Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Pharmacology
2.2.1. In Vitro Pharmacological Studies
H3 Antagonistic Activity for Compounds 2a–c and 3a–f
H1 Antagonistic Activity for Compounds 3a, and 3d
2.2.2. Histamine H3 Receptor Affinity
Saturation of Rat and Human H3 Receptors
Competitive Binding of H3 Receptor Ligands
2.2.3. Verification of In Vivo Activity of Compound ADS-531
3. Conclusions
4. Experimental Section
4.1. General Information
4.2. Chemistry
4.2.1. General Procedure for the Preparation of Compounds 5a,b
4.2.2. General Procedure for the Preparation of Compounds 6a,b
4.2.3. General Procedure for the Preparation of Compounds 7a,b
4.2.4. General Procedure for the Preparation of Compounds 9a,b
4.2.5. General Procedure for the Preparation of Compounds 10a,b
4.2.6. General Procedure for the Preparation of Compounds 11a,b
4.2.7. General Procedure for the Preparation of Compounds 12a,b
4.2.8. General Procedure for the Preparation of Compounds 3a–f
4.3. In Vitro Pharmacology
4.3.1. H3 Antagonistic Activity for Compounds 3a–f
4.3.2. H1 Antagonistic Activity for Compounds 3a,d
4.3.3. Antagonist Binding to the Rat rH3R and Human hH3R
Cell Culture and Transfection
Crude Membrane Extracts
[3H]-Nα-methylhistamine Binding
Chemicals
Verification of In Vivo Activity of Compound ADS-531
4.4. Post-Mortem Biochemical Analyses
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brown, R.E.; Stevens, D.R.; Haas, H.L. The physiology of brain histamine. Prog. Neurobiol. 2001, 63, 637–672. [Google Scholar] [CrossRef]
- Martinez-Mir, M.I.; Pollard, H.; Moreau, J.; Arrang, J.-M.; Ruat, M.; Traiffort, E.; Schwartz, J.-C.; Palacios, J.M. Three histamine receptors (H1, H2, and H3) visualized in the brain of human and non-human primates. Brain Res. 1990, 526, 322–327. [Google Scholar] [CrossRef]
- Pollard, H.; Moreau, J.; Arrang, J.-M.; Schwartz, J.-C. A detailed autoradiographic mapping of histamine H3 receptors in rat brain areas. Neuroscience 1993, 52, 169–189. [Google Scholar] [CrossRef]
- Arrang, J.-M.; Garbarg, M.; Schwartz, J.-C. Auto-inhibition of brain histamine release mediated by a novel class (H3) of histamine receptor. Nature 1983, 302, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Blandina, P.; Giorgetti, M.; Bartolini, L.; Cecchi, M.; Timmerman, H.; Leurs, R.; Pepeu, G.; Giovannini, M.G. Inhibition of cortical acetylcholine release and cognitive performance by histamine H3 receptor activation in rats. Br. J. Pharmacol. 1996, 119, 1656–1664. [Google Scholar] [CrossRef] [PubMed]
- Schlicker, E.; Behling, A.; Lümmen, G.; Göthert, M. Histamine H3A-receptor-mediated inhibition of noradrenaline release in the mouse brain cortex. Naunyn Schmiedebergs Arch. Pharmacol. 1992, 345, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Schlicker, E.; Malinowska, B.; Kathmann, M.; Gothert, M. Intermediate affinity, and potency of clozapine and low affinity of other neuroleptics and of antidepressants at H3 receptors. Fund. Clin. Pharmacol. 1994, 8, 128–137. [Google Scholar] [CrossRef]
- Passani, M.B.; Cangioli, I.; Bocciottini, L.; Mannaioni, P.F. Thioperamide, and cimetidine modulate acetylcholine release from the amygdala of freely moving rats. Inflamm. Res. 2000, 49, S43–S44. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Imaizumi, M.; Onodera, K. Effects of thioperamide, a histamine H3-receptor antagonist, on a scopolamine-induced learning deficit using an elevated plus-maze test in mice. Life Sci. 1995, 57, 2137–2144. [Google Scholar] [CrossRef]
- Pillot, C.; Ortiz, J.; Héron, A.; Ridray, S.; Schwartz, J.-C.; Arrang, J.-M. Ciproxifan, a Histamine H3-Receptor Antagonist/Inverse Agonist, Potentiates Neurochemical and Behavioral Effects of Haloperidol in the Rat. J. Neurosci. 2002, 22, 7272–7280. [Google Scholar] [PubMed]
