Experimental and Theoretical Study on the Synergistic Inhibition Effect of Pyridine Derivatives and Sulfur-Containing Compounds on the Corrosion of Carbon Steel in CO2-Saturated 3.5 wt.% NaCl Solution
Abstract
:1. Introduction
2. Results and Discussion
2.1. Weight Loss Measurements
2.2. Open Circuit Potential Monitoring
2.3. Potentiodynamic Polarization
2.4. Electrochemical Impedance Spectroscopy Measurements
2.5. Synergistic Mechanism
2.6. Scanning Electron Microscopy Characterization
2.7. Quantum Chemical Calculation
2.8. Molecular Dynamics Simulation
3. Materials and Methods
3.1. Materials
3.2. Weight Loss Measurement
3.3. Electrochemical Measurement Experiments
3.4. Surface Analysis
3.5. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Nešić, S. Key issues related to modelling of internal corrosion of oil and gas pipelines—A review. Corros. Sci. 2007, 49, 4308–4338. [Google Scholar] [CrossRef]
- Nesic, S.; Postlethwaite, J.; Olsen, S. An Electrochemical Model for Prediction of Corrosion of Mild Steel in Aqueous Carbon Dioxide Solutions. Corrosion 1996, 54, 280–294. [Google Scholar] [CrossRef]
- Heuer, J.K.; Stubbins, J.F. An XPS characterization of FeCO3 films from CO2 corrosion. Corros. Sci. 1999, 41, 1231–1243. [Google Scholar] [CrossRef]
- Kermani, M.B.; Morshed, A. Carbon dioxide corrosion in oil and gas production—A compendium. Corrosion 2003, 59, 659–683. [Google Scholar] [CrossRef]
- Olajire, A.A. Corrosion inhibition of offshore oil and gas production facilities using organic compound inhibitors—A review. J. Mol. Liq. 2017, 248, 775–808. [Google Scholar] [CrossRef]
- Tiu, B.D.B.; Advincula, R.C. Polymeric corrosion inhibitors for the oil and gas industry: Design principles and mechanism. React. Funct. Polym. 2015, 95, 25–45. [Google Scholar] [CrossRef]
- Okafor, P.C.; Liu, X.; Zheng, Y.G. Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution. Corros. Sci. 2009, 51, 761–768. [Google Scholar] [CrossRef]
- Liu, F.G.; Du, M.; Zhang, J.; Qiu, M. Electrochemical behavior of Q235 steel in saltwater saturated with carbon dioxide based on new imidazoline derivative inhibitor. Corros. Sci. 2009, 51, 102–109. [Google Scholar] [CrossRef]
- López, D.A.; Schreiner, W.H.; De Sánchez, S.R.; Simison, S.N. The influence of inhibitors molecular structure and steel microstructure on corrosion layers in CO2 corrosion: An XPS and SEM characterization. Appl. Surf. Sci. 2004, 236, 77–97. [Google Scholar] [CrossRef]
- Lashkari, M.; Arshadi, M.R. DFT studies of pyridine corrosion inhibitors in electrical double layer: Solvent, substrate, and electric field effects. Chem. Phys. 2004, 299, 131–137. [Google Scholar] [CrossRef]
