Effect of Photodynamic Antibacterial Chemotherapy Combined with Antibiotics on Gram-Positive and Gram-Negative Bacteria
Abstract
:1. Introduction
2. Results
2.1. Characterization of Sulfanilamide Derivatives
2.2. Characterization of Hospital Isolates of P. aeruginosa and S. aureus
2.3. PACT against MSSA and MRSA Strains
2.4. PACT Combined with Methicillin against MSSA and MRSA
2.5. Antibacterial Activity of Sulfanilamide Derivatives Alone and Combined with Rose Bengal
3. Discussion
4. Materials and Methods
4.1. Materials and Bacterial Strains
4.2. Synthesis of Sulfanilamide Derivatives
4.2.1. N-Methyl-4-acetylamino Benzenesulfonyl Amide (Ia)
4.2.2. General Procedure for Synthesis of Compounds (Ib–n)
4.2.3. Sulfanilic Acid N-Methyl Amide (IIa)
4.2.4. General Procedure for Synthesis of Compounds (IIb–n)
4.3. Characterization of the Synthesized Sulfanilamides
4.4. Characterization of Bacterial Strains
4.5. Bacterial Cell Growth
4.6. PACT Experiments
4.7. MIC Determination of Sulfanilamide and Its New Derivatives for P. aeruginosa
4.8. MIC Determination of Methicillin for S. aureus
4.9. Combined PACT-Antibacterial Experiments
4.10. SEM Imaging of Bacteria
4.11. Reproducibility of the Experiments
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PACT | Photodynamic Antibacterial Chemotherapy |
PS | photosensitizer |
MSSA | methicillin-sensitive Staphylococcus aureus |
MRSA | Methycillin-resistant Staphylococcus aureus |
ROS | reactive oxygen species |
MIC | minimum inhibitory concentration |
SEM | scanning electron microscope |
PBP | penicillin-binding protein |
SOP | standard operating procedure |
CLSI | The Clinical & Laboratory Standards Institute |
CFU | colony forming unit |
Appendix A
Characteristics of the Synthesized Sulfanilamide Derivatives
Appendix B
References
- Komolafe, O.O. Antibiotic resistance in bacteria-an emerging public health problem. Malawi Med. J. 2003, 15, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M. Antibiotic resistance: An emerging global headache, antibiotic resistant bacteria. In Antibiotic Resistant Bacteria—A Continuous Challenge in the New Millennium; Pana, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 3–14. ISBN 978-953-51-0472-8. [Google Scholar]
- Reder-Christ, K.; Bendas, G. Biosensor applications in the field of antibiotic research—A review of recent developments. Sensors 2011, 11, 9450–9466. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.D.; Neill, D.R.; Becker, K.A.; Gore, S.; Bricio-Moreno, L.; Ziobro, R.; Edwards, M.J.; Mühlemann, K.; Steinmann, J.; Kleuser, B.; et al. Engineered liposomes sequester bacterial exotoxins and protect from severe invasive infections in mice. Nat. Biotechnol. 2015, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Horn, M.P.; Knecht, S.M.; Rushing, F.L.; Birdsong, J.; Siddall, C.P.; Johnson, C.M.; Abraham, T.N.; Brown, A.; Volk, C.B.; Gammon, K.; et al. Simvastatin inhibits Staphylococcus aureus host cell invasion through modulation of isoprenoid intermediates. J. Pharmacol. Exp. Ther. 2008, 326, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Maitra, A.; Bates, S.; Shaik, M.; Evangelopoulos, D.; Abubakar, I.; McHugh, T.D.; Lipman, M.; Bhakta, S. Repurposing drugs for treatment of tuberculosis: A role for non-steroidal anti-inflammatory drugs. Br. Med. Bull. 2016, 118, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Cozens, D.; Read, R.C. Anti-adhesion methods as novel therapeutics for bacterial infections. Expert Rev. Anti-Infect. Ther. 2012, 10, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R.; Hasan, T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 2004, 3, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, Y.; Pechatnikov, I. Approaches to kill gram-negative bacteria by photosensitized process. In Photodynamic Inactivation of Microbial Pathogens: Medical and Environmental Applications; Hamblin, M.R., Jori, G., Eds.; RSC Publishing: London, UK, 2011; pp. 47–67. ISBN 978-1-84973-144-7. [Google Scholar]
