181.48 | 62.06 | 120.39–274.37 | 165.33 | 59.09 |
All | 307.99–474.99 | 395.30 | 17.11 | 379.83–672.58 | 492.05 | 19.58 | 159.60–577.81 | 392.60 | 27.46 | 261.14–650.01 | 447.58 | 38.16 | |
Bioactive molecules | 813.98–2625.01 | 1642.41 | 3260.88–5613.61 | 4199.79 | 1552.30–5920.33 | 3243.40 | 1592.28–3824.12 | 2723.63 |
Geographical Area | TPC (mg GAE kg −1) | TEAC (µmol TE g −1) | DPPH (µmol TE g −1) | ORAC (µmol TE g −1) | FRAP (µmol TE g −1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Range | Avarage | SD | Range | Avarage | SD | Range | Avarage | SD | Range | Avarage | SD | Range | Avarage | SD | |
Sicily | 97.63–236.41 | 159.06 | 45.21 | 2.11–4.59 | 3.58 | 0.88 | 0.53–1.03 | 0.68 | 0.20 | 1.67–10,65 | 4.50 | 3.19 | 0.59–1.18 | 0.94 | 0.20 |
Puglia | 268.63–509.00 | 335.16 | 112.86 | 4.83–8.02 | 6.49 | 1.31 | 0.89–1.55 | 1.13 | 0.22 | 6.70–14.69 | 10.93 | 2.70 | 0.80–2.77 | 1.75 | 0.67 |
Tuscany | 171.16–573.20 | 348.25 | 148.54 | 3.27–8.94 | 5.09 | 2.00 | 0.57–2.41 | 1.16 | 0.65 | 5.61–17.99 | 9.46 | 4.12 | 0.83–3.19 | 1.63 | 0.84 |
Lazio | 161.82–298.23 | 238.51 | 70.12 | 2.91–6.21 | 4.26 | 1.27 | 0.62–1.01 | 0.85 | 0.17 | 2.99–8.37 | 6.01 | 2.24 | 0.96–2.07 | 1.45 | 0.42 |
Total Phenolic Compounds Concentration HPLC | TPC | TEAC | DPPH | ORAC | FRAP | |
---|---|---|---|---|---|---|
Total phenolic compounds concentration HPLC | 1 | |||||
TPC | 0.893 *** | 1 | ||||
TEAC | 0.812 *** | 0.817 *** | 1 | |||
DPPH | 0.8659 *** | 0.790 *** | 0.658 *** | 1 | ||
ORAC | 0.798 *** | 0.706 *** | 0.789 *** | 0.607 *** | 1 | |
FRAP | 0.873 *** | 0.836 *** | 0.801 *** | 0.863 *** | 0.649 *** | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fanali, C.; Della Posta, S.; Vilmercati, A.; Dugo, L.; Russo, M.; Petitti, T.; Mondello, L.; De Gara, L. Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils. Molecules 2018, 23, 3249. https://doi.org/10.3390/molecules23123249
Fanali C, Della Posta S, Vilmercati A, Dugo L, Russo M, Petitti T, Mondello L, De Gara L. Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils. Molecules. 2018; 23(12):3249. https://doi.org/10.3390/molecules23123249
Chicago/Turabian StyleFanali, Chiara, Susanna Della Posta, Alessandra Vilmercati, Laura Dugo, Marina Russo, Tommasangelo Petitti, Luigi Mondello, and Laura De Gara. 2018. "Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils" Molecules 23, no. 12: 3249. https://doi.org/10.3390/molecules23123249
APA StyleFanali, C., Della Posta, S., Vilmercati, A., Dugo, L., Russo, M., Petitti, T., Mondello, L., & De Gara, L. (2018). Extraction, Analysis, and Antioxidant Activity Evaluation of Phenolic Compounds in Different Italian Extra-Virgin Olive Oils. Molecules, 23(12), 3249. https://doi.org/10.3390/molecules23123249