Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors
Abstract
:1. Introduction
2. Marine Sources as Upcoming Therapeutic Agents
3. Marine-Derived Molecules with PTP1B Inhibitory Activity
3.1. Ptp1b Inhibitory Activity: In Vitro Findings
3.1.1. Bromophenols
3.1.2. Brominated Metabolites
3.1.3. Polybromodiphenyl Ether Derivatives
3.1.4. Phlorotannins
3.1.5. Sterols
3.1.6. Terpenes
Sesquiterpenes
Diterpenes
Sesterterpenes
Triterpenes
3.1.7. Fungal Metabolites
3.1.8. Miscellaneous Compounds
3.2. PTP1B Inhibitory Activity: In Vivo Findings
4. Current Trends and Upcoming Challenges
4.1. In Vitro and In Vivo Concerns
4.2. Human Concerns
4.3. Concerns in Culture Conditions
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Al-Lawati, J.A. Diabetes Mellitus: A Local and Global Public Health Emergency! Om. Med. J. 2017, 32, 177–179. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.B.; Högger, P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015, 22, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2015, 40, S11–S24. [Google Scholar]
- Dubé, N.; Tremblay, M.L. Involvement of the small protein tyrosine phosphatases TC-PTP and PTP1B in signal transduction and diseases: From diabetes, obesity to cell cycle, and cancer. Biochim. Biophys. Acta 2005, 1754, 108–117. [Google Scholar] [CrossRef]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Min, K.H.; Han, J.S.; Lee, D.H.; Park, D.B.; Jung, W.K.; Park, P.J.; Jeon, B.T.; Kim, S.K.; Jeon, Y.J. Effects of brown alga, Ecklonia cava on glucose and lipid metabolism in C57BL/KsJ- db/db mice, a model of type 2 diabetes mellitus. Food Chem. Toxicol. 2012, 50, 575–582. [Google Scholar] [CrossRef]
- Pontiroli, A.E. Type 2 diabetes mellitus is becoming the most common type of diabetes in school children. Acta Diabetol. 2004, 41, 85–90. [Google Scholar] [CrossRef]
- Thilagam, E.; Parimaladevi, B.; Kumarappan, C.; Mandal, S.C. α-Glucosidase and α-amylase inhibitory activity of Senna surattensis. J. Acupunct. Meridian Stud. 2013, 6, 24–30. [Google Scholar] [CrossRef]
- Jung, M.; Park, M.; Lee, H.C.; Kang, Y.H.; Kang, E.S.; Kim, S.K. Antidiabetic agents from medicinal plants. Curr. Med. Chem. 2006, 13, 1203–1218. [Google Scholar] [CrossRef]
- Ray, S.D. Side effects of drugs annual. In A Worldwide Yearly Survey of New Data in Adverse Drug Reactions; Elsevier: Waltham, MA, USA, 2017. [Google Scholar]
- Scheen, A.J.; Lefebvre, P.J. Troglitazone: Antihyperglycemic activity and potential role in the treatment of type 2 diabetes. Diabetes Care 1999, 22, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Li, P.M.; Meyerovitch, J.; Goldstein, B.J. Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J. Biol. Chem. 1995, 270, 20503–20508. [Google Scholar] [CrossRef] [PubMed]
- Zinker, B.A.; Rondinone, C.M.; Trevillyan, J.M.; Gum, R.J.; Clampit, J.E.; Waring, J.F.; Xie, N.; Wilcox, D.; Jacobson, P.; Frost, L.; et al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Nat. Acad. Sci. USA 2002, 99, 11357–11362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, T.O.; Ermolieff, J.; Jirousek, M.R. Protein tyrosine phosphatase 1B inhibitors for diabetes. Nat. Rev. Drug Discov. 2002, 1, 696–709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhang, Z.Y. PTP1B as a drug target: Recent developments in PTP1B inhibitor discovery. Drug Discov. Today 2007, 12, 373–381. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Lee, S.Y. PTP1B inhibitors as potential therapeutics in the treatment of type 2 diabetes and obesity. Expert Opin. Investig. Drugs 2003, 12, 223–233. [Google Scholar] [CrossRef]
- Bandyopadhyay, D.; Kusari, A.; Kenner, K.A.; Liu, F.; Chernoff, J.; Gustafson, T.A.; Kusari, J. Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J. Biol. Chem. 1997, 272, 1639–1645. [Google Scholar] [CrossRef]
- Goldstein, B.J.; Bittner-Kowalczyk, A.; White, M.F.; Harbeck, M. Tyrosine dephosphorylation and deactivation of insulin receptor substrate-1 by protein-tyrosine phosphatase 1B. Possible facilitation by the formation of a ternary complex with the Grb2 adaptor protein. J. Biol. Chem. 2000, 275, 4283–4289. [Google Scholar] [CrossRef]
