Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity and α-Glucosidase Inhibition of Baobab Fruit Pulp
2.2. Chemical Profiles of Baobab Fruit Pulp
2.3. Chemical Profile of Baobab Leaves
2.4. Volatile Composition of Baobab Fruit Pulp and Leaves
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material and Sample Preparation
3.3. DPPH Free Radical Scavenging
3.4. ABTS Assay
3.5. Ferric Reducing Antioxidant Power Assay (FRAP)
3.6. β-Carotene Bleaching Test (BCB)
3.7. Superoxide Free Radical Scavenging
3.8. α-Glucosidase Assay
3.9. Total Phenolic Content (TPC)
3.10. Chemical Characterization and Quantification of Phenols by HPLC-PDA/UV-ESI-MS/MS
3.11. Analysis of VOCs by HS-SPME-GC/MS
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Caluwé, E.; Halamova, K.; Van Damme, P. Adansonia digitata L.—A review of traditional uses, phytochemistry and pharmacology. Afrika Focus 2010, 3, 11–51. [Google Scholar] [CrossRef]
- Kaboré, D.; Sawadogo-Lingani, H.; Diawara, B.; Compaoré, C.S.; Dicko, M.H.; Jakobsen, M. A review of baobab (Adansonia digitata) products: Effect of processing techniques, medicinal properties and uses. Afr. J. Food Sci. 2011, 5, 833–844. [Google Scholar]
- Rahul, J.; Jain, M.K.; Singh, S.P.; Kamal, R.K.; Naz, A.A.; Gupta, A.K.; Mrityunjaya, S.K. Adansonia digitata L. (Baobab): A review of traditional information and taxonomic description. Asian Pac. J. Trop. Biomed. 2015, 5, 79–84. [Google Scholar] [CrossRef]
- Osman, M.A. Chemical and nutrient analysis of baobab (Adansonia digitata) fruit and seed protein solubility. Plant Foods Hum. Nutr. 2004, 59, 29–33. [Google Scholar] [CrossRef]
- Chadare, F.J.; Linnemann, A.R.; Hounhouigan, J.D.; Nout, M.J.; Van Boekel, M.A. Baobab food products: A review on their composition and nutritional value. Crit. Rev. Food Sci. Nutr. 2009, 49, 254–274. [Google Scholar] [CrossRef] [PubMed]
- Tembo, D.T.; Holmes, M.J.; Marshall, L.J. Effect of thermal treatment and storage on bioactive compounds, organic acids and antioxidant activity of baobab fruit (Adansonia digitata) pulp from Malawi. J. Food Compos. Anal. 2017, 58, 40–51. [Google Scholar] [CrossRef]
- Hanafy, A.; Aldawsari, H.M.; Badr, J.M.; Ibrahim, A.K.; Abdel-Hady, S.-S. Evaluation of hepatoprotective activity of Adansonia digitata extract on acetaminophen-induced hepatotoxicity in rats. Evid. Based Complement. Alternat. Med. 2016, 2016, 4579149. [Google Scholar] [CrossRef] [PubMed]
- Ghoneim, M.A.; Hassan, A.I.; Mahmoud, M.G.; Asker, M.S. Protective effect of Adansonia digitata against isoproterenol-induced myocardial injury in rats. Anim. Biotechnol. 2016, 27, 84–95. [Google Scholar] [CrossRef]
- Irondi, E.A.; Akintunde, J.K.; Agboola, S.O.; Boligon, A.A.; Athayde, M.L. Blanching influences the phenolics composition, antioxidant activity, and inhibitory effect of Adansonia digitata leaves extract on α-amylase, α-glucosidase, and aldose reductase. Food Sci. Nutr. 2017, 5, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Elsaid, F.G. The effect of seeds and fruit pulp of Adansonia digitata L. (Baobab) on Ehrlich Ascites Carcinoma. Food Nutr. Sci. 2013, 4, 38–46. [Google Scholar]
