Influence of Hydroxyl Functional Group on the Structure and Stability of Xanthone: A Computational Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Conformational and Tautomeric Equilibrium Analysis
2.2. Electrostatic Potential Energy Maps and Frontier Orbitals (HOMO and LUMO)
2.3. Intramolecular Hydrogen Bonding Energetics in the 1-Hydroxyxanthone
2.4. Estimation of the Gas-Phase Standard Molar Enthalpies, Entropies and Gibbs Energies of Formation
3. Computational Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pinto, M.M.; Polónia, J. Synthesis of new xanthones, I. Helv. Chim. Acta 1974, 57, 2613–2617. [Google Scholar] [CrossRef]
- Sousa, M.E.; Pinto, M.M.M. Synthesis of xanthones: An overview. Curr. Med. Chem. 2005, 12, 2447–2479. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.M.M.; Sousa, M.E.; Nascimento, M.S.J. Xanthone derivatives: New insights in biological activities. Curr. Med. Chem. 2005, 12, 2517–2538. [Google Scholar] [CrossRef] [PubMed]
- Phyo, Y.Z.; Cravo, S.; Palmeira, A.; Tiritan, M.E.; Kijjoa, A.; Pinto, M.M.M.; Fernandes, C. Enantiomeric resolution and docking studies of chiral xanthonic derivatives on chirobiotic columns. Molecules 2018, 23, 142. [Google Scholar] [CrossRef] [PubMed]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Revisiting dibenzothiophene thermochemical data: Experimental and computational studies. J. Chem. Thermodyn. 2009, 41, 1199–1205. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Energetic studies of two oxygen heterocyclic compounds: Xanthone and tetrahydro-γ-pyrone. J. Therm. Anal. Calorim. 2009, 97, 827–833. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Monte, M.J.S.; Santos, L.M.N.B.F.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Energetic studies and phase diagram of thioxanthene. J. Phys. Chem. A 2009, 113, 12988–12994. [Google Scholar] [CrossRef] [PubMed]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Energetic effects of ether and ketone functional groups in 9,10-dihydroanthracene compound. J. Chem. Thermodyn. 2010, 42, 1248–1254. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Gales, L.; Damas, A.M.; Ribeiro da Silva, M.D.M.C. Experimental and computational studies on the structural and thermodynamic properties of two sulfur heterocyclic keto compounds. J. Chem. Eng. Data 2010, 55, 5009–5017. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Vieira, M.A.A.; Sottomayor, M.J.; Acree, W.E., Jr.; Ribeiro da Silva, M.D.M.C. Energetic and structural properties of 4-nitro-2,1,3-benzothiadiazole. J. Chem. Thermodyn. 2012, 49, 146–153. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Experimental and computational thermochemical studies of 9-R-xanthene derivatives (R = OH, COOH, CONH2). J. Chem. Thermodyn. 2012, 54, 108–117. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. A computational study on the energetics and reactivity of some xanthene and thioxanthene derivatives. Struct. Chem. 2013, 24, 661–670. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Ribeiro da Silva, M.D.M.C. Structural, energetic and reactivity properties of phenoxazine and phenothiazine. J. Chem. Thermodyn. 2014, 73, 110–120. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Ribeiro da Silva, M.D.M.C. Oxygen and sulfur heterocyclic compounds: Perspectives on the energetic and structural relationships. J. Therm. Anal. Calorim. 2015, 121, 1059–1071. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Gomes, J.R.B.; Liebman, J.F.; Ribeiro da Silva, M.D.M.C. Energetic and reactivity properties of 9,10-dihydroacridine and diphenylamine: A comparative overview. J. Chem. Thermodyn. 2017, 115, 276–284. [Google Scholar] [CrossRef]