- Lund, I.K.; Hansen, J.A.; Andersen, H.S.; Moller, N.P.H.; Billestrup, N. Andersen, Mechanism of protein tyrosine phosphatase 1B-mediated inhibition of leptin signalling. J. Mol. Endocrinol. 2005, 34, 339–351. [Google Scholar] [CrossRef]
- Byon, J.C.H.; Kusari, A.B.; Kusari, J. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol. Cell. Biochem. 1998, 182, 101–108. [Google Scholar] [CrossRef]
- Kenner, K.A.; Anyanwu, E.; Olefsky, J.M.; Kusari, J. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J. Biol. Chem. 1996, 271, 19810–19816. [Google Scholar] [CrossRef] [PubMed]
- Meshkani, R.; Taghikhani, M.; Al-Kateb, H.; Larijani, B.; Khatami, S.; Sidiropoulos, G.K.; Hegele, R.A.; Adeli, K. Polymorphisms within the protein tyrosine phosphatase 1B (PTPN1) gene promoter: Functional characterization and association with type 2 diabetes and related metabolic traits. Clin. Chem. 2007, 53, 1585–1592. [Google Scholar] [CrossRef] [PubMed]
- Elchebly, M.; Payette, P.; Michaliszy, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.; et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999, 283, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Klaman, L.D.; Boss, O.; Peroni, O.D.; Kim, J.K.; Martino, J.L.; Zabolotny, J.M.; Moghal, N.; Lubkin, M.; Kim, Y.B.; Sharpe, A.H.; et al. Increased energy expenditure, decreased adiposity, and tissue-specific insulin sensitivity in proteintyrosine phosphatase 1B-deficient mice. Mol. Cell. Biol. 2000, 20, 5479–5489. [Google Scholar] [CrossRef] [PubMed]
- Bence, K.K.; Delibegovic, M.; Xue, B.; Gorgun, C.Z.; Hotamisligil, G.S.; Neel, B.G.; Kahn, B.B. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 2006, 12, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Liu, G.; Xin, Z.; Serby, M.D.; Pei, Z.; Szczepankiewicz, B.G.; Hajduk, P.J.; Abad-Zapatero, C.; Hutchins, C.W.; Lubben, T.H.; et al. Jirousek, Isoxazole carboxylic acids as protein tyrosine phosphatase 1B (PTP1B) inhibitors. Bioorgan. Med. Chem. Lett. 2004, 14, 5543–5546. [Google Scholar] [CrossRef] [PubMed]
- Leung, K.W.; Posner, B.I.; Just, G. Periodinates: A new class of protein tyrosine phosphatase inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 353–356. [Google Scholar] [CrossRef]
- Andersen, H.S.; Olsen, O.H.; Iversen, L.F.; Sorensen, A.L.P.; Mortensen, S.B.; Christensen, M.; Branner, S.; Hansen, T.K.; Lau, J.F.; Jeppesen, L.; et al. Discovery and SAR of a novel selective and orally bioavailable nonpeptide classical competitive inhibitor class of protein-tyrosine phosphatase 1B. J. Med. Chem. 2002, 45, 4443–4459. [Google Scholar] [CrossRef]
- Wilson, D.P.; Wan, Z.K.; Xu, W.X.; Kirincich, S.J.; Follows, B.C.; Joseph-McCarthy, D.; Foreman, K.; Moretto, A.; Wu, J.; Zhu, M.; et al. Structure-based optimization of protein tyrosine phosphatase 1B inhibitors: From the active site to the second phosphotyrosine binding site. J. Med. Chem. 2007, 50, 4681–4698. [Google Scholar] [CrossRef]
- Liu, S.; Zeng, L.F.; Wu, L.; Yu, X.; Xue, T.; Gunawan, A.M.; Long, Y.Q.; Zhang, Z.Y. Targeting inactive enzyme conformation: Aryl diketoacid derivatives as a new class of PTP1B inhibitors. J. Am. Chem. Soc. 2008, 130, 17075–17084. [Google Scholar] [CrossRef]
- Lee, S.H.; Ko, S.C.; Kang, M.C.; Lee, D.H.; Jeon, Y.J. Octaphlorethol a, a marine algae product, exhibits antidiabetic effects in type 2 diabetic mice by activating amp-activated protein kinase and upregulating the expression of glucose transporter 4. Food Chem. Toxicol. 2016, 91, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Manikkam, V.; Vasiljevic, T.; Donkor, O.N.; Mathai, M.L. A review of potential marine-derived hypotensive and anti-obesity peptides. Crit. Rev. Food Sci. Nutr. 2016, 56, 92–112. [Google Scholar] [CrossRef] [PubMed]
- Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the marine environment with pharmacological, cosmeceutical and nutraceutical potential. Molecules 2016, 21, 551. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.S.M.; Zhang, Q.; Shen, Q. Recent research in antihypertensive activity of food protein-derived hydrolyzates and peptides. Crit. Rev. Food Sci. Nutr. 2016, 56, 760–787. [Google Scholar] [CrossRef] [PubMed]