- Muthai, K.U.; Karori, M.S.; Muchugi, A.; Indieka, A.S.; Dembele, C.; Mng’omba, S.; Jamnadass, R. Nutritional variation in baobab (Adansonia digitata L.) fruit pulp and seeds based on Africa geographical regions. Food Sci. Nutr. 2017, 5, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Vertuani, S.; Braccioli, E.; Buzzoni, V.; Manfredini, S. Antioxidant capacity of Adansonia digitata fruit pulp and leaves. Acta Phytother. 2002, V, 2–7. [Google Scholar]
- Li, X.N.; Sun, J.; Shi, H.; Yu, L.L.; Ridge, C.D.; Mazzola, E.P.; Okunji, C.; Iwu, M.M.; Michel, T.K.; Chen, P. Profiling hydroxycinnamic acid glycosides, iridoid glycosides, and phenylethanoid glycosides in baobab fruit pulp (Adansonia digitata). Food Res. Int. 2017, 99, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Sokeng, A.J.T.; Sobolev, A.P.; Di Lorenzo, A.; Xiao, J.; Mannina, L.; Capitani, D.; Daglia, M. Metabolite characterization of powdered fruits and leaves from Adansonia digitata L. (Baobab): A multi-methodological approach. Food Chem. 2019, 272, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Ayele, Y.; Kim, J.A.; Park, E.; Kim, Y.J.; Retta, N.; Dessie, G.; Kim, H.S. A methanol extract of Adansonia digitata L. leaves inhibits pro-inflammatory iNOS possibly via the inhibition of NF-κB activation. Biomol. Ther. 2013, 21, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Cuviello, F.; Tellgren-Roth, Å.; Lara, P.; Ruud Selin, F.; Monné, M.; Bisaccia, F.; Nilsson, I.; Ostuni, A. Membrane insertion and topology of the amino-terminal domain TMD0 of multidrug-resistance associated protein 6 (MRP6). FEBS Lett. 2015, 589, 3921–3928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamien-Meda, A.; Lamien, C.E.; Compaoré, M.M.; Meda, R.N.; Kiendrebeogo, M.; Zeba, B.; Millogo, J.F.; Nacoulma, O.G. Polyphenol content and antioxidant activity of fourteen wild edible fruits from Burkina Faso. Molecules 2008, 13, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Tanumihardjo, S.A. An integrated approach to evaluate food antioxidant capacity. J. Food Sci. 2007, 72, R159–R165. [Google Scholar] [CrossRef] [PubMed]
- Faraone, I.; Rai, D.K.; Chiummiento, L.; Fernandez, E.; Choudhary, A.; Prinzo, F.; Milella, L. Antioxidant activity and phytochemical characterization of Senecio clivicolus Wedd. Molecules 2018, 23, 2497. [Google Scholar] [CrossRef]
- Fernandes de Oliveira, A.M.; Sousa Pinheiro, L.; Souto Pereira, C.K.; Neves Matias, W.; Albuquerque Gomes, R.; Souza Chaves, O.; Vanderlei de Souza Mde, F.; Nóbrega de Almeida, R.; Simões de Assis, T. Total phenolic content and antioxidant activity of some Malvaceae family species. Antioxidants 2012, 1, 33–43. [Google Scholar] [CrossRef]
- McDougall, G.J.; Shpiro, F.; Dobson, P.; Smith, P.; Blake, A.; Stewart, D. Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. J. Agric. Food Chem. 2005, 53, 2760–2766. [Google Scholar] [CrossRef] [PubMed]
- Coe, S.A.; Clegg, M.; Armengol, M.; Ryan, L. The polyphenol-rich baobab fruit (Adansonia digitata L.) reduces starch digestion and glycemic response in humans. Nutr. Res. 2013, 33, 888–896. [Google Scholar] [CrossRef] [PubMed]