- Daia, T.; Huanga, Y.-Y.; Hamblin, M.R. Photodynamic therapy for localized infections—State of the art. Photodiagn. Photodyn. Ther. 2009, 6, 170–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macdonald, I.J.; Dougherty, T.J. Basic principles of photodynamic therapy. J. Porphyr. Phthalocyanines 2001, 5, 105–129. [Google Scholar] [CrossRef]
- Maisch, T. Anti-microbial photodynamic therapy: Useful in the Future? Lasers Med. Sci. 2007, 22, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Nisnevitch, M.; Nakonechny, F. Sensitivity of bacteria to photodynamic chemotherapy. In Prokaryotes: Physiology, Biochemistry and Cell Behavior; Nisnevitch, M., Ed.; Nova Science Publishers Inc.: New York, NY, USA, 2015; pp. 197–220. ISBN 978-1633215924. [Google Scholar]
- Jori, G.; Fabris, C.; Soncin, M.; Ferro, S.; Coppellotti, O.; Dei, D.; Fantetti, L.; Chiti, G.; Roncucci, G. Photodynamic therapy in the treatment of microbial infections: Basic principles and perspective applications. Lasers Surg. Med. 2006, 38, 468–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jori, G. Photodynamic therapy of microbial infections: State-of-the-art and perspectives. J. Environ. Pathol. Toxicol. Oncol. 2006, 25, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Nisnevitch, M.; Nakonechny, F.; Nitzan, Y. Photodynamic antimicrobial chemotherapy by liposome-encapsulated water-soluble photosensitizers. Russ. J. Biorgan. Chem. 2010, 36, 363–369. [Google Scholar] [CrossRef]
- Nakonechny, F.; Firer, M.A.; Nitzan, Y.; Nisnevitch, M. Intracellular antimicrobial photodynamic therapy: A novel technique for efficient eradication of pathogenic bacteria. Photochem. Photobiol. 2010, 86, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Nakonechny, F.; Nisnevitch, M.; Nitzan, Y.; Firer, M.A. New techniques in antimicrobial photodynamic therapy: Scope of application and overcoming drug resistance in nosocomial infections. In Science Against Microbial Pathogens: Communicating Current Research and Technological Advances; Microbiology book series; Mendez-Vilas, A., Ed.; Formatex: Badajoz, Spain, 2011; Volume 1, pp. 684–691. ISBN 978-84-939843-1-1. [Google Scholar]
- Nakonechny, F.; Pinkus, A.; Hai, S.; Yehosha, O.; Nitzan, Y.; Nisnevitch, M. Eradication of Gram-positive and Gram-negative bacteria by photosensitizers immobilized in polystyrene. Photochem. Photobiol. 2013, 89, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Nitzan, Y.; Nisnevitch, M. Special features of Gram-positive bacterial eradication by photosensitizers. Recent Pat. Anti-Infect. Drug Discov. 2013, 8, 88–99. [Google Scholar] [CrossRef]
- Valkov, A.; Nakonechny, F.; Nisnevitch, M. Polymer-immobilized photosensitizers for continuous eradication of bacteria. Int. J. Mol. Sci. 2014, 15, 14984–14996. [Google Scholar] [CrossRef] [PubMed]
- Valkov, A.; Nakonechny, F.; Nisnevitch, M. Antibacterial properties of Rose Bengal immobilized in polymer supports. Appl. Mech. Mater. 2015, 719–720, 21–24. [Google Scholar] [CrossRef]
- Nakonechny, F.; Nisnevitch, M.M.; Nitzan, Y.; Nisnevitch, M. Sonodynamic excitation of Rose Bengal for eradication of Gram-positive and Gram-negative bacteria. Biomed. Res. Int. 2013, 2013, 684930. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Dai, T.; Kharkwal, G.B.; Huang, Y.Y.; Huang, L.; De Arce, V.J.; Tegos, G.P.; Hamblin, M.R. Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 2011, 17, 1303–1319. [Google Scholar] [CrossRef] [PubMed]