- Suleria, H.Á.R.; Gobe, G.; Masci, P.; Osborne, S.A. Marine bioactive compounds and health promoting perspectives; innovation pathways for drug discovery. Trends Food Sci. Technol. 2016, 50, 44–55. [Google Scholar] [CrossRef]
- Choochote, W.; Suklampoo, L.; Ochaikul, D. Evaluation of antioxidant capacities of green microalgae. J. Appl. Phycol. 2014, 26, 43–48. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, Y.J.; Yang, C.F.; Liu, B.; Huang, Y.F. Hypotensive, hypoglycemic and hypolipidemic effects of bioactive compounds from microalgae and marine microorganisms. Int. J. Food Sci. Technol. 2015, 50, 1705–1717. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Mohamed, S.; Hashim, S.N.; Rahman, H.A. Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends Food Sci. Technol. 2012, 23, 83–96. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.S.; Liang, L.F.; Guo, Y.W. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol. Sin. 2012, 33, 1217–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunt, J.W.; Copp, B.R.; Hu, W.P.; Munro, M.H.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep 2009, 26, 170–244. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Sumilat, D.A.; Kanno, S.; Ukai, K.; Rotinsulu, H.; Wewengkang, D.S.; Ishikawa, M.; Mangindaan, R.E.P.; Namikoshi, M. A polybromodiphenyl ether from an Indonesian marine sponge Lamellodysidea herbacea and its chemical derivatives inhibit protein tyrosine phosphatase 1B, an important target for diabetes treatment. J. Nat. Med. 2013, 67, 730–735. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, Y.; Shen, X.; Guo, Y.W. A novel sesquiterpene quinone from Hainan sponge Dysidea villosa. Bioorgan. Med. Chem. Lett. 2009, 19, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Kurihara, H.; Mitain, T.; Kawabata, J.; Takahashi, K. Inhibitory potencies of bromophenols from Rhodomelaceae algae against α-glucosidase activity. Fish Sci. 1999, 65, 300–303. [Google Scholar] [CrossRef]
- Kurihara, H.; Mitain, T.; Kawabata, J.; Takahashi, K. Two new bromophenols from the red alga Odonthalia corymbifera. J. Nat. Prod. 1999, 62, 882–884. [Google Scholar] [CrossRef]
- Se-Kwon, K.; Steve, T. Marine Medicinal Foods: Implications and Applications, Macro and Microalgae; Academic Press: Waltham, MA, USA, 2011. [Google Scholar]
- Shi, D.; Xu, F.; Li, J.; Guo, S.J.; Su, H.; Han, L.J. PTP1B inhibitory activities of bromophenol derivatives from algae. Chin. J. Chin. Mater. Med. 2008, 33, 2238–2240. [Google Scholar]
- Shi, D.; Guo, S.; Jiang, B.; Guo, C.; Wang, T.; Zhang, L.; Li, J. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: Synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice. Mar. Drugs 2013, 11, 350–362. [Google Scholar] [CrossRef]
- Shi, D.; Li, J.; Jiang, B.; Guo, S.; Su, H.; Wang, T. Bromophenols as inhibitors of protein tyrosine phosphatase 1B with antidiabetic properties. Bioorgan. Med. Chem. Lett. 2012, 22, 2827–2832. [Google Scholar] [CrossRef]
- Shi, D.; Feng, X.; He, J.; Li, J.; Fan, X.; Han, L. Inhibition of bromophenols against PTP1B and anti-hyperglycemic effect of Rhodomela confervoides extract in diabetic rats. Chin. Sci. Bull. 2008, 53, 2476–2479. [Google Scholar] [CrossRef]
- Shoeib, N.A.; Bibby, M.C.; Blunden, G.; Linley, P.A.; Swaine, D.J.; Wheelhouse, R.T.; Wright, C.W. In-vitro cytotoxic activities of the major bromophenols of the red alga Polysiphonia lanosa and some novel synthetic isomers. J. Nat. Prod. 2004, 67, 1445–1449. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, X.; Gao, L.; Cui, C.; Li, C.; Li, J.; Wang, B. Extraction and PTP1B inhibitory activity of bromophenols from the marine red alga Symphyocladia latiuscula. Chin. J. Oceanol. Limnol. 2011, 29, 686–690. [Google Scholar] [CrossRef]
- Kim, K.Y.; Nam, K.A.; Kurihara, H.; Kim, S.M. Potent alpha-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 2008, 69, 2820–2825. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Nam, K.A.; Kurihara, H.; Kim, S.M. Alpha-glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J. Food Sci. 2010, 75, H145–H150. [Google Scholar] [PubMed]