- Sancheti, S.; Sancheti, S.; Seo, S.Y. Chaenomeles sinensis: A potent α-and β-glucosidase inhibitor. Am. J. Pharm. Toxicol. 2009, 4, 8–11. [Google Scholar] [CrossRef]
- De Melo, E.B.; da Silveira Gomes, A.; Carvalho, I. α- and β-Glucosidase inhibitors: Chemical structure and biological activity. Tetrahedron 2006, 62, 10277–10302. [Google Scholar] [CrossRef]
- Kim, J.H.; Ryu, Y.B.; Kang, N.S.; Lee, B.W.; Heo, J.S.; Jeong, I.Y.; Park, K.H. Glycosidase inhibitory flavonoids from Sophora flavescens. Biol. Pharm. Bull. 2006, 29, 302–305. [Google Scholar] [CrossRef]
- Hsu, C.Y.; Lin, G.M.; Lin, H.Y.; Chang, S.T. Characteristics of proanthocyanidins in leaves of Chamaecyparis obtusa var. formosana as strong α-glucosidase inhibitors. J. Sci. Food Agric. 2018, 98, 3806–3814. [Google Scholar] [CrossRef]
- Silva, E.L.; Lobo, J.F.; Vinther, J.M.; Borges, R.M.; Staerk, D. High-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of antidiabetic compounds in Eremanthus crotonoides (Asteraceae). Molecules 2016, 21, 782. [Google Scholar] [CrossRef]
- Da Pozzo, E.; De Leo, M.; Faraone, I.; Milella, L.; Cavallini, C.; Piragine, E.; Testai, L.; Calderone, V.; Pistelli, L.; Braca, A.; et al. Antioxidant and antisenescence effects of bergamot juice. Oxid. Med. Cell Longev. 2018, 2018, 9395804. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Comprehensive evaluation of phenolic profile in dark chocolate and dark chocolate enriched with Sakura green tea leaves or turmeric powder. Food Res. Int. 2018, 112, 1–16. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, H.; Wu, H.; Pan, Y.; Wang, K.; Jin, Y.; Zhang, C. Characterization and quantification by LC-MS/MS of the chemical components of the heating products of the flavonoids extract in Pollen Typhae for transformation rule exploration. Molecules 2015, 20, 18352–18366. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Quadrupole Mass Spectroscopy; Allured Pub. Co.: Carol Stream, IL, USA, 2001. [Google Scholar]
- NIST (National Institute of Standards and Technology). Available online: https://www.nist.gov.
- Todaro, L.; Russo, D.; Cetera, P.; Milella, L. Effects of thermo-vacuum treatment on secondary metabolite content and antioxidant activity of poplar (Populus nigra L.) wood extracts. Ind. Crops Prod. 2017, 109, 384–390. [Google Scholar] [CrossRef]
- Russo, D.; Miglionico, R.; Carmosino, M.; Bisaccia, F.; Andrade, P.B.; Valentão, P.; Milella, L.; Armentano, M.F. A comparative study on phytochemical profiles and biological activities of Sclerocarya birrea (A.Rich.) Hochst leaf and bark extracts. Int. J. Mol. Sci. 2018, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Mezrag, A.; Malafronte, N.; Bouheroum, M.; Travaglino, C.; Russo, D.; Milella, L.; Severino, L.; De Tommasi, N.; Braca, A.; Dal Piaz, F. Phytochemical and antioxidant activity studies on Ononis angustissima L. aerial parts: Isolation of two new flavonoids. Nat. Prod. Res. 2017, 31, 507–514. [Google Scholar] [CrossRef] [PubMed]