- Roberts, J.C. Naturally occurring xanthones. Chem. Rev. 1961, 61, 591–605. [Google Scholar] [CrossRef]
- Masters, K.-S.; Bräse, S. Xanthones from fungi, lichens, and bacteria: The natural products and their synthesis. Chem. Rev. 2012, 112, 3717–3776. [Google Scholar] [CrossRef] [PubMed]
- Capettini, L.S.A.; Campos, L.V.A.; Santos, M.H.; Nagem, T.J.; Lemos, V.S.; Cortes, S.F. Vasodilator and antioxidant effect of xanthones isolated from Brazilian medicinal plants. Planta Med. 2009, 75, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Ignatushchenko, M.V.; Winter, R.W.; Riscoe, M. Xanthones as antimalarial agents: Stage specificity. Am. J. Trop. Med. Hyg. 2000, 62, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Ma, Q.; Guo, K.; Liu, J.; Li, W.; Wang, F.; Wu, E. Xanthones from Mangosteen extracts as natural chemopreventive agents: Potential anticancer drugs. Curr. Mol. Med. 2011, 11, 666–667. [Google Scholar] [CrossRef] [PubMed]
- Baboul, A.G.; Curtiss, L.A.; Redfern, P.C.; Raghavachari, K. Gaussian-3 theory using density functional geometries and zero-point energies. J. Chem. Phys. 1999, 110, 7650–7657. [Google Scholar] [CrossRef]
- Freitas, V.L.S.; Ferreira, P.J.O.; Ribeiro da Silva, M.D.M.C. Experimental and computational thermochemical studies of acridone and N-methylacridone. J. Chem. Thermodyn. 2018, 118, 115–126. [Google Scholar] [CrossRef]
- Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA Recommended values of the fundamental physical constants: 2014. J. Phys. Chem. Ref. Data 2016, 45, 043102. [Google Scholar] [CrossRef]
- Glendening, E.D.; Reed, A.E.; Carpenter, J.E.; Weinhold, F. NBO Version 3.1; University of Wisconsin: Madison, WI, USA, 1998. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2014. Rev. Mod. Phys. 2016, 88, 035009. [Google Scholar] [CrossRef]
- Fleming, I. Molecular Orbitals and Organic Chemical Reactions, Reference Edition; John Wiley & Sons Ltd.: London, UK, 2010; ISBN 978-0470746608. [Google Scholar]
- Aihara, J. Reduced HOMO-LUMO Gap as an index of kinetic stability for polycyclic aromatic hydrocarbons. J. Phys. Chem. A 1999, 103, 7487–7495. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990; ISBN 978-0198558651. [Google Scholar]
- Keith, T.A. AIMAll, Version 13.11.04; TK Gristmill Software: Overland Park, KS, USA, 2013; Available online: http://aim.tkgristmill.com/ (accessed on 12 November 2018).
- Amaral, L.M.P.F.; Freitas, V.L.S.; Gonçalves, J.F.R.; Barbosa, M.; Chickos, J.S.; Ribeiro da Silva, M.D.M.C. The influence of the hydroxy and methoxy functional groups on the energetic and structural properties of naphthaldehyde as evaluated by both experimental and computational methods. Struct. Chem. 2015, 26, 137–149. [Google Scholar] [CrossRef]