- Ma, H.; Chen, S.; Liu, Z.; Sun, Y. Theoretical elucidation on the inhibition mechanism of pyridine-pyrazole compound: A Hartree Fock study. J. Mol. Struct. THEOCHEM 2006, 774, 19–22. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, C.; Lu, M.; Chai, C.; Wu, Y. Evaluation of inhibition efficiency of an imidazoline derivative in CO2-containing aqueous solution. Mater. Chem. Phys. 2007, 105, 331–340. [Google Scholar] [CrossRef]
- Jovancicevic, V.; Ramachandran, S.; Prince, P. Inhibition of carbon dioxide corrosion of mild steel by imidazolines and their precursors. Corrosion 1999, 55, 449–455. [Google Scholar] [CrossRef]
- Achary, G.; Sachin, H.P.; Naik, Y.A.; Venkatesha, T.V. The corrosion inhibition of mild steel by 3-formyl-8-hydroxy quinoline in hydrochloric acid medium. Mater. Chem. Phys. 2008, 107, 44–50. [Google Scholar] [CrossRef]
- Mistry, B.M.; Sahoo, S.K.; Jauhari, S. Experimental and theoretical investigation of 2-mercaptoquinoline-3-carbaldehyde and its Schiff base as an inhibitor of mild steel in 1 M HCl. J. Electroanal. Chem. 2013, 704, 118–129. [Google Scholar] [CrossRef]
- Zhang, D.; Li, L.; Cao, L.; Yang, N.; Huang, C. Studies of corrosion inhibitors for zinc-manganese batteries: Quinoline quaternary ammonium phenolates. Corros. Sci. 2001, 43, 1627–1636. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Liu, Z.; Xu, J.; Du, Y. Gravity waves with low frequency and large amplitude in cylindrical liquid-elastic shellgs. Chin. J. Appl. Mech. 2008, 25, 508–511. [Google Scholar] [CrossRef]
- Bouklah, M.; Attayibat, A.; Hammouti, B.; Ramdani, A.; Radi, S.; Benkaddour, M. Pyridine-pyrazole compound as inhibitor for steel in 1 M HCl. Appl. Surf. Sci. 2005, 240, 341–348. [Google Scholar] [CrossRef]
- Ansari, K.R.; Quraishi, M.A.; Singh, A. Pyridine derivatives as corrosion inhibitors for N80 steel in 15% HCl: Electrochemical, surface and quantum chemical studies. Measurement 2015, 76, 136–147. [Google Scholar] [CrossRef]
- Lgaz, H.; Benali, O.; Salghi, R.; Jodeh, S.; Larouj, M.; Hamed, O.; Messali, M.; Samhan, S.; Zougagh, M.; Oudda, H. Pyridinium derivatives as corrosion inhibitors for mild steel in 1M HCl: Electrochemical, surface and quantum chemical studies. Der Pharma Chem. 2016, 8, 172–190. [Google Scholar]
- Khadiri, A.; Saddik, R.; Bekkouche, K.; Aouniti, A.; Hammouti, B.; Benchat, N.; Bouachrine, M.; Solmaz, R. Gravimetric, electrochemical and quantum chemical studies of some pyridazine derivatives as corrosion inhibitors for mild steel in 1 M HCl solution. J. Taiwan Inst. Chem. Eng. 2016, 58, 552–564. [Google Scholar] [CrossRef]
- Okafor, P.C.; Zheng, Y. Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions. Corros. Sci. 2009, 51, 850–859. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review. J. Environ. Chem. Eng. 2016, 5, 246–273. [Google Scholar] [CrossRef]