- Bisio, A.; De Mieri, M.; Milella, L.; Schito, A.M.; Parricchi, A.; Russo, D.; Alfei, S.; Lapillo, M.; Tuccinardi, T.; Hamburger, M.; et al. Antibacterial and hypoglycemic diterpenoids from Salvia chamaedryoides. J. Nat. Prod. 2017, 80, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Giacomelli, C.; Natali, L.; Nisi, M.; De Leo, M.; Daniele, S.; Costa, B.; Graziani, F.; Gabriele, M.; Braca, A.; Trincavelli, M.L.; et al. Negative effects of a high tumour necrosis factor-α concentration on human gingival mesenchymal stem cell trophism: The use of natural compounds as modulatory agents. Stem Cell Res. Ther. 2018, 9, 135. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of tiliroside, kaempferol, kaempferol 3-O-glucoside, catechin, quercetin 3-O-glucoside, rutin, and chlorogenic acid are available from the authors. |
TPC (mgGAE/g) * | DPPH (mgTE/g) ** | ABTS (mgTE/g) ** | FRAP (mgTE/g) ** | BCB (%AA) *** | SO (IC50) **** | |
---|---|---|---|---|---|---|
Fruit 1 | 148.19 ± 6.40 a | 355.42 ± 2.76 a | 667.38 ± 34.56 a | 439.94 ± 26.02 a | 12.01 ± 3.21 a | 0.18 ± 0.02 a |
Fruit 2 | 120.07 ± 4.67 b | 322.65 ± 7.95 a | 654.71 ± 26.72 a | 293.99 ± 14.58 b | 57.19 ± 2.04 b | 0.89 ± 0.09 a |
Fruit 3 | 161.40 ± 2.82 c | 392.22 ± 28.13 b | 799.44 ± 35.96 b | 458.50 ± 23.41 a | 68.83 ± 0.38 b | 0.55 ± 0.002 a |
Peak | Compound | tR (min) | M | [M + HCOO]− | [M − H]− | ESI-MS/MS Ions (m/z) * | UV (λmax) | Organ |
---|---|---|---|---|---|---|---|---|
Organic acids | ||||||||
1 | citric acid | 4.6 | 192 | 191 | 173, 129, 111, 87 | 212 | F | |
Phenolic compounds | ||||||||
2 | procyanidin dimer I | 21.0 | 578 | 577 | 451, 425, 407, 289 | 246, 279 | F, L | |
3 | procyanidin dimer II | 22.1 | 578 | 577 | 451, 425, 407, 289 | 245, 279 | F, L | |
4 | feruloylquinic acid | 23.1 | 368 | 413 ** | 367 | 367, 191 | 248, 279 | F |
5 | procyanidin trimer I | 24.2 | 866 | 865 | 847, 739, 713, 695, 577, 451, 407, 287 | 247, 279 | F, L | |
6 | procyanidin trimer II | 25.2 | 866 | 865 | 847, 739, 713, 695, 577, 451, 407, 287 | 246, 279 | F, L | |
7 | procyanidin tetramer | 25.5 | 1154 | 1153 | 1001, 865, 577, 455 | 238, 279 | L | |
8 | catechin | 25.8 | 290 | 335 | 289 | 245, 205, 179 | 245, 279 | F |
9 | epicatechin | 26.7 | 290 | 335 | 289 | 245, 205, 179 | 243, 279 | F |
10 | apigenin O-pentoside | 34.0 | 448 | 493 | 447 | 357, 327, 285 | 242, 270, 349 | L |
11 | quercetin glycoside *** | 35.0 | 756 | 755 | 737, 609, 591, 489, 301 | 244, 268, 352 | L | |
12 | vitexin/isovitexin | 36.5 | 432 | 431 | 341, 311 | 243, 273, 331 | L | |
13 | kaempferol glycoside **** | 38.6 | 740 | 739 | 593, 575, 285 | 244, 278 | L | |
14 | rutin | 40.5 | 610 | 609 | 463, 343, 301, 271, 255, 179 | 256, 356 | L | |
15 | quercetin 3-O-glucoside | 40.7 | 464 | 463 | 445, 301, 179 | 246, 278 | F | |
16 | quercetin pentoside | 42.1 | 434 | 433 | 301, 255, 179 | 248, 268, 355 | L | |
17 | quercetin 3-hydroxy-3-methylglutaryl-O-hexoside | 42.7 | 608 | 607 | 545, 505, 463, 301, 179 | 247, 273, 344 | L | |
18 | kaempferol glycoside I | 43.5 | 594 | 639 | 593 | 447, 285 | 247, 270, 315 | L |
19 | kaempferol 3-O-galactoside | 43.8 | 448 | 447 | 327, 285 | 247, 278 | F | |
