Systematic Profiling of the Multicomponents and Authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS Oriented Rapid Polarity-Switching Data-Dependent Acquisition and Selective Monitoring of the Chemical Markers Deduced from Fingerprint Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Advantages for UHPLC/Q-Orbitrap-MS Based Untargeted Profiling by the Enablinig of Rapid Polarity-Switching (ESI−/ESI+)
2.2. Comprehensive Characterization of the Multicomponents from EZP
2.3. Establishment of the ‘Identity Markers’ for EZP by Fingerprint Analysis
2.4. Authentication of Commercial EZP Samples by Simultaneously Monitoring Eight ‘Identity Markers’ Using UHPLC/Q-Orbitrap-MS Based SIM Approach
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Sample Preparation
3.3. Chromatographic Separation and MS Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Yang, W.Z.; Zhang, Y.B.; Wu, W.Y.; Huang, L.Q.; Guo, D.A.; Liu, C.X. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm. Sin. B 2017, 7, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Song, Q.Q.; Chen, X.J.; Li, J.; Li, P.; Wang, Y.T.; Liu, T.X.; Song, Y.L.; Tu, P.F. Simultaneous determination of components with wide polarity and content ranges in Cistanche tubulosa using serially coupled reversed phase-hydrophilic interaction chromatography-tandem mass spectrometry. J. Chromatogr. A 2017, 1501, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.L.; Yang, W.Z.; Si, W.; Pan, H.Q.; Qin, S.; Wu, J.; Shi, X.J.; Feng, R.H.; Wu, W.Y.; Guo, D.A. strategy for establishment of practical identification methods for Chinese patent medicine from systematic multi-component characterization to selective ion monitoring of chemical markers: Shuxiong tablet as a case study. RSC Adv. 2016, 6, 65055–65066. [Google Scholar] [CrossRef]
- Liu, R.R.; Zhang, X.P.; Wang, F.; Shang, Z.P.; Wang, F.; Liu, Y.; Lu, J.Q.; Zhang, J.Y. Rapid screening and identification of sesquiterpene lactones in Kudiezi injection based on high-performance liquid chromatography coupled with linear ion trap orbitrap mass spectrometry. Chin. J. Nat. Med. 2018, 16, 150–160. [Google Scholar] [CrossRef]
- Wang, Q.; Song, W.; Qiao, X.; Ji, S.; Kuang, Y.; Zhang, Z.X.; Bo, T.; Guo, D.A.; Ye, M. Simultaneous quantification of 50 bioactive compounds of the traditional Chinese medicine formula Gegen-Qinlian decoction using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. A 2016, 1454, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.H.; Sui, Z.; Hu, Y.R.; Sun, Y.; Xue, W.H.; Zhou, L.; Zhang, J.; Bao, X.Y.; Zhu, Z.F.; Suo, G.L.; et al. Rapid determination of 30 bioactive constituents in Xuebijing injection using ultra high performance liquid chromatography-high resolution hybrid quadrupole-orbitrap mass spectrometry coupled with principal component analysis. J. Pharm. Biomed. Anal. 2017, 137, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Guo, X.Y.; Song, Y.L.; Qiao, L.R.; Wang, W.G.; Zhao, M.B.; Tu, P.F.; Jiang, Y. An integrated strategy for global qualitative and quantitative profiling of traditional Chinese medicine formulas: Baoyuan decoction as a case. Sci. Rep. 2016, 6, 38379. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.Y.; Zuo, L.H.; Sun, Z.; Wang, P.L.; Zhou, L.; Lv, X.J.; Jia, Q.Q.; Liu, X.; Jiang, X.F.; Zhu, Z.F.; et al. Chemical profiling and quantification of Shenkang injection, a systematic quality control strategy using ultra high performance liquid chromatography with Q Exactive hybrid quadrupole orbitrap high-resolution accurate mass spectrometry. J. Sep. Sci. 2017, 40, 4872–4879. [Google Scholar] [CrossRef] [PubMed]
- Ganzera, M.; Sturm, S. Recent advances on HPLC/MS in medicinal plant analysis-An update covering 2011-2016. J. Pharm. Biomed. Anal. 2018, 147, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.J.; Yang, W.Z.; Qiu, S.; Yao, C.L.; Shen, Y.; Pan, H.Q.; Bi, Q.R.; Yang, M.; Wu, W.Y.; Guo, D.A. An in-source multiple collision-neutral loss filtering based nontargeted metabolomics approach for the comprehensive analysis of malonyl-ginsenosides from Panax ginseng, P. quinquefolius, and P. notoginseng. Anal. Chim. Acta 2017, 952, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Yang, W.Z.; Li, S.R.; Yao, S.; Qi, P.; Yang, Z.; Feng, Z.J.; Hou, J.J.; Cai, L.Y.; Yang, M.; et al. An intelligentized strategy for endogenous small molecules characterization and quality evaluation of earthworm from two geographic origins by ultra-high performance HILIC/QTOF-MSE and Progenesis QI. Anal. Bioanal. Chem. 2016, 408, 3881–3890. [Google Scholar] [CrossRef] [PubMed]