- Konaté, K.; Mavoungou, J.F.; Lepengué, A.N.; Aworet-Samseny, R.R.R.; Hilou, A.; Souza, A.; Dicko, M.H.; Batchi, B.M. Antibacterial activity against β-lactamase producing methicillin and ampicillin-resistants Staphylococcus aureus: Fractional inhibitory concentration index (FICI) determination. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 12. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, C.M.; Donnelly, R.F.; Elborn, J.S.; Magee, N.D.; Tunney, M.M. Photodynamic antimicrobial chemotherapy (PACT) in combination with antibiotics for treatment of Burkholderia cepacia complex infection. J. Photochem. Photobiol. B 2012, 106, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Di Poto, A.; Sbarra, M.S.; Provenza, G.; Visai, L.; Speziale, P. The effect of photodynamic treatment combined with antibiotic action or host defence mechanisms on Staphylococcus aureus biofilms. Biomaterials 2009, 30, 3158–3166. [Google Scholar] [CrossRef] [PubMed]
- Almeida, J.; Tomé, J.P.; Neves, M.G.; Tomé, A.C.; Cavaleiro, J.A.; Cunha, Â.; Costa, L.; Faustino, M.A.; Almeida, A. Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: Influence of residual antibiotics. Photochem. Photobiol. Sci. 2014, 13, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Nisnevitch, M.; Valkov, A.; Nakonechny, F.; Gutterman, M.; Nitzan, Y. Antibiotics combined with photosensitizers-a novel approach to antibacterial treatment. In Antibiotic Therapy: New Developments; Turner, A., Hall, J., Eds.; Nova Science Inc.: New York, NY, USA, 2013; pp. 63–88. ISBN 978-1-62808-171-8. [Google Scholar]
- Gutterman, M.; Valkov, A.; Nisnevitch, M. Sensitization of bacteria to antibiotics by combined antibiotic-photodynamic treatment. FEBS J. 2014, 281, 166. [Google Scholar]
- Sulfanilamide. Chemical Book. 2017. Available online: http://www.chemicalbook.com/ChemicalProductProperty_EN_CB6212562.htm (accessed on 14 September 2018).
- Chambers, H.F. Methicillin-resistant Staphylococcus aureus. Mechanisms of resistance and implications for treatment. Postgrad. Med. 2001, 109 (Suppl. 2), 43–50. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci. Prog. 2002, 85, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Kırmusaoğlu, S. MRSA and MSSA: The mechanism of methicillin resistance and the influence of methicillin resistance on biofilm phenotype of Staphylococcus aureus. In The Rise of Virulence and Antibiotic Resistance in Staphylococcus aureus; Enany, S., Ed.; InTech: Rijeka, Croatia, 2017; pp. 25–41. ISBN 978-953-51-2983-7. [Google Scholar]
- Barra, F.; Roscetto, E.; Soriano, A.A.; Vollaro, A.; Postiglione, I.; Pierantoni, G.M.; Palumbo, G.; Catania, M.R. Photodynamic and antibiotic therapy in combination to fight biofilms and resistant surface bacterial infections. Int. J. Mol. Sci. 2015, 16, 20417–20430. [Google Scholar] [CrossRef] [PubMed]
- Cassidy, C.M.; Donnelly, R.F.; Tunney, M.M. Effect of sub-lethal challenge with photodynamic antimicrobial chemotherapy (PACT) on the antibiotic susceptibility of clinical bacterial isolates. J. Photochem. Photobiol. B 2010, 99, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Xing, B.; Jiang, T.; Bi, W.; Yang, Y.; Li, L.; Ma, M.; Chang, C.-K.; Xu, B.; Yeow, E.K.L. Multifunctional divahilent vancomycin: The fluorescent imaging and photodynamic antimicrobial properties for drug resistant bacteria. Chem. Commun. 2011, 47, 1601–1603. [Google Scholar] [CrossRef] [PubMed]
- Cahan, R.; Swissa, N.; Gellerman, G.; Nitzan, Y. Photosensitizer-antibiotic conjugates: A novel class of antibacterial molecules. Photochem. Photobiol. 2010, 86, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Vinnicombe, H.G.; Derrick, J.P. Dihydropteroate synthase from Streptococcus pneumoniae: Characterization of substrate binding order and sulfonamide inhibition. Biochem. Biophys. Res. Commun. 1999, 258, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Lumen Learning Microbiology. Available online: https://courses.lumenlearning.com/microbiology/chapter/how-microbes-grow/ (accessed on 7 October 2018).