20 | kaempferol glycoside II | 44.8 | 594 | 639 | 593 | 447, 285 | 248, 269, 315 | L |
21 | kaempferol 3-O-glucoside | 44.9 | 448 | 447 | 327, 285 | 247, 278 | F | |
22 | quercetin | 50.1 | 302 | 301 | 273, 257, 229, 179, 151, 121, 107 | 277 | L | |
23 | tiliroside isomer | 52.0 | 594 | 593 | 447, 429, 285 | 270, 312 | F, L | |
24 | tiliroside I | 52.8 | 594 | 593 | 447, 429, 285 | 268, 287, 315 | F, L | |
25 | tiliroside II | 53.6 | 594 | 593 | 447, 429, 285 | 269, 312 | F, L | |
26 | kaempferol | 55.8 | 286 | 285 | 285, 257, 229 | 277 | F |
Peak | Fruit 1 | Fruit 2 | Fruit 3 | |
---|---|---|---|---|
procyanidins | 2, 3, 5, 6 | 1.07 ± 0.01 | 0.228 ± 0.002 | 0.50 ± 0.09 |
tiliroside I, II and isomer | 23, 24, 25 | 17.4 ± 0.6 | 33 ± 2 | 23 ± 2 |
kaempferol | 26 | 0.010 ± 0.001 | 0.017 ± 0.001 | 0.020 ± 0.002 |
kaempferol 3-O-glucoside | 21 | 0.13 ± 0.02 | 0.18 ± 0.01 | 0.144 ± 0.002 |
catechin and epicatechin | 8, 9 | 4.5 ± 0.1 | 1.28 ± 0.04 | 2.5 ± 0.2 |
quercetin 3-O-glucoside | 15 | nd | 0.010 ± 0.001 | 0.010 ± 0.001 |
feruloylquinic acid | 4 | 0.29 ± 0.01 | 0.27 ± 0.01 | 0.22 ± 0.01 |
Total | 23 ± 1 | 35 ± 2 | 26 ± 2 |
N. | tR | LRI | Component | Relative Content % | |||
---|---|---|---|---|---|---|---|
Leaves | Fruit 1 | Fruit 2 | Fruit 3 | ||||
1 | 2.01 | 736 | isopentyl alcohol | tr | - | - | - |
2 | 2.56 | 800 | hexanal | tr | - | - | - |
3 | 3.01 | 834 | isovaleric acid | tr | - | - | - |
4 | 3.28 | 853 | (E)-3-hexen-1-ol | 2.6 | - | - | - |
5 | 4.72 | 926 | tricyclene | tr | - | - | - |
6 | 5.36 | 953 | 1-hexanol | 1.7 | - | - | - |
7 | 5.44 | 961 | benzaldehyde | 0.5 | - | - | - |
8 | 5.79 | 980 | β-pinene | 0.3 | - | - | - |
9 | 5.85 | 985 | 1-octen-3-ol | 0.1 | - | - | - |
10 | 6.05 | 987 | 6-methyl-5-hepten-2-one | 4.8 | tr | tr | tr |
11 | 6.72 | 1011 | δ-3-canene | 0.1 | - | - | - |
12 | 7.10 | 1026 | 1-p-menthene | 1.6 | - | - | - |
13 | 7.23 | 1031 | 3-ethyl-1-hexanol | tr | - | - | - |
14 | 7.30 | 1032 | limonene | 1.2 | 6.1 | - | - |
15 | 7.37 | 1035 | 1,8-cineole | tr | 1.0 | 2.0 | tr |
16 | 8.80 | 1079 | trans-linalool oxide (furanoid) | 1.9 | 1.2 | 0.3 | tr |
17 | 9.37 | 1090 | cis-linalool oxide (furanoid) | 1.0 | 1.0 | 0.2 | - |
18 | 9.83 | 1098 | linalool | 1.7 | 4.6 | - | tr |
19 | 9.97 | 1102 | nonanal | 0.4 | 6.5 | 6.4 | 4.8 |
20 | 10.11 | 1105 | α-thujone | 4.2 | - | - | tr |
21 | 10.53 | 1110 | phenyl ethyl alcohol | 0.8 | - | - | - |
22 | 11.51 | 1143 | camphor | - | tr | 0.5 | 1.9 |
23 | 11.80 | 1151 | ethyl hexyl acetate | 0.1 | - | - | - |
24 | 11.91 | 1154 | menthone | - | 4.3 | 5.0 | 7.4 |
25 | 12.31 | 1164 | isomenthone | - | tr | 2.0 | 2.5 |
26 | 12.43 | 1165 | borneol | - | 1.9 | 1.7 | 2.4 |
27 | 12.73 | 1173 | menthol | - | tr | 4.8 | 3.9 |
28 | 12.91 | 1177 | trans-linalool oxide (pyranoid) | 0.7 | - | - | - |
29 | 13.50 | 1190 | α-terpineol | tr | - | - | - |
30 | 13.81 | 1200 | safranal | 0.9 | tr | 0.4 | - |
31 | 14.09 | 1204 | decanal | 0.6 | tr | 3.3 | 5.3 |
32 | 14.69 | 1217 | β-cyclocitral | 2.5 | - | - | - |
33 | 15.73 | 1240 | cuminaldheyde | - | - | 1.7 | 1.3 |