- Naz, S.; Gallart-Ayala, H.; Reinke, S.N.; Mathon, C.; Blankey, R.; Chaleckis, R.; Wheelock, C.E. Development of a liquid chromatography high resolution mass spectrometry metabolomics method with high specificity for metabolite identification using all ion fragmentation acquisition. Anal. Chem. 2017, 89, 7933–7942. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.L.; Yang, W.Z.; Si, W.; Shen, Y.; Zhang, N.X.; Chen, H.L.; Pan, H.Q.; Yang, M.; Wu, W.Y.; Guo, D.A. An enhanced targeted identification strategy for the selective identification of flavonoid O-glycosides from Carthamus tinctorius by integrating offline two-dimensional liquid chromatography/linear ion-trap-Orbitrap mass spectrometry, high-resolution diagnostic product ions/neutral loss filtering and liquid chromatography-solid phase extraction-nuclear magnetic resonance. J. Chromatogr. A 2017, 1491, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Wu, W.Y.; Yang, M.; Guo, D.A. Elucidation of the fragmentation pathways of a complex 3,7-O-glycosyl flavonol by CID, HCD, and PQD on an LTQ-Orbitrap Velos Pro hybrid mass spectrometer. Chin. J. Nat. Med. 2015, 13, 867–872. [Google Scholar] [CrossRef]
- Cai, X.J.; Huang, M.Y.; Ding, A.W.; Yao, W.F.; Zhang, L. Progress of textual research and pharmacological effects on Erzhi Pills. Chin. J. Exp. Tradit. Med. Form. 2011, 17, 272–275. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 2015th ed.; Chinese Medical Science and Technology Press: Beijing, China, 2015; Volume 1, pp. 437–438. ISBN 978-7-5067-7337-9. [Google Scholar]
- Yang, W.Z.; Qiao, X.; Li, K.; Fan, J.R.; Bo, T.; Guo, D.A.; Ye, M. Identification and differentiation of Panax ginseng, Panax quinquefolium, and Panax notoginseng by monitoring multiple diagnostic chemical markers. Acta Pharm. Sin. B 2016, 6, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.L.; Zhong, Y.M.; Yan, K.O.; Xiao, X.R.; Duan, L.; Wang, R.L.; Wang, L.Y. Metabolomics approach based on ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry to identify the chemical constituents of the Traditional Chinese Er-Zhi-Pill. J. Sep. Sci. 2017, 40, 2713–2721. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Ye, M.; Qiao, X.; Liu, C.F.; Miao, W.J.; Bo, T.; Tao, H.Y.; Guo, D.A. A strategy for efficient discovery of new natural compounds by integrating orthogonal column chromatography and liquid chromatography/mass spectrometry analysis: Its application in Panax ginseng, Panax quinquefolium and Panax notoginseng to characterize 437 potential new ginsenosides. Anal. Chim. Acta 2012, 739, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Miao, W.J.; Hu, Y.; Jia, L.; Zhang, C.X.; Yang, W.Z.; Zhang, P.; Guo, D.A. Profiling and identification of chemical components of Shenshao Tablet and its absorbed components in rats by comprehensive HPLC/DAD/ESI-MSn analysis. Chin. J. Nat. Med. 2018, 16, 791–800. [Google Scholar] [CrossRef]
- Yang, S.S.; Shan, L.L.; Luo, H.M.; Sheng, X.; Du, J.; Li, Y.B. Rapid classification and identification of chemical components of Schisandra chinensis by UPLC-Q-TOF/MS combined with data post-processing. Molecules 2017, 22, 778. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Liang, J.Y.; Sun, J.B.; Huang, X.F. Research progress of the Fructus Ligustri lucidi on the chemical compounds and pharmacological activity. Strait Pharm. J. 2018, 30, 1–8. [Google Scholar]
- Li, H.; Yao, W.F.; Liu, Q.N.; Xu, J.; Bao, B.H.; Shan, M.Q.; Cao, Y.D.; Cheng, F.F.; Ding, A.W.; Zhang, L. Application of UHPLC-ESI-Q-TOF-MS to identify multiple constituents in processed products of the herbal medicine Ligustri Lucidi Fructus. Molecules 2017, 22, 689. [Google Scholar] [CrossRef] [PubMed]
- Chung, I.M.; Rajakumar, G.; Lee, J.H.; Kim, S.H.; Thiruvengadam, M. Ethnopharmacological uses, phytochemistry, biological activities, and biotechnological applications of Eclipta prostrata. Appl. Microbiol. Biotechnol. 2017, 101, 5247–5257. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Qiao, X.; Bo, T.; Wang, Q.; Guo, D.A.; Ye, M. Low energy induced homolytic fragmentation of flavonol 3-O-glycosides by negative electrospray ionization tandem mass spectrometry. Rapid. Commun. Mass Spectrom. 2014, 28, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.Z.; Ye, M.; Qiao, X.; Wang, Q.; Bo, T.; Guo, D.A. Collision-induced dissociation of 40 flavonoid aglycones and differentiation of the common flavonoid subtypes using electrospray ionization ion-trap tandem mass spectrometry and quadrupole time-of-flight mass spectrometry. Eur. J. Mass Spectrom. 2012, 18, 493–503. [Google Scholar] [CrossRef]