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Deteremination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, 1–7. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds IIa–n are available from the authors. |
Strain of S. aureus | MIC of Rose Bengal, mg/L 1 | MIC of Methicillin, mg/L 1 | MIC of Methicillin, mg/L 1, in the Presence of Sub-MIC Concentration of Rose Bengal | Sub-MIC of Rose Bengal, mg/L 1 |
---|---|---|---|---|
MSSA 11541 | 0.625 ± 0.009 | 1.19 ± 0.02 | 0.30 ± 0.01 | 0.313 ± 0.004 |
MSSA 611971 | 1.25 ± 0.02 | 2.38 ± 0.03 | 0.15 ± 0.01 | 0.625 ± 0.009 |
MRSA 69430 | 2.50 ± 0.03 | >19.0 ± 0.3 | 0.30 ± 0.004 | 1.25 ± 0.02 |
MRSA 69397 | 1.25 ± 0.02 | 19.0 ± 0.3 | <0.0091 ± 0.0002 | 0.625 ± 0.009 |
MRSA 69654 | 1.25 ± 0.02 | >19.0 ± 0.3 | <0.0091 ± 0.0002 | 0.625 ± 0.009 |
MRSA 69740 | 1.25 ± 0.02 | 19.0 ± 0.3 | 0.15 ± 0.01 | 0.625 ± 0.009 |
MRSA 69621 | 1.25 ± 0.02 | >19.0 ± 0.3 | <0.0091 ± 0.0002 | 0.625 ± 0.009 |
Applied Antimicrobials | MIC, g/L 1 | |
---|---|---|
Strain of P. aeruginosa | ||
63917 | 25668 | |
Sulfanilamide | 1.75 ± 0.02 | 3.50 ± 0.08 |
Rose Bengal | 0.78 ± 0.01 | 0.39 ± 0.01 |
Sulfanilamide in the presence of Rose Bengal at the sub-MIC concentration | 1.75 ± 0.02 | 3.50 ± 0.08 |
Sulfanilamide Derivative | MIC |
---|---|
Sulfanilamide | 1.75 ± 0.02 g/L 1 |
IIa | >2.68 g/L |
IIb | >53.7 mg/L |
IIc | >0.963 g/L |
IId | >21.3 mg/L |
IIe | >8.40 mg/L |
IIf | >0.102 g/L |
IIg | >0.157 g/L |
IIh | >2.74 g/L |
IIi | >35.7 mg/L |
IIj | >0.372 g/L |
IIk | >9.07 mg/L |
IIl | >26.7 mg/L |
IIm | >0.447 g/L |
IIn | >2.10 g/L |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilizirov, Y.; Formanovsky, A.; Mikhura, I.; Paitan, Y.; Nakonechny, F.; Nisnevitch, M. Effect of Photodynamic Antibacterial Chemotherapy Combined with Antibiotics on Gram-Positive and Gram-Negative Bacteria. Molecules 2018, 23, 3152. https://doi.org/10.3390/molecules23123152
Ilizirov Y, Formanovsky A, Mikhura I, Paitan Y, Nakonechny F, Nisnevitch M. Effect of Photodynamic Antibacterial Chemotherapy Combined with Antibiotics on Gram-Positive and Gram-Negative Bacteria. Molecules. 2018; 23(12):3152. https://doi.org/10.3390/molecules23123152
Chicago/Turabian StyleIlizirov, Yana, Andrei Formanovsky, Irina Mikhura, Yossi Paitan, Faina Nakonechny, and Marina Nisnevitch. 2018. "Effect of Photodynamic Antibacterial Chemotherapy Combined with Antibiotics on Gram-Positive and Gram-Negative Bacteria" Molecules 23, no. 12: 3152. https://doi.org/10.3390/molecules23123152
APA StyleIlizirov, Y., Formanovsky, A., Mikhura, I., Paitan, Y., Nakonechny, F., & Nisnevitch, M. (2018). Effect of Photodynamic Antibacterial Chemotherapy Combined with Antibiotics on Gram-Positive and Gram-Negative Bacteria. Molecules, 23(12), 3152. https://doi.org/10.3390/molecules23123152