Nano/Mesoporous Carbon from Rice Starch for Voltammetric Detection of Ascorbic Acid
Abstract
:1. Introduction
2. Experimental
2.1. Synthesis of the Hard Mesoporous SBA15 Silica Nano-Template
2.1.1. Synthesis of Nano/Mesoporous Carbon (RSNMC) from Rice Starch
2.1.2. Electrode Preparation and Electrochemical Measurements
2.1.3. Characterization
3. Results and Discussion
4. Electrochemical Behavior of RSNMC
5. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Foley, H.C. Carbogenic Molecular Sieves: Synthesis, Properties and Applications. Microporous Mater. 1995, 4, 407–433. [Google Scholar] [CrossRef]
- Lars, B.; Zhu, Q.L.; Csco, M.E.; Berger, R.; Xiaodong, Z.; Kaskel, S.; Feng, X.; Xu, Q. Toward a Molecular Design of Porous Carbon Materials. Mater. Today 2017, 20, 592–610. [Google Scholar]
- Yang, C.M.; Weidenthaler, C.; Spliethoff, B.; Mayanna, M.; Schuth, F. Facile Template Synthesis of Ordered Mesoporous Carbon with Polypyrrole as Carbon Precursor. Chem. Mater. 2005, 17, 355–358. [Google Scholar] [CrossRef]
- Zhang, W.H.; Liang, C.; Sun, H.; Shen, Z.; Guan, Y.; Ying, P.; Li, C. Synthesis of Ordered Mesoporous Carbons Composed of Nanotubes via Catalytic Chemical Vapor Deposition. Adv. Mater. 2002, 14, 1776–1778. [Google Scholar] [CrossRef]
- Shiori, K.; Cakan, R.D.; Zhao, Li.; White, R.J.; Titirici, M.M. Porous Carbohydrate-Based Materials via Hard Templating. ChemSusChem 2010, 3, 188–194. [Google Scholar]
- Bo, H.; Wang, K.; Wu, L.; Yu, S.H.; Antonietti, M.; Titirici, M.M. Engineering Carbon Materials from the Hydrothermal Carbonization Process of Biomass. Adv. Mater. 2010, 22, 813–828. [Google Scholar]
- Qian, H.S.; Yu, S.H.; Luo, L.B.; Gong, J.Y.; Fei, L.F.; Liu, X.M. Synthesis of Uniform Te@Carbon-Rich Composite Nanocables with Photoluminescence Properties and Carbonaceous Nanofibers by the Hydrothermal Carbonization of Glucose. Chem. Mater. 2006, 18, 2102–2108. [Google Scholar] [CrossRef]
- Jie, L.F.; Qin, L.; Zhang, K.; Zhang, Q.; Li, Y.; Lai, Z.; Zhang, J.; Fang, J. Mesoporous Carbon from Biomass: One-pot Synthesis and Application for Li–S Batteries. J. Mater. Chem. A 2014, 2, 13916–13922. [Google Scholar]
- Liu, R.L.; Yin, F.Y.; Zhang, J.F.; Jing, Z.; Zhang, J.; Zhang, Z.Q. Intestine-like Micro/Mesoporous Carbon Built of Chemically Modified Banana Peel for Size-Selective Separation of Proteins. RSC Adv. 2014, 4, 21465–21470. [Google Scholar] [CrossRef]
- Davies, M.B.; Austin, J.; Partridge, D.A. Vitamin C: Its Chemistry and Biochemistry; The Royal Society of Chemistry: Cambridge, UK, 1991. [Google Scholar]
- Klebanoff, S.; Dziewiatkowski, D.; Okinaka, G. The effect of Ascorbic Oxidation on the Incorporation of Sulfate by Slices of Calf Costal Cartilage. J. Gen. Physiol. 1958, 42, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Eipper, B.A.; Mains, R.E.; Glembotski, C.C. Identification in Pituitary Tissue of a Peptide a-Amidation Activity that Acts on Glycine-extended Peptides and Requires Molecular Oxygen, Copper, and Ascorbic Acid. Proc. Natl. Acad. Sci. USA 1983, 80, 5144–5148. [Google Scholar] [CrossRef] [PubMed]
- Ganchimeg, P.; Tan, W.T.; Yusof, N.A.; Goh, J.K. Voltammetric Oxidation of Ascorbic Acid Mediated by Multi-Walled Carbon Nanotubes/Titanium Dioxide Composite Modified Glassy Carbon Electrode. J. Appl. Sci. 2011, 11, 848–854. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wang, Q.L.; Mao, L.Y.; Cai, R.X. Highly Sensitive Spectrofluorimetric Determination of Ascorbic Acid Based on its Enhancement Effect on a Mimetic Enzyme-catalyzed Reaction. Anal. Chim. Acta 2000, 413, 167–173. [Google Scholar] [CrossRef]
- Ruiz, T.P.; Lozano, C.M.; Tomas, V.; Fenol, J. Fluorimetric Determination of Total Ascorbic Acid by a Stopped-flow Mixing Technique. Analyst 2001, 126, 1436–1439. [Google Scholar] [CrossRef]
- Janghel, E.K.; Sar, S.; Pervez, Y. A New Method for Determination of Ascorbic Acid in Fruit Juices, Pharmaceuticals and Biological Samples. J. Sci. Ind. Res. 2012, 71, 549–555. [Google Scholar]