- Heydari, M.; Javidi, M. Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions. Corros. Sci. 2012, 61, 148–155. [Google Scholar] [CrossRef]
- Georges, C.; Rocca, E.; Steinmetz, P. Synergistic effect of tolutriazol and sodium carboxylates on zinc corrosion in atmospheric conditions. Electrochim. Acta 2008, 53, 4839–4845. [Google Scholar] [CrossRef]
- Fuchs-Godec, R. Effects of surfactants and their mixtures on inhibition of the corrosion process of ferritic stainless steel. Electrochim. Acta 2009, 54, 2171–2179. [Google Scholar] [CrossRef]
- Mobin, M.; Zehra, S.; Parveen, M. L-Cysteine as corrosion inhibitor for mild steel in 1 M HCl and synergistic effect of anionic, cationic and non-ionic surfactants. J. Mol. Liq. 2016, 216, 598–607. [Google Scholar] [CrossRef]
- Zhang, C.; Duan, H.; Zhao, J. Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution. Corros. Sci. 2016, 112, 160–169. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, G. The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution. Electrochim. Acta 2012, 69, 247–255. [Google Scholar] [CrossRef]
- Singh, I. Inhibition of steel corrosion by thiourea derivatives. Corrosion 1993, 49, 473–478. [Google Scholar] [CrossRef]
- Fekry, A.M.; Mohamed, R.R. Acetyl thiourea chitosan as an eco-friendly inhibitor for mild steel in sulphuric acid medium. Electrochim. Acta 2010, 55, 1933–1939. [Google Scholar] [CrossRef]
- Ateya, B.G.; El-Anadouli, B.E.; El-Nizamy, F.M. The adsorption of thiourea on mild steel. Corros. Sci. 1984, 24, 509–515. [Google Scholar] [CrossRef]
- Ramachandran, S.; Tsai, B.-L.; Blanco, M.; Chen, H.; Tang, Y.; Goddard, W.A. Self-Assembled Monolayer Mechanism for Corrosion Inhibition of Iron by Imidazolines. Langmuir 1996, 12, 6419–6428. [Google Scholar] [CrossRef]
- Ondrechen, M.J.; Gozashti, S.; Wu, X.M.; Ondrechen, M.J.; Gozashti, S.; Wu, X.M. An electronic mechanism for electron pairing in antiferromagnetic bridged mixed valence systems an electronic mechanism for electron pairing in antiferromagnetic bridged mixed-valence systems. J. Chem. Phys. 1996, 969, 3255–3261. [Google Scholar] [CrossRef]
- Salarvand, Z.; Amirnasr, M.; Talebian, M.; Raeissi, K. Enhanced corrosion resistance of mild steel in 1 M HCl solution by trace amount of 2-phenyl-benzothiazole derivatives: Experimental, quantum chemical calculations and molecular dynamics (MD) simulation studies. Corros. Sci. 2017, 114, 133–145. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J. Synergistic inhibition effects of octadecylamine and tetradecyl trimethyl ammonium bromide on carbon steel corrosion in the H2S and CO2 brine solution. Corros. Sci. 2017, 126, 247–254. [Google Scholar] [CrossRef]