- Suzen, S.; Buyukbingol, E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr. Med. Chem. 2003, 10, 1329–1352. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Okada, Y.; Shi, H.; Wang, Y.; Okuyama, T. Structures and aldose reductase inhibitory effects of bromophenols from the red alga Symphyocladia latiuscula. J. Nat. Prod. 2005, 68, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Su, H.; Zhang, Y.; Gao, J.; Zhu, L.; Wu, X.; Pan, H.; Li, X. Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase 1B. Bioorgan. Med. Chem. Lett. 2010, 20, 7152–7154. [Google Scholar] [CrossRef]
- Faulkner, D. Marine Natural Product Chemistry; Springer: New York, NY, USA, 1977. [Google Scholar]
- Targett, N.M.; Arnold, T.M. Predicting the effects of brown algal phlorotannins on marine herbivores in tropical and temperate oceans. J. Phycol. 1998, 34, 195–205. [Google Scholar] [CrossRef]
- Riitta, K. Brown Algal Phlorotannins: Improving and Applying Chemical Methods; University of Turku: Turku, Finland, 2008. [Google Scholar]
- Jung, H.A.; Yoon, N.Y.; Woo, M.H.; Choi, J.S. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish. Sci. 2008, 74, 1363–1365. [Google Scholar] [CrossRef]
- Moon, H.E.; Islam, N.; Ahn, B.R.; Chowdhury, S.S.; Sohn, H.S.; Jung, H.A.; Choi, J.S. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci. Biotechnol. Biochem. 2011, 75, 1472–1480. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Ishimaru, A.; Suzuki, R.; Okuyama, T. A new phloroglucinol derivative from the brown alga Eisenia bicyclis: Potential for the effective treatment of diabetic complications. J. Nat. Prod. 2004, 67, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Abdul, Q.A.; Choi, R.J.; Jung, H.A.; Choi, J.S. Health benefit of fucosterol from marine algae: A review. J. Sci. Food Agric. 2016, 96, 1856–1866. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sun, J.; Ma, W.; Fang, W.; Chen, Z.; Yang, B.; Liu, Y. Bioactivities of six sterols isolated from marine invertebrates. Pharm. Biol. 2014, 52, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Islam, M.N.; Lee, C.M.; Oh, S.H.; Lee, S.; Jung, J.H.; Choi, J.S. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Chemico-Biol. Interact. 2013, 206, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Jiao, W.H.; Huang, X.J.; Yang, J.S.; Yang, F.; Piao, S.J.; Gao, H.; Li, J.; Ye, W.C.; Yao, X.S.; Chen, W.S.; et al. Dysidavarones A-D, new sesquiterpene quinones from the marine sponge Dysidea avara. Org. Lett. 2012, 14, 202–205. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Guo, Y.W.; Jiang, H.L.; Shen, X. A sesquiterpene quinone, dysidine, from the sponge Dysidea villosa, activates the insulin pathway through inhibition of PTPases. Acta Pharm. Sin. 2009, 30, 333–345. [Google Scholar] [CrossRef]
- Yamazaki, H.; Nakazawa, T.; Sumilat, D.A.; Takahashi, O.; Ukai, K.; Takahashi, S.; Namikoshi, M. Euryspongins A–C, three new unique sesquiterpenes from a marine sponge Euryspongia sp. Bioorgan. Med. Chem. Lett. 2013, 23, 2151–2154. [Google Scholar] [CrossRef]
- Liang, L.; Kurtán, T.; Mándi, A.; Gao, L.X.; Li, J.; Zhang, W.; Guo, Y.W. Sarsolenane and Capnosane Diterpenes from the Hainan Soft Coral Sarcophyton trocheliophorum Marenzeller as PTP1B Inhibitors. Eur. J. Org. Chem. 2014, 1841–1847. [Google Scholar] [CrossRef]
- Liang, L.F.; Gao, L.X.; Li, J.; Taglialatela-Scafati, O.; Guo, Y.W. Cembrane diterpenoids from the soft coral Sarcophyton trocheliophorum Marenzeller as a new class of PTP1B inhibitors. Bioorg. Med. Chem. Lett. 2013, 21, 5076–5080. [Google Scholar] [CrossRef]
- Piao, S.J.; Jiao, W.H.; Yang, F.; Yi, Y.H.; Di, Y.T.; Han, B.N.; Lin, H.W. New Hippolide Derivatives with Protein Tyrosine Phosphatase 1B Inhibitory Activity from the Marine Sponge Hippospongia lachne. Mar. Drugs 2014, 12, 4096–4109. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; HanYim, J.; Lee, H.K.; Oh, H. PTP1B inhibitory secondary metabolites from the Antarctic lichen Lecidella carpathica. Mycology 2011, 2, 18–23. [Google Scholar] [CrossRef]
- Xue, D.G.; Mao, S.C.; Yu, X.Q.; Guo, Y.W. Isomalabaricane triterpenes with potent protein-tyrosine phosphatase 1B (PTP1B) inhibition from the Hainan sponge Stelletta sp. Biochem. Syst. Ecol. 2013, 49, 101–106. [Google Scholar] [CrossRef]