- Corrêa, R.S.; Santos, M.H.; Nagem, T.J.; Ellena, J. On the relationships between molecular conformations and intermolecular contacts toward crystal self-assembly of mono-, di-, tri-, and tetra-oxygenated xanthone derivatives. Struct. Chem. 2010, 21, 555–563. [Google Scholar] [CrossRef]
- Qu, R.; Liu, H.; Zhang, Q.; Flamm, A.; Yang, X.; Wang, Z. The effect of hydroxyl groups on the stability and thermodynamic properties of polyhydroxylated xanthones as calculated by density functional theory. Thermochim. Acta 2012, 527, 99–111. [Google Scholar] [CrossRef]
- Pedley, J.B. Thermochemical Data and Structures of ORGANIC Compounds; Springer: Berlin, Germany, 1994; Volume 1, ISBN 9781883400019. [Google Scholar]
- Notario, R.; Roux, M.V.; Liebman, J.F. The energetics of the isomeric anthrols. Mol. Phys. 2004, 102, 623–625. [Google Scholar] [CrossRef]
- Matos, M.A.R.; Sousa, C.C.S.; Miranda, M.S.; Morais, V.M.F.; Liebman, J.F. Energetics of coumarin and chromone. J. Phys. Chem. B 2009, 113, 11216–11221. [Google Scholar] [CrossRef] [PubMed]
- Kelley, K.K. Cyclohexanol and the third law of thermodynamics. J. Am. Chem. Soc. 1929, 51, 1400–1406. [Google Scholar] [CrossRef]
- Steele, W.V.; Chirico, R.D.; Knipmeyer, S.E.; Nguyen, A.; Smith, N.K. Vapor pressure, heat capacity, and density along the saturation line, measurements for cyclohexanol, 2-cyclohexen-1-one, 1,2-dichloropropane, 1,4-di-tert-butylbenzene, (±)-2-ethylhexanoic acid, 2-(methylamino)ethanol, perfluoro-n-heptane, and sulfolane. J. Chem. Eng. Data 1997, 42, 1021–1036. [Google Scholar] [CrossRef]
- Sousa, C.C.S.; Morais, V.M.F.; Matos, M.A.R. Energetics of the isomers: 3- and 4-hydroxycoumarin. J. Chem. Thermodyn. 2010, 42, 1372–1378. [Google Scholar] [CrossRef]
- Ribeiro da Silva, M.A.V.; Ribeiro da Silva, M.D.M.C.; Pilcher, G. Enthalpies of combustion of 1-hydroxynaphthalene, 2-hydroxynaphthalene, and 1,2-, 1,3-, 1,4-, and 2,3-dihydroxynaphthalenes. J. Chem. Thermodyn. 1988, 20, 969–997. [Google Scholar] [CrossRef]
- Ribeiro da Silva, M.A.V.; Matos, M.A.R.; Meng-Yan, Y.; Pilcher, G. Enthalpy of formation of 4-hydroxypyridine. J. Chem. Thermodyn. 1992, 24, 107–108. [Google Scholar] [CrossRef]
- Merrick, P.; Moran, D.; Radom, L. An evaluation of harmonic vibrational frequency scale factor. J. Phys. Chem. A 2007, 111, 11683–11700. [Google Scholar] [CrossRef] [PubMed]
- Chase, M.W., Jr. NIST-JANAF Thermochemical Tables; NIST: Gaithersburg, MD, USA, 1998; pp. 1–1951. Available online: https://janaf.nist.gov/ (accessed on 29 September 2018).
- Curtiss, L.A.; Raghavachari, K.; Redfern, P.C.; Rassolov, V.; Pople, J.A. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J. Chem. Phys. 1998, 109, 7764–7776. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
I | II | |
---|---|---|
1OHXT | ||
χi | 1.000 | 0 |
2OHXT | ||
χi | 0.834 | 0.166 |
3OHXT | ||
χi | 0.558 | 0.442 |
4OHXT | ||
χi | 0.991 | 0.009 |
1OHXT | 2OHXT | 3OHXT | 4OHXT | |
---|---|---|---|---|
HOMO | ||||
EHOMO/eV | −6.91 | −6.65 | −6.52 | −6.72 |
LUMO | ||||
ELUMO/eV | −0.05 | 0.53 | 0.52 | 0.37 |
EGAP/eV | 6.85 | 7.18 | 7.04 | 7.09 |
Conformer cis | Conformer trans | /kJ·mol−1 | ||
---|---|---|---|---|
−724.834474 | −724.815651 | 49.4 |
Reaction | Equations No. | |
---|---|---|
Y = CH | R1 | |
Y = N | R2 | |
R3 | ||
Y = CH2 | R4 | |
Y = O | R5 | |
Y = S | R6 | |
Z = 1-OH | R7 | |
