Nonlinear Electrical Properties and Field Dependency of BST and Nano-ZnO-Doped Silicone Rubber Composites
Abstract
:1. Introduction
2. Results
2.1. Conductivity Behaviors
2.2. Dielectric Behaviors
2.3. Loss Tangent Characteristics
2.4. Dielectric and Pyroelectric Response
2.5. Simulation and Analysis
3. Discussion
4. Materials and Methods
4.1. Material Processing and Sample Preparation
4.2. Characterization
4.3. Test System and Experimental Details
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gao, L.; Yang, X.; Hu, J.; He, J. ZnO microvaristors doped polymer composites with electrical field dependent nonlinear conductive and dielectric characteristics. Mater. Lett. 2016, 171, 1–4. [Google Scholar] [CrossRef]
- Dang, Z.; Lin, Y.; Xu, H.; Shi, C.; Li, S.; Bai, J. Fabrication and dielectric characterization of advanced BaTiO3/Polyimide nanocomposite films with high thermal stability. Adv. Funct. Mater. 2008, 18, 1509–1517. [Google Scholar] [CrossRef]
- Varlow, B.; Li, K. Non-linear AC properties of filled resins. IEE Proc. Sci. Meas. Technol. 2003, 150, 75–82. [Google Scholar] [CrossRef]
- Cherney, E. Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. IEE Trans. Dielectr. Electr. Insul. 2005, 12, 1108–1115. [Google Scholar] [CrossRef]
- Pradhan, M.; Greijer, H. Goran eriksson, mikael unge, functional behaviors of electric field grading composite materials. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 768–778. [Google Scholar] [CrossRef]
- Niittymaki, M.; Lahti, K.; Suhonen, T.; Metsajoki, J. Electric field dependency of dielectric behavior of thermally sprayed ceramic coatings. In Proceedings of the International Conference on the Properties and Applications of Dielectric Materials, Sydney, Australia, 27 October 2015. [Google Scholar]
- Christen, T.; Donzel, L.; Greuter, F. Nonlinear resistive electric field grading part 1: Theory and simulation. IEEE Electr. Insul. Mag. 2010, 26, 47–59. [Google Scholar] [CrossRef]
- Eriksson, G.; Greijer, H.; Pradhan, M.; Unge, M. Stress dependent conductivity of field grading materials under time varying electrical fields. In Proceedings of the Conference on Electrical Insulation and Dielectric Phenomena, Montreal, QC, Canada, 14 October 2012. [Google Scholar]
- Donzel, L.; Greuter, F.; Christen, T. Non-linear resistive electric field grading part 2: Materials and applications. IEEE Electr. Insul. Mag. 2011, 272, 18–29. [Google Scholar] [CrossRef]
- Tsagaropoulos, G.; Eisenberg, A. Dynamic mechanical study of the factors affecting the two glass transition behaviour of filled polymers. Similarities and differences with random ionomers. Macromolecules. 1995, 28, 6067–6077. [Google Scholar] [CrossRef]
- Yang, X.; He, J.; Hu, J. Tailoring the nonlinear conducting behavior of silicone composites by ZnO microvaristor fillers. J. Appl. Polym. Sci. 2015, 132, 125–130. [Google Scholar] [CrossRef]
- Mansencal, R.; Haidar, B.; Vidal, A.; Delmotte, L.; Chezeau, J. High-resolution solid-state NMR investigation of the filler-rubber interaction: 2. High speed [1H] magic-angle spinning NMR spectroscopy in carbon-black-filled polybutadiene. Polym. Intern. 2001, 50, 387–394. [Google Scholar] [CrossRef]
- Picu, R.C.; Ozmusul, M. Structure of linear polymeric chains confined between impenetrable spherical walls. J. Chem. Phys. 2003, 118, 11239–11248. [Google Scholar] [CrossRef]
- Picu, R.C.; Rakshit, A. Dynamics of free chains in polymer nanocomposites. J. Chem. Phys. 2007, 126, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Steinstein, S.S.; Zhu, A.J. Reinforcement mechanism of Nanofilled polymer melts as elucidated by nonlinear viscoelasatic behavior. Macromolecules 2002, 35, 7262–7273. [Google Scholar] [CrossRef]
- Greuter, F.; Blatter, G. Electrical properties of grain boundaries in polycrystalline compound semiconductors. Semicond. Sci. Technol. 1990, 5. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M. Dielectric properties of epoxy nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2008, 15, 12–23. [Google Scholar] [CrossRef]
- Singha, S.; Thomas, M. Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2009, 16, 531–542. [Google Scholar] [CrossRef]
- Papakonstantopoulos, G.J.; Doxastakis, M.; Nealey, P.F.; Barrat, J.L.; de Pablo, J. Calculation of local mechanical properties of filled polymers. Phys. Rev. E 2007, 75. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Kozako, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans. Dielectr. Electr. Insul. 2005, 12, 669–681. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the corresponding author. |
Parameter | t1 | a1 | a2 | a3 |
value | 4.4465 | 0.0081 | 8 × 10−4 | 1 × 10−4 |
Parameter | t2 | b1 | b2 | b3 |
value | 1 × 10−8 | 3 × 10−10 | 3 × 10−11 | 2 × 10−12 |
Parameter | t3 | c1 | c2 | c3 |
value | 0.1039 | 0.0016 | 1 × 10−4 | 1 × 10−5 |
Percentage of Withstand Voltage (%) | 20% | 40% | 60% | 80% | |
---|---|---|---|---|---|
Conventional SiR | Percentage of length of string (%) | 23.4% | 42.1% | 60.8% | 79.6% |
Nonlinear SiR | Percentage of length of string (%) | 20.1% | 39.6% | 59.6% | 82.4% |
Designation | ZnO Content (wt.%) | BST Content (wt.%) |
---|---|---|
Z1 | 5 | - |
Z2 | 10 | - |
Z3 | 20 | - |
Z4 | 30 | - |
B1 | - | 5 |
B2 | - | 10 |
B3 | - | 15 |
B4 | - | 20 |
ZB1 | 2.5 | 2.5 |
ZB2 | 5 | 5 |
ZB3 | 10 | 10 |
N | - | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Wang, X.; Jia, Z.; Wang, J.; Chen, C. Nonlinear Electrical Properties and Field Dependency of BST and Nano-ZnO-Doped Silicone Rubber Composites. Molecules 2018, 23, 3153. https://doi.org/10.3390/molecules23123153
Guo J, Wang X, Jia Z, Wang J, Chen C. Nonlinear Electrical Properties and Field Dependency of BST and Nano-ZnO-Doped Silicone Rubber Composites. Molecules. 2018; 23(12):3153. https://doi.org/10.3390/molecules23123153
Chicago/Turabian StyleGuo, Juyi, Xilin Wang, Zhidong Jia, Jun Wang, and Chuan Chen. 2018. "Nonlinear Electrical Properties and Field Dependency of BST and Nano-ZnO-Doped Silicone Rubber Composites" Molecules 23, no. 12: 3153. https://doi.org/10.3390/molecules23123153
APA StyleGuo, J., Wang, X., Jia, Z., Wang, J., & Chen, C. (2018). Nonlinear Electrical Properties and Field Dependency of BST and Nano-ZnO-Doped Silicone Rubber Composites. Molecules, 23(12), 3153. https://doi.org/10.3390/molecules23123153