- Fouad, M.; Edrada, R.A.; Ebel, R.; Wray, V.; Müller, W.E.G.; Lin, W.H.; Proksch, P. Cytotoxic Isomalabaricane Triterpenes from the Marine Sponge Rhabdastrella globostellata. J. Nat. Prod. 2006, 69, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.S.; Jang, J.H.; Ko, W.; Kim, K.S.; Sohn, J.H.; Kang, M.S.; Ahn, J.S.; Kim, Y.C.; Oh, H. PTP1B inhibitory and anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungus Penicillium sp. JF-55. Mar. Drugs 2013, 11, 1409–1426. [Google Scholar] [CrossRef] [PubMed]
- Sohn, J.H.; Lee, Y.R.; Lee, D.S.; Kim, Y.C.; Oh, H. PTP1B inhibitory secondary metabolites from marine-derived fungal strains Penicillium spp. and Eurotium sp. J. Microbiol. Biotechnol. 2013, 23, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Debbab, A.; Aly, A.H.; Lin, W.H.; Proksch, P. Bioactive compounds from marine bacteria and fungi. Microb. Biotechnol. 2010, 3, 544–563. [Google Scholar] [CrossRef] [PubMed]
- Seo, C.; Sohn, J.H.; Oh, H.; Kim, B.Y.; Ahn, J.S. Isolation of the protein tyrosine phosphatase 1B inhibitory metabolite from the marine-derived fungus Cosmospora sp. SF-5060. Bioorgan. Med. Chem. Lett. 2009, 19, 6095–6097. [Google Scholar] [CrossRef]
- Jung, H.A.; Islam, M.N.; Lee, C.M.; Jeong, H.O.; Chung, H.Y.; Woo, H.C.; Choi, J.S. Promising antidiabetic potential of fucoxanthin isolated from the edible brown algae Eisenia bicyclis and Undaria pinnatifida. Fish. Sci. 2012, 78, 1321–1329. [Google Scholar] [CrossRef]
- Maeda, H.; Hosokawa, M.; Sashima, T.; Miyashita, K. Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK-Ay mice. J. Agric. Food Chem. 2007, 55, 7701–7706. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef] [PubMed]
- Ingebrigtsen, R.A.; Hansen, E.; Andersen, J.H.; Eilertsen, H.C. Light and temperature effects on bioactivity in diatoms. J. Appl. Phycol. 2015, 28, 939–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauritano, C.; Andersen, J.H.; Hansen, E.; Albrigtsen, M.; Escalera, L.; Esposito, F.; Helland, K.; Hanssen, K.Ø.; Romano, G.; Ianora, A. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities. Front. Mar. Sci 2016. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, Y.A.; Lee, J.I.; Lee, B.J.; Seo, Y.W. Screening of Korean marine plants extracts for inhibitory activity on protein tyrosine phosphatase 1B. J. Appl. Biol. Chem. 2007, 50, 74–77. [Google Scholar]
- Ali, M.Y.; Kim, D.H.; Seong, S.H.; Kim, H.R.; Jung, H.A.; Choi, J.S. α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activity of Plastoquinones from Marine Brown Alga Sargassum serratifolium. Mar. Drugs 2017, 15, 368. [Google Scholar] [CrossRef] [PubMed]
- Nuño, K.; Villarruel-Lopez, A.; Puebla-Pérez, A.M.; Romero-Velarde, E.; Puebla-Mora, A.G.; Ascencio, F. Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. J. Funct. Foods 2013, 5, 106–115. [Google Scholar] [CrossRef]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009. [Google Scholar] [CrossRef]
- Cheng, A.; Dube, N.; Gu, F.; Tremblay, M.L. Coordinated action of protein tyrosine phosphatases in insulin signal transduction. Eur. J. Biochem. 2002, 269, 1050–1059. [Google Scholar] [CrossRef] [Green Version]
- Fantus, I.G.; Deragon, G.; Lai, R.; Tang, S. Modulation of insulin action by vanadate: Evidence of a role for phosphotyrosine phosphatase activity to alter cellular signaling. Mol. Cell. Biochem. 1995, 153, 103–112. [Google Scholar] [CrossRef]
- Fantus, I.G.; Tsiani, E. Multifunctional actions of vanadium compounds on insulin signaling pathways: Evidence for preferential enhancement of metabolic versus mitogenic effects. Mol. Cell. Biochem. 1998, 182, 109–119. [Google Scholar] [CrossRef]
- Meyerovitch, J.; Farfel, Z.; Sack, J.; Shechter, Y. Characterization and mode of action, Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats. J. Biol. Chem. 1987, 262, 6658–6662. [Google Scholar]
- Meyerovitch, J.; Backer, J.; Kahn, C.R. Hepatic phosphotyrosine phosphatase activity and its alterations in diabetic rats. J. Clin. Investig. 1989, 84, 976–983. [Google Scholar] [CrossRef]
- Myers, M.P.; Andersen, J.N.; Cheng, A.; Tremblay, M.L.; Horvath, C.M.; Parisien, J.P.; Salmeen, A.; Barford, D.; Tonks, N.K. TYK2 and JAK2 are substrates of protein-tyrosine phosphatase 1B. J. Biol. Chem. 2001, 276, 47771–47774. [Google Scholar] [CrossRef]