34 | 16.25 | 1256 | β-cyclo-homocitral | 0.7 | - | - | - |
35 | 17.7 | 1283 | (E)-anethole | - | tr | 31.6 | 24.0 |
36 | 18.74 | 1312 | 2,3,4-trimethyl benzaldheyde | - | - | 0.6 | - |
37 | 19.71 | 1340 | δ-elemene | 0.6 | tr | tr | - |
38 | 20.23 | 1351 | δ-longipinene | 0.1 | - | - | - |
39 | 21.34 | 1376 | α-copaene | 5.0 | 7.3 | 2.0 | 1.9 |
40 | 22.08 | 1391 | β-elemene | 0.7 | - | - | - |
41 | 22.45 | 1400 | tetradecane | 1.3 | - | tr | - |
42 | 22.54 | 1402 | longifolene | 0.7 | 17.9 | 5.7 | 4.6 |
43 | 22.87 | 1408 | α-cedrene | - | 4.4 | 1.1 | 3.5 |
44 | 23.18 | 1418 | β-caryophyllene | 24.0 | 21.2 | 4.3 | 9.3 |
45 | 23.57 | 1433 | γ-elemene | 4.6 | - | - | 1.9 |
46 | 23.96 | 1439 | trans-α-bergamotene | - | - | - | 0.7 |
47 | 24.62 | 1454 | α-humulene | 1.0 | - | - | - |
48 | 24.76 | 1456 | (E)-geranyl acetone | 8.1 | - | - | 1.8 |
49 | 25.96 | 1483 | ar-curcumene | - | 1.6 | - | tr |
50 | 26.07 | 1485 | (E)-β-ionone | 6.2 | - | - | - |
51 | 26.36 | 1495 | bicyclogermacrene | 0.6 | - | - | - |
52 | 26.67 | 1500 | n-pentadecane | - | - | 1.1 | 2.3 |
53 | 27.00 | 1509 | β-bisabolene | 1.3 | tr | 0.5 | 1.0 |
54 | 27.56 | 1524 | δ-cadinene | - | 3.9 | 1.3 | 1.8 |
55 | 27.84 | 1536 | dihydroactinidiolide | 4.3 | - | - | - |
56 | 29.93 | 1581 | caryophyllene oxide | 1.2 | tr | 0.8 | tr |
57 | 30.68 | 1599 | cedrol | - | 6.2 | 2.4 | 5.0 |
58 | 34.45 | 1700 | n-heptadecane | - | - | tr | - |
59 | 39.87 | 1845 | hexahydrofarnesyl acetone | 0.5 | - | - | - |
Total | 89.3 | 97.8 | 85.5 | 91.5 | |||
Class of Compounds | Leaves | Fruit 1 | Fruit 2 | Fruit 3 | |||
monoterpene hydrocarbons | 3.3 | 6.1 | 18.1 | - | |||
oxygenated monoterpenes | 9.7 | 12.1 | 15.4 | 20.8 | |||
sesquiterpene hydrocarbons | 38.6 | 56.5 | 3.8 | 24.8 | |||
oxygenated sesquiterpenes | 6.0 | 6.3 | 16.2 | 5.1 | |||
non terpene derivatives | 13.3 | 16.6 | 31.6 | 15.1 | |||
phenylpropanoids | - | 0.1 | 0.4 | 24.0 | |||
apocarotenoids | 18.4 | 0.1 | 18.1 | 1.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Braca, A.; Sinisgalli, C.; De Leo, M.; Muscatello, B.; Cioni, P.L.; Milella, L.; Ostuni, A.; Giani, S.; Sanogo, R. Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds. Molecules 2018, 23, 3104. https://doi.org/10.3390/molecules23123104
Braca A, Sinisgalli C, De Leo M, Muscatello B, Cioni PL, Milella L, Ostuni A, Giani S, Sanogo R. Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds. Molecules. 2018; 23(12):3104. https://doi.org/10.3390/molecules23123104
Chicago/Turabian StyleBraca, Alessandra, Chiara Sinisgalli, Marinella De Leo, Beatrice Muscatello, Pier Luigi Cioni, Luigi Milella, Angela Ostuni, Sergio Giani, and Rokia Sanogo. 2018. "Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds" Molecules 23, no. 12: 3104. https://doi.org/10.3390/molecules23123104
APA StyleBraca, A., Sinisgalli, C., De Leo, M., Muscatello, B., Cioni, P. L., Milella, L., Ostuni, A., Giani, S., & Sanogo, R. (2018). Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia digitata L. (Baobab) from Mali, as a Source of Health-Promoting Compounds. Molecules, 23(12), 3104. https://doi.org/10.3390/molecules23123104