Z = 2-OH | R8 | |
Z = 1-OH | R9 | |
Z = 2-OH | R10 | |
R11 | ||
R12 | ||
Y = CH2 | R13 | |
Y = O | R14 | |
Y = S | R15 | |
Y = NH | R16 | |
Z = 1-OH | R17 | |
Z = 2-OH | R18 | |
Z = 9-OH | R19 |
1OHXT | 2OHXT | 3OHXT | 4OHXT | ||||
---|---|---|---|---|---|---|---|
Conformer | I | I | II | I | II | I | II |
Equation No. | /kJ mol−1 | ||||||
R1 | −302.51 | −271.02 | −266.60 | −276.94 | −276.44 | −272.15 | −260.33 |
R2 | −297.90 | −266.41 | −261.99 | −272.33 | −271.83 | −267.54 | −255.72 |
R3 | −301.77 | −270.28 | −265.87 | −276.20 | −275.71 | −271.42 | −259.59 |
R4 | −298.20 | −266.71 | −262.29 | −272.63 | −272.13 | −267.84 | −256.01 |
R5 | −303.61 | −272.12 | −267.70 | −278.04 | −277.54 | −273.25 | −261.43 |
R6 | −300.76 | −269.27 | −264.85 | −275.19 | −274.69 | −270.40 | −258.58 |
R7 | −297.85 | −266.36 | −261.94 | −272.28 | −271.78 | −267.49 | −255.67 |
R8 | −299.24 | −267.75 | −263.33 | −273.67 | −273.17 | −268.88 | −257.06 |
R9 | −303.50 | −272.01 | −267.59 | −277.93 | −277.43 | −273.14 | −261.32 |
R10 | −304.89 | −273.40 | −268.98 | −279.32 | −278.82 | −274.53 | −262.71 |
R11 | −304.91 | −273.42 | −269.00 | −279.34 | −278.84 | −274.55 | −262.73 |
R12 | −307.42 | −275.93 | −271.51 | −281.85 | −281.35 | −277.06 | −265.24 |
R13 | −302.20 | −270.71 | −266.29 | −276.63 | −276.13 | −271.84 | −260.02 |
R14 | −296.25 | −264.76 | −260.34 | −270.68 | −270.18 | −265.89 | −254.07 |
R15 | −305.62 | −274.13 | −269.71 | −280.05 | −279.55 | −275.26 | −263.43 |
R16 | −299.62 | −268.13 | −263.71 | −274.05 | −273.55 | −269.26 | −257.44 |
R17 | −301.90 | −270.41 | −265.99 | −276.33 | −275.84 | −271.55 | −259.72 |
R18 | −301.34 | −269.85 | −265.43 | −275.77 | −275.27 | −270.98 | −259.16 |
R19 | −299.49 | −268.00 | −263.58 | −273.92 | −273.42 | −269.13 | −257.31 |
Mean value a | −301.5 ± 2.9 | −270.0 ± 2.9 | −265.6 ± 2.9 | −276.0 ± 2.9 | −275.5 ± 2.9 | −271.2 ± 2.9 | −259.3 ± 2.9 |
X b | 1.000 | 0.834 | 0.166 | 0.558 | 0.442 | 0.991 | 0.009 |
Final value c | −301.5 ± 2.9 | −269.3 ± 2.9 | −275.8 ± 2.9 | −271.1 ± 2.9 |
Isomers | /kJ mol−1a | /J K−1 mol−1 b | /kJ mol−1c |
---|---|---|---|
1OHXT | −301.5 ± 2.9 | −475.8 | −159.6 |
2OHXT | −269.3 ± 2.9 | −466.8 | −130.2 |
3OHXT | −275.8 ± 2.9 | −467.1 | −136.6 |
4OHXT | −271.1 ± 2.9 | −467.5 | −131.7 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitas, V.L.S.; Ribeiro da Silva, M.D.M.C. Influence of Hydroxyl Functional Group on the Structure and Stability of Xanthone: A Computational Approach. Molecules 2018, 23, 2962. https://doi.org/10.3390/molecules23112962
Freitas VLS, Ribeiro da Silva MDMC. Influence of Hydroxyl Functional Group on the Structure and Stability of Xanthone: A Computational Approach. Molecules. 2018; 23(11):2962. https://doi.org/10.3390/molecules23112962
Chicago/Turabian StyleFreitas, Vera L. S., and Maria D. M. C. Ribeiro da Silva. 2018. "Influence of Hydroxyl Functional Group on the Structure and Stability of Xanthone: A Computational Approach" Molecules 23, no. 11: 2962. https://doi.org/10.3390/molecules23112962
APA StyleFreitas, V. L. S., & Ribeiro da Silva, M. D. M. C. (2018). Influence of Hydroxyl Functional Group on the Structure and Stability of Xanthone: A Computational Approach. Molecules, 23(11), 2962. https://doi.org/10.3390/molecules23112962