- Cheng, A.; Uetani, N.; Simoncic, P.D.; Chaubey, V.P.; Lee-Loy, A.; McGlade, C.J.; Kennedy, B.P.; Tremblay, M.L. Attenuation of leptin action and regulation of obesity by protein tyrosine phosphatase 1B. Dev. Cell 2002, 2, 497–503. [Google Scholar] [CrossRef]
- Zabolotny, J.M.; Bence-Hanulec, K.K.; Stricker-Krongrad, A.; Haj, F.; Wang, Y.; Minokoshi, Y.; Kim, Y.B.; Elmquist, J.K.; Tartaglia, L.A.; Kahn, B.B.; et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2002, 2, 489–495. [Google Scholar] [CrossRef]
- Ahmad, F.; Considine, R.V.; Bauer, T.L.; Ohannesian, J.P.; Marco, C.C.; Goldstein, B.J. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 1997, 46, 1140–1145. [Google Scholar] [CrossRef]
- Cheung, A.; Kusari, J.; Jansen, D.; Bandyopadhyay, D.; Kusari, A. Bryer-Ash M., Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus. J. Lab. Clin. Med. 1999, 134, 115–123. [Google Scholar]
- Wu, X.; Hardy, V.E.; Joseph, J.I.; Jabbour, S.; Mahadev, K.; Zhu, L.; Goldstein, B.J. Protein-tyrosine phosphatase activity in human adipocytes is strongly correlated with insulin-stimulated glucose uptake and is a target of insulin-induced oxidative inhibition. Metabolism 2003, 52, 705–712. [Google Scholar] [CrossRef]
- Brown-Shimer, S.; Johnson, K.A.; Lawrence, J.B.; Johnson, C.; Bruskin, A.; Green, N.R.; Hill, D.E. Molecular cloning and chromosome mapping of the human gene encoding protein phosphotyrosyl phosphatase 1B. Proc. Natl. Acad. Sci. USA 1990, 87, 5148–5152. [Google Scholar] [CrossRef]
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
1 | 2,2′,3,3′-Tetrabromo-4,4′,5,5′-tetra-hydroxydiphenyl methane | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 2.4 μM) | [53] |
2 | 3-Bromo-4,5-Bis-(2,3-dibromo-4,5-dihydroxybenzyl)pyrocatechol | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 1.7 μM) | [53] |
3 | Bis-(2,3-dibromo-4,5-dihydroxybenzyl) ether | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 1.5 μM) α-glucosidase inhibition (IC50 = 0.098 μM) | [53] |
4 | 2,2′,3,3′-Tetrabromo-3′,4,4′,5-tetrahydroxy-6′-ethyloxymethyldiphenylmethane | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 0.8 μM) | [53] |
5 | 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-(ethoxymethyl)benzyl)benzene-1,2-diol | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 0.8 μM) | [49,50,51,52] |
6 | 3,4-Dibromo-5-(methoxymethyl)benzene-1,2-diol | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 3.4 μM) | [51,53] |
7 | 3-(2,3-Dibromo-4,5-dihydroxyphenyl)-2-methylpropanal | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 4.5 μM) | [51,53] |
8 | 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-(isobutoxymethyl)benzyl)benzene-1,2-diol | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 2.4 μM) | [51,53] |
9 | 7-Bromo-1-(2,3-dibromo-4,5-dihydroxy phenyl)-2,3-dihydro-1H-indene-5,6-diol | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 2.8 μM) | [51,53] |
10 | 5,5’-(3-Bromo-4,5-dihydroxy-1,2-phenylene)-Bis-(methylene))Bis-(3,4-dibromobenzene-1,2-diol) | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 1.7 μM) | [51,53] |
11 | 3,4-Dibromo-5-(2-bromo-3,4-dihydroxy-6-(ethoxymethyl)benzyl)benzene-1,2-diol | Red algae Rhodomela confervoides | PTP1B inhibition (IC50 = 0.84 μM) | [50,51] |
12 | 2-(3′,5′-Dibromo-2′-methoxyphenoxy)-3,5-dibromophenol | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 0.9 μM) | [45] |
13 | 2-(3′,5′-Dibromo-2′-methoxyphenoxy)-3,5-dibromophenol-methyl ether | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 1.7 μM) | [45] |
14 | 2,3,6-Tribromo-4,5-dihydroxybenzyl methyl ether | Marine red algae Symphyocladia latiuscula | PTP1B inhibition (IC50 = 3.9 µM) | [55] |
15 | Bis-(2,3,6-tribromo-4,5-dihydroxyphenyl) methane | Marine red algae Symphyocladia latiuscula | PTP1B inhibition (IC50 = 4.3 µM) | [55] |
16 | 1,2-Bis-(2,3,6-tribromo-4,5-dihydroxyphenyl)-ethane | Marine red algae Symphyocladia latiuscula | PTP1B inhibition (IC50 = 2.7 µM) | [55] |
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
17 | 3’,5’,6’,6-Tetrabromo-2,4-dimethyldiphenyl ether | Red algae Laurencia similis | PTP1B inhibition (IC50 = 3.0 μM) | [60] |