- Ma, C.Y.; Zhou, X.P.; Xu, K.; Wang, L.Y.; Yang, Y.T.; Wang, W.; Liu, A.; Ran, J.S.; Yan, S.G.; Wu, H.B. Specnuezhenide decreases interleukin-1-β-induced inflammation in rat chondrocytes and reduces joint destruction in osteoarthritic rats. Front. Pharm. 2018, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.M.; Ke, X.; Fu, W.; Guo, X.P.; Zhang, H.C.; Wang, W.; Ma, N.; Zhao, M.X.; Hao, X.F.; Zhang, Z.R. Inhibition of hypoxia-induced retinal angiogenesis by specnuezhenide, an effective constituent of Ligustrum lucidum Ait., through suppression of the HIF-1α/VEGF signaling pathway. Molecules 2016, 21, 1756. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.L.; Li, C.; Wang, Z.M.; Liu, X.Q.; You, Y.; Wei, H.; Guo, T. Ligustri Lucidi Fructus as a traditional Chinese medicine: A review of its phytochemistry and pharmacology. Nat. Prod. Res. 2015, 29, 493–510. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.J.; Ding, H.; Xu, S.M. Optimization of microwave-assisted extraction of wedelolactone from Eclipta alba using response surface methodology. Front. Chem. Sci. Eng. 2014, 8, 34–42. [Google Scholar] [CrossRef]
- Han, L.F.; Liu, E.W.; Kojo, A.; Zhao, J.; Li, W.; Zhang, Y.; Wang, T.; Gao, X.M. Qualitative and quantitative analysis of Eclipta prostrata L. by LC/MS. Sci. World. J. 2015, 2015, 980890. [Google Scholar] [CrossRef] [PubMed]
- Si, W.; Yang, W.Z.; Guo, D.A.; Wu, J.; Zhang, J.X.; Qiu, S.; Yao, C.L.; Cui, Y.J.; Wu, W.J. Selective ion monitoring of quinochalcone C-glycoside markers for the simultaneous identification of Carthamus tinctorius L. in eleven Chinese patent medicines by UHPLC/QTOF MS. J. Pharm. Biomed. Anal. 2016, 117, 510–521. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Zhao, J.Y.; Yu, H.Y.; Yu, L.Y.; Wang, T.; Zhang, Y.; Gao, X.M.; Han, L.F. Secoiridoid analogues from the fruits of Ligustrum lucidum and their inhibitory activities against influenza A virus. Bioorg. Med. Chem. Lett. 2018, 28, 1516–1519. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Pang, X.; Han, L.F.; Zhou, Y.; Cui, Y.M. Chemical constituents of Eclipta prostrata. Chin. J. Chin. Mater. Med. 2018, 43, 3498–3505. [Google Scholar]
Sample Availability: Samples are available from the authors. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, L.; Fu, L.; Wang, X.; Yang, W.; Wang, H.; Zuo, T.; Zhang, C.; Hu, Y.; Gao, X.; Han, L. Systematic Profiling of the Multicomponents and Authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS Oriented Rapid Polarity-Switching Data-Dependent Acquisition and Selective Monitoring of the Chemical Markers Deduced from Fingerprint Analysis. Molecules 2018, 23, 3143. https://doi.org/10.3390/molecules23123143
Jia L, Fu L, Wang X, Yang W, Wang H, Zuo T, Zhang C, Hu Y, Gao X, Han L. Systematic Profiling of the Multicomponents and Authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS Oriented Rapid Polarity-Switching Data-Dependent Acquisition and Selective Monitoring of the Chemical Markers Deduced from Fingerprint Analysis. Molecules. 2018; 23(12):3143. https://doi.org/10.3390/molecules23123143
Chicago/Turabian StyleJia, Li, Lingling Fu, Xiaoyan Wang, Wenzhi Yang, Hongda Wang, Tiantian Zuo, Chunxia Zhang, Ying Hu, Xiumei Gao, and Lifeng Han. 2018. "Systematic Profiling of the Multicomponents and Authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS Oriented Rapid Polarity-Switching Data-Dependent Acquisition and Selective Monitoring of the Chemical Markers Deduced from Fingerprint Analysis" Molecules 23, no. 12: 3143. https://doi.org/10.3390/molecules23123143
APA StyleJia, L., Fu, L., Wang, X., Yang, W., Wang, H., Zuo, T., Zhang, C., Hu, Y., Gao, X., & Han, L. (2018). Systematic Profiling of the Multicomponents and Authentication of Erzhi Pill by UHPLC/Q-Orbitrap-MS Oriented Rapid Polarity-Switching Data-Dependent Acquisition and Selective Monitoring of the Chemical Markers Deduced from Fingerprint Analysis. Molecules, 23(12), 3143. https://doi.org/10.3390/molecules23123143