- Rehim, S.S.A.; Hazzazi, O.A.; Amin, M.A.; Khaled, K.F. On the corrosion inhibition of low carbon steel in concentrated sulphuric acid solutions. Part I: Chemical and electrochemical (AC and DC) studies. Corros. Sci. 2008, 50, 2258–2271. [Google Scholar] [CrossRef]
- López, D.A.; Simison, S.N.; De Sánchez, S.R. The influence of steel microstructure on CO2 corrosion. EIS studies on the inhibition efficiency of benzimidazole. Electrochim. Acta 2003, 48, 845–854. [Google Scholar] [CrossRef]
- Jüttner, K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surfaces. Electrochim. Acta 1990, 35, 1501–1508. [Google Scholar] [CrossRef]
- Tian, H.; Li, W.; Hou, B.; Wang, D. Insights into corrosion inhibition behavior of multi-active compounds for X65 pipeline steel in acidic oilfield formation water. Corros. Sci. 2017, 117, 43–58. [Google Scholar] [CrossRef]
- Huang, H.; Wang, Z.; Gong, Y.; Gao, F.; Luo, Z.; Zhang, S.; Li, H. Water soluble corrosion inhibitors for copper in 3.5 wt% sodium chloride solution. Corros. Sci. 2017, 123, 339–350. [Google Scholar] [CrossRef]
- Cao, C.-N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state-II. Two state variables besides electrode potential. Electrochim. Acta 1990, 35, 831–836. [Google Scholar] [CrossRef]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 2010, 55, 6218–6227. [Google Scholar] [CrossRef]
- Popova, A.; Christov, M.; Vasilev, A. Mono- and dicationic benzothiazolic quaternary ammonium bromides as mild steel corrosion inhibitors: Part III: Influence of the temperature on the inhibition process. Corros. Sci. 2015, 94, 70–78. [Google Scholar] [CrossRef]
- Zhao, J.M.; Liu, H.X.; Wei, D.I.; Zuo, Y. The inhibition synergistic effect between imidazoline derivative and thiourea. Electrochemistry 2004, 10, 440–445. [Google Scholar] [CrossRef]
- Badr, G.E. The role of some thiosemicarbazide derivatives as corrosion inhibitors for C-steel in acidic media. Corros. Sci. 2009, 51, 2529–2536. [Google Scholar] [CrossRef]
- Obot, I.B.; Macdonald, D.D.; Gasem, Z.M. Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors: Part 1: An overview. Corros. Sci. 2015, 99, 1–30. [Google Scholar] [CrossRef]
- Zhao, J.; Duan, H.; Jiang, R. Synergistic corrosion inhibition effect of quinoline quaternary ammonium salt and Gemini surfactant in H2S and CO2 saturated brine solution. Corros. Sci. 2015, 91, 108–119. [Google Scholar] [CrossRef]
- Hu, K.; Zhuang, J.; Ding, J.; Ma, Z.; Wang, F.; Zeng, X. Influence of biomacromolecule DNA corrosion inhibitor on carbon steel. Corros. Sci. 2017, 125, 68–76. [Google Scholar] [CrossRef]