18 | 2’,5’,6’,5,6-Pentabromo-3’,4’,3,4-tetramethoxybenzo-phenone | Red algae Laurencia similis | PTP1B inhibition (IC50 = 2.7 μM) | [60] |
19 | 3’,5’,6’6-Tetrabromo-2,4-dimethyldiphenyl ether | Red algae Laurencia similis | PTP1B inhibition (IC50 = 3.0 µg/mL) | [60] |
20 | 1,2,5-Tribromo-3-bromoamino-7-bromomethylnaphthalene | Red algae Laurencia similis | PTP1B inhibition (IC50 = 102 µg/mL) | [60] |
21 | 2,5,8-Tribromo-3-bromoamino-7-bromomethylnaphthalene | Red algae Laurencia similis | PTP1B inhibition (IC50 = 65.3 µg/mL) | [60] |
22 | 2,5,6-Tribromo-3-bromoamino-7-bromomethylnaphthalene | Red algae Laurencia similis | PTP1B inhibition (IC50 = 69.8 µg/mL) | [60] |
23 | 2’,5’,6’,5,6-Pentabromo-3’,4’,3,4-tetramethoxybenzo-phenone | Red algae Laurencia similis | PTP1B inhibition (IC50 = 2.7 µg/mL) | [60] |
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
24 | 2-(3’,5’-Dibromo-2’-methoxyphenoxy)-3,5-dibromophenol | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 0.9 µM) Huh-7 inhibition (IC50 = 32 µM) | [45] |
25 | 3,5-Dibromo-2-(3’,5’-dibromo-2’-methoxyphenoxy)-1-methoxybenzene | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 1.7 µM) Huh-7 inhibition (IC50 = 48 µM) | [45] |
26 | 3,5-Dibromo-2-(3’,5’-dibromo-2’ -methoxyphenoxy)phenylethanoate | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 0.6 µM) | [45] |
27 | 3,5-Dibromo-2-(3’,5’-dibromo-2’ -methoxyphenoxy)phenylbutanoate | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 0.7 µM) | [45] |
28 | 3,5-Dibromo-2-(3’,5’-dibromo-2’ -methoxyphenoxy)phenylhexanoate | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 0.7 µM) | [45] |
29 | 3,5-Dibromo-2-(3’,5’-dibromo-2’ -methoxyphenoxy)phenyl benzoate | Indonesian marine sponge Lamellodysidea herbacea | PTP1B inhibition (IC50 = 1.0 µM) | [45] |
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
30 | Eckol | Edible brown algae Ecklonia stolonifera and Eisenia bicyclis | PTP1B inhibition (IC50 = 2.6 µM) α-glucosidase inhibition (IC50 = 22.8 µM) | [64,65] |
31 | Phlorofurofucoeckol-A | Edible brown algae Ecklonia stolonifera and Eisenia bicyclis | PTP1B inhibition (IC50 = 0.6 µM) α-glucosidase inhibition (IC50 = 1.4 µM) | [64,65] |
32 | Dieckol | Edible brown algae Ecklonia stolonifera and Eisenia bicyclis | PTP1B inhibition (IC50 = 1.2 µM) α-glucosidase inhibition (IC50 = 1.6 µM) | [64,65] |
33 | 7-Phloroeckol | Edible brown algae Ecklonia stolonifera and Eisenia bicyclis | PTP1B inhibition (IC50 = 2.1 µM) α-glucosidase inhibition (IC50 = 6.1 µM) | [65] |
34 | Phloroglucinol | Edible brown algae Ecklonia stolonifera and Eisenia bicyclis | PTP1B inhibition (IC50 = 55.5 µM) α-glucosidase inhibition (IC50 = 141.2 µM) | [65] |
35 | Dioxinodehydroeckol | Edible brown algae Ecklonia stolonifera and Eisenia bicyclis | PTP1B inhibition (IC50 = 30.0 µM) α-glucosidase inhibition (IC50 = 34.6 µM) | [65] |
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
36 | 24-Hydroperoxy-24-Vinylcholesterol | Marine invertebrates South China Sea sponge Xestospongia testudinaria Lamarck (Petrosiidae) | - | [68] |
37 | 29-Hydroperoxystigmasta-5,24(28)-dien-3-ol | Marine invertebrates South China Sea sponge Xestospongia testudinaria Lamarck (Petrosiidae) | PTP1B inhibition (IC50 = 5.8 µg/mL) | [68] |
38 | 5α,8α-Epidioxycholest-6-en-3β-ol | Sea urchin Glyptocidaris crenularis A. Agassiz (Glyptocidaridae) | - | [68] |
39 | 5α,8α-Epidioxycholest-6,22-dien-3β-ol | Sponge Mycale spp. (Mycalidae) | - | [68] |
40 | 5α,8α-Epidioxy-ergosta-6,22-dien-3β-ol | Gorgonian Dichotella gemmacea Milne Edwards and Haime (Ellisellidae) | - | [68] |
41 | 3β-Hydroxycholest-5-en-25-acetoxy-19-oate | Gorgonian Dichotella gemmacea Milne Edwards and Haime (Ellisellidae) | - | [68] |
42 | Fucosterol (24-ethylidene cholesterol) | Brown algae Eisenia bicyclis and Ecklonia stolonifera | Non-competitive type inhibitor against PTP1B | [67,68,69] |
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
43 | Dysidine | Sponge Dysidea villosa | PTP1B inhibition (IC50 = 6.7 μM) | [46,71] |
44 | Dysidavarone A | South China Sea sponge Dysidea avara | PTP1B inhibition (IC50 = 10.0 μM) | [70] |