- Tortajada-Genaro, L.A. Determination of L-ascorbic Acid in Tomato by Capillary Electrophoresis. J. Chem. Educ. 2012, 89, 1194–1197. [Google Scholar] [CrossRef]
- Filik, H.; Aksu, D.; Giray, D.; Pak, R. Colourimetric Solid-phase Extraction Coupled with Fibre Optic Reflectance Spectroscopy for Determination of Ascorbic Acid in Pharmaceutical Formulations. Drug Test Anal. 2012, 4, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Koblova, P.; Sklenarova, H.; Brabcova, H.; Solich, P. Development and Validation of a Rapid HPLC Method for the Determination of Ascorbic Acid, Phenylephrine, Paracetamol and Caffeine Using a Monolithic Column. Anal. Method 2012, 4, 1588–1591. [Google Scholar] [CrossRef]
- Otero, R.L.S.; Galvao, R.K.H.; Araujo, M.C.U.; Cavalheiro, E.T.G. Thermogravimetric Determination of L-ascorbic Acid in Non-effervescent Formulations Using Multiple Linear Regression with Temperature Selection by the Successive Projections Algorithm. Thermochim. Acta 2011, 526, 200–204. [Google Scholar] [CrossRef]
- Maki, T.; Soh, N.; Nakano, K.; Imato, T. Flow Injection Fluorometric Determination of Ascorbic Acid Using Perylenebisimide-linked Nitroxide. Talanta 2011, 85, 1730–1733. [Google Scholar] [CrossRef] [PubMed]
- Zen, J.M.; Tsai, D.M.; Kumar, A.S.; Dharuman, V. Amperometric Determination of Ascorbic Acid at a Ferricyanide-doped Tosflex-modified Electrode. Electrochem. Commun. 2000, 2, 782–785. [Google Scholar] [CrossRef]
- Manoj, D.; Satheesh, D.; Santhanalakshmi, J. Reactive Template Method for the Synthesis of Pd Nanoparticles Supported PoPd Hollow Spheres for Electrochemical Oxidation of Ascorbic Acid. Trans. Indian Inst. Met. 2011, 64, 195–198. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, Y.; Zhan, D.; Hui, H.; Zhao, Q.; Kou, Y.; Shao, Y.; Li, M.; Zhuang, Q.; Zhu, Z. Selective Detection of Dopamine in the Presence of Ascorbic Acid and Uric Acid by a Carbon Nanotubes-ionic Liquid Gel Modified Electrode. Talanta 2005, 66, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.G.; Wang, W.L.; Feng, B.; Wang, H. Simultaneous Measurement of Dopamine and Ascorbic Acid at CNT Electrode. Int. J. Mod. Phys. B 2005, 19, 607–610. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Li, X.; Wang, C.G.; Zhang, C.C.; Liu, P.; Fang, T.T.; Xiong, Y.; Xu, W.J. A Novel Dinuclear Schiff-base copper(II) Complex Modified Electrode for Ascorbic Acid Catalytic Oxidation and Determination. Dalton Trans. 2012, 41, 1252–1258. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.D.D.; Lopes, C.B.; Kubota, L.T.; Lima, P.R.; Goulart, M.O.F. Poly-xanthurenic acid Modified Electrodes: An Amperometric Sensor for the Simultaneous Determination of Ascorbic and Uric Acids. Sens. Actuator B 2012, 168, 289–296. [Google Scholar] [CrossRef]
- Koh, K.S.; Tan, W.T.; Zainal, Z.; Zawawi, R.M.; Zidan, M. Voltammetry Detection of Ascorbic Acid at Glassy Carbon Electrode Modified by Single-Walled Carbon Nanotube/Zinc Oxide. Int. J. Electrochem. Sci. 2013, 8, 10557–10567. [Google Scholar]
- Helia, H.; Sattarahmadya, N. Amperometric Determination of Ascorbic Acid in Pharmaceutical Formulations by a Reduced Graphene Oxide-cobalt Hexacyanoferrate Nanocomposite. Iran. J. Pharm. Res. 2015, 14, 453–463. [Google Scholar]
- Wahab, M.A.; Darain, F.; Karim, M.A.; Beltramini, J.N. Nano-confined Synthesis of Highly Ordered Mesoporous Carbon and its Performance as Electrode Material for Electrochemical Behaviour of Riboflavin (Vitamin B2) and Dopamine. Int. J. Electrochem. Sci. 2015, 10, 7732–7742. [Google Scholar]
- Wahab, M.A.; David, J.Y.; Karim, A.; Fawzia, S.; Beltramini, J.N. Low-temperature Hydrogen Desorption from Mg(BH4)2 Catalysed by Ultrafine Ni Nanoparticles in a Mesoporous Carbon Matrix. Intern. J. Hydrog. Energy 2016, 41, 20573–20582. [Google Scholar] [CrossRef]