- Fertier, L.; Rolland, M.; Thami, T.; Persin, M.; Zimmermann, C.; Lachaud, J.L.; Rebière, D.; Déjous, C.; Bêche, E.; Cretin, M. Synthesis and grafting of a thiourea-based chelating agent on SH-SAW transducers for the preparation of thin films sensitive to heavy metals. Mater. Sci. Eng. C 2009, 29, 823–830. [Google Scholar] [CrossRef]
- Nelson, G.W.; Perry, M.; He, S.M.; Zechel, D.L.; Horton, J.H. Characterization of covalently bonded proteins on poly(methyl methacrylate) by X-ray photoelectron spectroscopy. Colloids Surf. B 2010, 78, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Kashkovskiy, R.V.; Kuznetsov, Y.I.; Kazansky, L.P. Inhibition of hydrogen sulfide corrosion of steel in gas phase by tributylamine. Corros. Sci. 2012, 64, 126–136. [Google Scholar] [CrossRef]
- Mullet, M.; Boursiquot, S.; Abdelmoula, M.; Génin, J.M.; Ehrhardt, J.J. Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron. Geochim. Cosmochim. Acta 2002, 66, 829–836. [Google Scholar] [CrossRef]
- Mendonça, G.L.F.; Costa, S.N.; Freire, V.N.; Casciano, P.N.S.; Correia, A.N.; de Lima-Neto, P. Understanding the corrosion inhibition of carbon steel and copper in sulphuric acid medium by amino acids using electrochemical techniques allied to molecular modelling methods. Corros. Sci. 2017, 115, 41–55. [Google Scholar] [CrossRef]
- Tang, Y.; Yao, L.; Kong, C.; Yang, W.; Chen, Y. Molecular dynamics simulations of dodecylamine adsorption on iron surfaces in aqueous solution. Corros. Sci. 2011, 53, 2046–2049. [Google Scholar] [CrossRef]
- Satoh, S.; Fujimoto, H.; Kobayashi, H. Theoretical study of NH3 adsorption on Fe (1 1 0) and Fe (1 1 1) surfaces. J. Phys. Chem. B 2006, 110, 4846–4852. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 4-PQ are available from the authors. |
Inhibitors | CR (g/m2∙h) | IE (%) |
---|---|---|
blank | 0.345 ± 0.02 | - |
4-MP | 0.341 ± 0.01 | 1.4 ± 0.2 |
4-PQ | 0.335 ± 0.02 | 2.7 ± 0.4 |
TU | 0.078 ± 0.02 | 77.5 ± 3.1 |
TZ | 0.076 ± 0.01 | 77.6 ± 2.7 |
Inhibitors | ba (mV) | bc (mV) | Ecorr (V) | Icorr (µA∙cm−2) | |
---|---|---|---|---|---|
Blank | 70 ± 3 | 557 ± 7 | −0.726 ± 0.003 | 136.7 ± 10.2 | |
TZ | 193 ± 8 | 379 ± 5 | −0.717 ± 0.005 | 59.3 ± 3.3 | 56.6 |
4-PQ | 80 ± 6 | 412 ± 6 | −0.756 ± 0.002 | 114.6 ± 9.8 | 16.2 |
1:5 | 63 ± 4 | 173 ± 8 | −0.713 ± 0.004 | 56.5 ± 3.2 | 58.6 |
1:3 | 82 ± 5 | 181 ± 5 | −0.725 ± 0.001 | 90.9 ± 5.9 | 33.5 |
1:1 | 95 ± 4 | 177 ± 7 | −0.710 ± 0.002 | 50.3 ± 4.2 | 63.2 |
3:1 | 60 ± 2 | 107 ± 5 | −0.703 ± 0.002 | 28.4 ± 0.7 | 79.2 |
5:1 | 110 ± 9 | 165 ± 6 | −0.711 ± 0.004 | 48.2 ± 2.5 | 64.7 |
Inhibitors | ba (mV) | bc (mV) | Ecorr (V) | Icorr (µA∙cm−2) | |
---|---|---|---|---|---|
blank | 70 ± 3 | 557 ± 7 | −0.726 ± 0.003 | 136.7 ± 10.2 | |