45 | Dehydroeuryspongin A | Marine Sponge Euryspongia spp. | PTP1B inhibition (IC50 = 3.6 μM) | [72] |
46 | Sarsolilide A | Hainan soft coral Sarcophyton trocheliophorum Marenzeller | PTP1B inhibition (IC50 = 6.8 μM) | [73] |
47 | Sarsolilide B | Hainan soft coral Sarcophyton trocheliophorum Marenzeller | PTP1B inhibition (IC50 = 27.1 μM) | [73] |
48 | Methyl sarcotroates A and B | Hainan soft coral Sarcophyton trocheliophorum | PTP1B inhibition (IC50 = 7.0 μM) | [73] |
49 | 9-Oxa-2-azabicyclo-[3,3,1]-nona-3,7-diene derivative | Sponge Hippospongia lachne of Yongxing Island | PTP1B inhibition (IC50 = 5.2 μM) | [75] |
50 | 2-(Aminomethylene) hepta-3,5-dienedial moiety connected with farnesyl group at C-7 | Sponge Hippospongia lachne of Yongxing Island | PTP1B inhibition (IC50 = 8.7 μM) | [75] |
51 | Hopane-6α,22-diol | Antarctic lichen Lecidella carpathica | PTP1B inhibition (IC50 =3.7 μM) TCPTP inhibition (IC50 = 8.4 μM) SHP-2 inhibition (IC50 > 68 μM) LAR inhibition (IC50 > 68 μM) CD45 inhibition (IC50 > 68 μM) | [76] |
52 | Stellettin G | Hainan sponge Stelletta spp. | PTP1B inhibition (IC50 = 4.1 μM) | [77] |
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
53 | Fructigenine A | Marine-derived fungal strains Penicillium and Eurotium species | PTP1B inhibition (IC50 = 10.7 µM) | [80] |
54 | Cyclopenol | Marine-derived fungal strains Penicillium and Eurotium species | PTP1B inhibition (IC50 = 30.0 µM) | [80] |
55 | Echinulin | Marine-derived fungal strains Penicillium and Eurotium species | PTP1B inhibition (IC50 = 29.4 µM) | [80] |
56 | Flavoglaucin | Marine-derived fungal strains Penicillium and Eurotium species | PTP1B inhibition (IC50 = 13.4 µM) | [80] |
57 | Viridicatol | Marine-derived fungal strains Penicillium and Eurotium species | PTP1B inhibition (IC50 = 64.0 µM) | [80] |
58 | Penstyrylpyrone | Marine-derived fungi Penicillium JF-55 cultures | PTP1B inhibition (IC50 = 5.3 μM) | [82] |
59 | Anhydrofulvic acid | Marine-derived fungi Penicillium JF-55 cultures | PTP1B inhibition (IC50 = 1.9 μM) | [82] |
60 | Aquastatin A | Fungus Cosmospora species | PTP1B inhibition (IC50 = 0.2 μM), as well as inhibition of TCPTP, SHP-2, LAR, and CD45 activity | [81,82] |
No. | Compound/Structure | Marine Species | Outcomes/Enzymes | Reference |
---|---|---|---|---|
61 | Fucoxanthin | Phaeodactylum tricornutum, Eisenia bicyclis (Arame), Undaria pinnatifida (Wakame), and Hi-jikia fusiformis (Hijiki) | PTP1B inhibition (IC50 = 4.8 μM) | [83,84,85] |
62 | Brialmontin 1 | Antarctic lichen Lecidella carpathica | PTP1B inhibition (IC50 =14 μM) | [76] |
63 | Atraric acid | Antarctic lichen Lecidella carpathica | PTP1B inhibition (IC50 = 51.5 μM) | [76] |
64 | Saragahydroquinoic acid | Brown algae Sargassum serratifolium C. Agardh | PTP1B inhibition (IC50 = 5.14 μM) | [89] |
65 | Saragaquinoic acid | Brown algae Sargassum serratifolium C. Agardh | PTP1B inhibition (IC50 = 14.15 μM) | [89] |
66 | Sargachromenol | Brown algae Sargassum serratifolium C. Agardh | PTP1B inhibition (IC50 = 11.80 μM) | [89] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ezzat, S.M.; Bishbishy, M.H.E.; Habtemariam, S.; Salehi, B.; Sharifi-Rad, M.; Martins, N.; Sharifi-Rad, J. Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors. Molecules 2018, 23, 3334. https://doi.org/10.3390/molecules23123334
Ezzat SM, Bishbishy MHE, Habtemariam S, Salehi B, Sharifi-Rad M, Martins N, Sharifi-Rad J. Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors. Molecules. 2018; 23(12):3334. https://doi.org/10.3390/molecules23123334
Chicago/Turabian StyleEzzat, Shahira M., Mahitab H. El Bishbishy, Solomon Habtemariam, Bahare Salehi, Mehdi Sharifi-Rad, Natália Martins, and Javad Sharifi-Rad. 2018. "Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors" Molecules 23, no. 12: 3334. https://doi.org/10.3390/molecules23123334
APA StyleEzzat, S. M., Bishbishy, M. H. E., Habtemariam, S., Salehi, B., Sharifi-Rad, M., Martins, N., & Sharifi-Rad, J. (2018). Looking at Marine-Derived Bioactive Molecules as Upcoming Anti-Diabetic Agents: A Special Emphasis on PTP1B Inhibitors. Molecules, 23(12), 3334. https://doi.org/10.3390/molecules23123334