- Wahab, M.A.; Jia, Y.; Yang, D.; Zhao, H.; Yao, X.D. Enhanced Hydrogen Desorption from Mg(BH4)2 by Combining Nanoconfinement and a Ni Catalyst. J. Mater. Chem. A 2013, 1, 3471–3478. [Google Scholar] [CrossRef]
- Wahab, M.A.; Beltramini, J.N. Catalytic Nanoconfinement Effect of In-situ Synthesized Ni-containing Mesoporous Carbon Scaffold (Ni-MCS) on the hydrogen Storage Properties of LiAlH4. Intern. J. Hydrog. Energy 2014, 39, 1828–18290. [Google Scholar] [CrossRef]
- Dhawale, D.S.; Benzigar, M.R.; Wahab, M.A.; Anand, C.; Varghese, S.; Balasubramanian, V.V.; Aldeyab, S.S.; Ariga, K.; Vinu, A. Fine Tuning of the Supercapacitive Performance of Nanoporous Carbon Electrodes with Different Pore Diameters. Electrochim. Acta 2012, 77, 256–261. [Google Scholar] [CrossRef]
- Wahab, M.A.; Darain, F. Nano-hard Template Synthesis of Pure Mesoporous NiO and its Application for Streptavidin Protein Immobilization. Nanotechnology 2014, 25, 165701–165707. [Google Scholar] [CrossRef] [PubMed]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Wahab, M.A.; Imae, I.; Kawakami, Y.; Ha, C.S. Periodic Mesoporous Organosilica Materials Incorporating Various Organic Functional Groups: Synthesis, Structural Characterization, and Morphology. Chem. Mater. 2005, 17, 2165–2174. [Google Scholar] [CrossRef]
- Wahab, M.A.; Ha, C.S. Ruthenium-functionalised Hybrid Periodic Mesoporous Organosilicas: Synthesis and Structural Characterization. J. Mater. Chem. 2005, 15, 508–516. [Google Scholar] [CrossRef]
- Hsua, S.C.; Cheng, H.T.; Wu, P.X.; Weng, C.J.; Santiago, K.S.; Yeh, J.M. Electrochemical Sensor Constructed Using a Carbon Paste Electrode Modified with Mesoporous Silica Encapsulating PANI Chains Decorated with GNPs for Detection of Ascorbic Acid. Electrochim. Acta 2017, 238, 246–256. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H.; Wang, G.; Liu, L.; Yu, Y.; Chen, A. Preparation of Mesoporous Carbon from Biomass for Heavy Metal Ion Adsorption. Fuller. Nanotub. Carbon Nanostruct. 2017, 25, 102–108. [Google Scholar] [CrossRef]
- Titirici, M.M.; Antonietti, M.; Baccile, N. Hydrothermal Carbon from Biomass: A Comparison of the Local Structure from Poly- to Monosaccharides and Pentoses/hexoses. Green Chem. 2008, 10, 1204–1212. [Google Scholar] [CrossRef]
- Yu, L.; Falco, C.; Weber, J.; White, R.J.; Howe, J.Y.; Titirici, M.M. Carbohydrate-Derived Hydrothermal Carbons: A Thorough Characterization Study. Langmuir 2012, 28, 12373–12383. [Google Scholar] [CrossRef] [PubMed]
- Falco, C.P.; Caballero, F.; Babonneau, F.; Gervais, C.; Laurent, G.; Titirici, M.M.; Baccile, N. Hydrothermal Carbon from Biomass: Structural Differences between Hydrothermal and Pyrolyzed Carbons via 13C Solid State NMR. Langmuir 2011, 27, 14460–14471. [Google Scholar] [CrossRef] [PubMed]
- Bard, A.; Faulkner, L.R. Electrochemical Methods—Fundamentals and Application; Wiley: New York, NY, USA, 2000. [Google Scholar]
Sample Availability: Not Available. |
Sample | BET Surface (m2/g) | Pore Size (nm) | Pore Volume (cm3/g) |
---|---|---|---|
SBA15 silica template | 915 | 9.15 | 1.12 |
RSNMC | 488 | 3.92 | 1.14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wahab, M.A.; Darain, F.; Islam, N.; Young, D.J. Nano/Mesoporous Carbon from Rice Starch for Voltammetric Detection of Ascorbic Acid. Molecules 2018, 23, 234. https://doi.org/10.3390/molecules23020234
Wahab MA, Darain F, Islam N, Young DJ. Nano/Mesoporous Carbon from Rice Starch for Voltammetric Detection of Ascorbic Acid. Molecules. 2018; 23(2):234. https://doi.org/10.3390/molecules23020234
Chicago/Turabian StyleWahab, Mohammad A., Farzana Darain, Nazrul Islam, and David James Young. 2018. "Nano/Mesoporous Carbon from Rice Starch for Voltammetric Detection of Ascorbic Acid" Molecules 23, no. 2: 234. https://doi.org/10.3390/molecules23020234
APA StyleWahab, M. A., Darain, F., Islam, N., & Young, D. J. (2018). Nano/Mesoporous Carbon from Rice Starch for Voltammetric Detection of Ascorbic Acid. Molecules, 23(2), 234. https://doi.org/10.3390/molecules23020234