TU | 193 ± 8 | 379 ± 9 | −0.714 ± 0.001 | 69.2 ± 7.7 | 49.4 |
4-PQ | 80 ± 6 | 412 ± 11 | −0.756 ± 0.002 | 114.6 ± 9.8 | 16.2 |
1:5 | 68 ± 5 | 188 ± 7 | −0.710 ± 0.005 | 43.4 ± 3.9 | 68.2 |
1:3 | 67 ± 4 | 206 ± 8 | −0.711 ± 0.004 | 50.2 ± 5.8 | 63.3 |
1:1 | 73 ± 9 | 172 ± 5 | −0.705 ± 0.002 | 28.3 ± 3.6 | 79.2 |
3:1 | 79 ± 3 | 159 ± 6 | −0.703 ± 0.002 | 20.5 ± 1.3 | 85.0 |
5:1 | 82 ± 7 | 169 ± 4 | −0.701 ± 0.003 | 24.1 ± 2.1 | 82.3 |
Inhibitors | Rs (Ω∙cm2) | Rf (Ω∙cm2) | Rct (Ω∙cm2) | Cf (μF/cm2) | nf | Cdl (μF/cm2) | ndl | Rt (Ω∙cm2) | ηZ (%) | χ2 |
---|---|---|---|---|---|---|---|---|---|---|
Blank | 2.58 ± 0.03 | - | 151.7 ± 1.51 | - | - | 115.9 ± 2.9 | 0.80 ± 0.005 | 151.7 ± 0.15 | - | 1.91 × 10−3 |
TZ | 2.26 ± 0.03 | 0.68 ± 0.005 | 335.7 ± 3.36 | 99.8 ± 1.40 | 0.68 ± 0.002 | 73.7 ± 1.03 | 1 ± 0.008 | 336.4 ± 3.37 | 54.95 | 1.03 × 10−4 |
4-PQ | 2.23 ± 0.02 | 0.97 ± 0.009 | 197.7 ± 0.20 | 90.9 ± 1.36 | 0.98 ± 0.008 | 85.5 ± 1.28 | 0.78 ± 0.004 | 198.7 ± 0.21 | 23.65 | 2.92 × 10−3 |
1:5 | 2.12 ± 0.02 | 1.95 ± 0.27 | 225.1 ± 1.58 | 56.0 ± 1.12 | 0.89 ± 0.062 | 74.1 ± 3.71 | 0.71 ± 0.004 | 226.1 ± 1.80 | 32.89 | 4.77 × 10−4 |
1:3 | 2.09 ± 0.01 | 0.34 ± 0.02 | 189.7 ± 1.70 | 111.7 ± 6.66 | 0.84 ± 0.059 | 94.3 ± 13.16 | 0.70 ± 0.004 | 190.5 ± 1.72 | 20.35 | 5.14 × 10−4 |
1:1 | 2.43 ± 0.03 | 1.02 ± 0.47 | 377.9 ± 13.23 | 40.3 ± 1.45 | 0.66 ± 0.003 | 67.3 ±3.30 | 0.75 ± 0.07 | 378.9 ± 13.70 | 59.97 | 9.76 × 10−4 |
3:1 | 2.03 ± 0.02 | 2.50 ± 0.27 | 491.1 ± 4.42 | 13.9 ± 0.68 | 0.84 ± 0.034 | 64.4 ± 0.26 | 0.68 ± 0.003 | 493.6 ± 4.70 | 69.27 | 5.36 × 10−4 |
5:1 | 2.28 ± 0.02 | 1.76 ± 0.04 | 410.0 ± 4.92 | 24.7 ± 1.48 | 0.66 ± 0.033 | 73.5 ± 1.18 | 0.93 ± 0.074 | 411.8 ± 4.95 | 63.17 | 2.87 × 10−4 |
Inhibitors | Rs (Ω∙cm2) | Rf (Ω∙cm2) | Rct (Ω∙cm2) | Cf (μF/cm2) | nf | Cdl (μF/cm2) | ndl | Rt (Ω∙cm2) | ηZ (%) | χ2 |
---|---|---|---|---|---|---|---|---|---|---|
Blank | 2.58 ± 0.03 | - | 151.7 ± 0.15 | - | - | 115.9 ± 2.9 | 0.80 ± 0.005 | 151.7 ± 0.15 | - | 1.91 × 10−3 |
TU | 2.03 ± 0.02 | 1.54 ± 0.02 | 323.2 ± 4.85 | 21.1 ± 0.40 | 0.71 ± 0.004 | 57.0 ± 1.08 | 0.86 ± 0.003 | 324.7 ± 4.88 | 53.06 | 2.15 × 10−4 |
4-PQ | 2.23 ± 0.02 | 0.97 ± 0.009 | 197.7 ± 0.20 | 90.9 ± 1.36 | 0.98 ± 0.008 | 85.5 ± 1.28 | 0.78 ± 0.004 | 198.7 ± 0.21 | 23.65 | 2.92 × 10−3 |
1:5 | 2.47 ± 0.03 | 1.47 ± 0.06 | 363.5 ± 7.26 | 46.3 ± 1.29 | 0.81 ± 0.008 | 89.9 ± 1.80 | 0.79 ± 0.031 | 365.0 ± 7.32 | 58.47 | 3.42 × 10−4 |
1:3 | 2.23 ± 0.03 | 2.56 ± 0.05 | 349.9 ± 5.24 | 54.9 ± 0.92 | 0.79 ± 0.004 | 98.6 ± 1.20 | 0.78 ± 0.010 | 352.5 ± 5.30 | 56.96 | 3.96 × 10−4 |
1:1 | 2.28 ± 0.02 | 1.77 ± 0.19 | 599.6 ± 13.78 | 5.7 ± 0.17 | 0.92 ± 0.033 | 56.4 ± 2.74 | 0.70 ± 0.009 | 601.4 ± 13.95 | 74.76 | 2.85 × 10−4 |
3:1 | 2.44 ±0.02 | 2.66 ± 0.48 | 879.6 ± 17.58 | 1.3 ± 0.04 | 0.60 ± 0.018 | 42.5 ± 1.68 | 0.72 ± 0.009 | 882.3 ± 18.06 | 82.80 | 3.73 × 10−4 |
5:1 | 2.04 ±0.01 | 1.66 ± 0.15 | 759.50 ± 15.18 | 18.8 ± 2.16 | 0.79 ± 0.010 | 51.2 ± 1.53 | 0.72 ± 0.010 | 761.2 ± 15.29 | 80.12 | 4.81 × 10−4 |
Inhibitor | EHOMO (eV) | ELUMO (eV) | ∆E (eV) | η (eV) | ω | ∆N | χ (eV) | μ (kcal/mol) |
---|---|---|---|---|---|---|---|---|
4-MP | −8.648 | 0.069 | 8.717 | 4.358 | 2.111 | 0.311 | 4.289 | −4.289 |
4-PQ | −8.123 | −0.0014 | 8.121 | 4.061 | 2.032 | 0.362 | 4.062 | −4.062 |
TU | −7.255 | −0.110 | 7.146 | 3.573 | 1.898 | 0.464 | 3.682 | −3.682 |
TZ | −8.079 | 0.279 | 8.358 | 4.179 | 1.820 | 0.371 | 3.900 | −3.900 |
4-PQ:TU | Etotal (kcal/mol) | Esurface+solution (kcal/mol) | Einhibitors+solution (kcal/mol) | Esolution (kcal/mol) | Eadsoption (kcal/mol) |
---|---|---|---|---|---|
1:5 | −41,105.7 | −39,365.3 | −8953.9 | −7518.03 | −304.495 |
1:3 | −40,974.3 | −39,389 | −8823.87 | −7536.58 | −297.995 |
1:1 | −40,556.2 | −39,237.3 | −8347.31 | −7508.61 | −480.2 |
3:1 | −39,985.6 | −38,771.2 | −7734.12 | −7083.08 | −563.43 |
5:1 | −39,856.7 | −38,861.6 | −7606.54 | −7157.9 | −546.394 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, J.; Hu, Y.; Han, Z.; Wang, H.; Zhu, Y.; Wang, Y.; Nie, Z.; Wang, Y. Experimental and Theoretical Study on the Synergistic Inhibition Effect of Pyridine Derivatives and Sulfur-Containing Compounds on the Corrosion of Carbon Steel in CO2-Saturated 3.5 wt.% NaCl Solution. Molecules 2018, 23, 3270. https://doi.org/10.3390/molecules23123270
Tang J, Hu Y, Han Z, Wang H, Zhu Y, Wang Y, Nie Z, Wang Y. Experimental and Theoretical Study on the Synergistic Inhibition Effect of Pyridine Derivatives and Sulfur-Containing Compounds on the Corrosion of Carbon Steel in CO2-Saturated 3.5 wt.% NaCl Solution. Molecules. 2018; 23(12):3270. https://doi.org/10.3390/molecules23123270
Chicago/Turabian StyleTang, Junlei, Yuxin Hu, Zhongzhi Han, Hu Wang, Yuanqiang Zhu, Yuan Wang, Zhen Nie, and Yingying Wang. 2018. "Experimental and Theoretical Study on the Synergistic Inhibition Effect of Pyridine Derivatives and Sulfur-Containing Compounds on the Corrosion of Carbon Steel in CO2-Saturated 3.5 wt.% NaCl Solution" Molecules 23, no. 12: 3270. https://doi.org/10.3390/molecules23123270
APA StyleTang, J., Hu, Y., Han, Z., Wang, H., Zhu, Y., Wang, Y., Nie, Z., & Wang, Y. (2018). Experimental and Theoretical Study on the Synergistic Inhibition Effect of Pyridine Derivatives and Sulfur-Containing Compounds on the Corrosion of Carbon Steel in CO2-Saturated 3.5 wt.% NaCl Solution. Molecules, 23(12), 3270. https://doi.org/10.3390/molecules23123270