- Takahashi, K.; Suwa, H.; Ishikawa, T.; Kotani, H. Targeted disruption of H3 receptors results in changes in brain histamine tone leading to an obese phenotype. J. Clin. Investig. 2002, 110, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- Stark, H.; Kathmann, M.; Schlicker, E.; Schunack, W.; Schlegel, B.; Sippl, W. Medicinal chemical and pharmacological aspects of imidazole-containing histamine H3 receptor antagonists. Mini-Rev. Med. Chem. 2004, 4, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Arrang, J.-M.; Garbarg, M.; Lancelot, J.-C.; Lecomte, J.-M.; Pollard, H.; Robba, M.; Schunack, W.; Schwartz, J.-C. Highly potent and selective ligands for histamine H3-receptors. Nature 1987, 327, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Van der Goot, H.; Schepers, M. J-P.; Sterk, G.-J.; Timmerman, H. Isothiourea analogues of histamine as potent agonists or antagonists of the histamine H3-receptor. Eur. J. Med. Chem. 1992, 27, 511–517. [Google Scholar] [CrossRef]
- Van der Goot, H.; Timmerman, H. Selective ligands as tools to study histamine receptors. Eur. J. Med. Chem. 2000, 35, 5–20. [Google Scholar] [CrossRef]
- Liedtke, S.; Flau, K.; Kathmann, M.; Schlicker, E.; Stark, H.; Meier, G.; Schunack, W. Replacement of imidazole by a piperidine moiety differentially affects the potency of histamine H3-receptor antagonists. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2003, 367, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Chadha, H.S.; Abraham, M.A.; Mitchel, R.C. Physicochemical analysis of the factors governing distribution of solutes between blood and brain. Bioorg. Med. Chem. Lett. 1994, 4, 2511–2516. [Google Scholar] [CrossRef]
- Stephanos, J.J. Drug-Protein Interactions. Two-Site Binding of Heterocyclic Ligands to a Monomeric Hemoglobin. J. Inorg. Biochem. 1996, 62, 155–169. [Google Scholar] [CrossRef]
- Zhang, M.; Ballard, M.E.; Pan, L.; Roberts, S.; Faghih, R.; Cowart, T.A.; Esbenshade, G.B.; Fox, M.; Decker, M.W.; Hancock, A.A.; et al. Lack of cataleptogenic potentiation with non-imidazole H3 receptor antagonists reveals potential drug-drug interactions between imidazole-based H3 receptor antagonists and antipsychotic drugs. Brain Res. 2005, 1045, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Lovenberg, T.W.; Roland, B.L.; Wilson, S.J.; Jiang, X.; Pyati, J.; Huvar, A.; Jackson, M.R.; Erlander, M.G. Cloning and functional expression of the human histamine H3 receptor. Mol. Pharmacol. 1999, 55, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Celanire, S.; Wijtmans, M.; Talaga, P.; Leurs, R.; de Esch, I.J.P. Keynote review: Histamine H3 receptor antagonists reach out for the clinic. Drug Discov. Today 2005, 10, 1613–1627. [Google Scholar] [CrossRef]
- Leurs, R.; Bakker, R.A.; Timmerman, H.; de Esch, I.J.P. The histamine H3 receptor: From gene cloning to H3 receptor drugs. Nat. Rev. Drug Discov. 2005, 4, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Denonne, F.; Atienzar, F.; Célanire, S.; Christophe, B.; Delannois, F.; Delaunoy, C.; Delporte, M.-L.; Durieu, V.; Gillard, M.; Lallemand, B.; et al. Phenyl-oxazoles, a new family of inverse agonists at the H(3) histamine receptor. ChemMedChem 2010, 5, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Rao, A.U.; Palani, A.; Chen, X.; Huang, Y.; Aslanian, R.G.; West, R.E.; Williams, M.S., Jr.; Wu, R.-L.; Hwa, J.; Sondey, C.; et al. Synthesis and structure-activity relationships of 2-(1,4′-bipiperidin-1′-yl)thiazolopyridine as H3 receptor antagonists. Bioorg. Med. Chem. Lett. 2009, 19, 6176–6180. [Google Scholar] [CrossRef] [PubMed]
- Sander, K.; von Coburg, Y.; Camelin, J.-C.; Ligneau, X.; Rau, O.; Schubert-Zsilavecz, M.; Schwartz, J.-C.; Stark, H. Acidic elements in histamine H(3) receptor antagonists. Bioorg. Med. Chem. Lett. 2010, 20, 1581–1584. [Google Scholar] [CrossRef] [PubMed]
- Esbenshade, T.A.; Fox, C.B.; Cowart, M.D. Histamine H3 Receptor Antagonists: Preclinical Promise for Treating Obesity and Cognitive Disorders. Mol. Interv. 2006, 6, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Gemkov, M.J.; Davenport, A.J.; Harich, S.; Ellenbroek, B.A.; Cesura, A.; Hallett, A. The histamine H3 receptor as a therapeutic drug target for CNS disorders. Drug Discov. Today 2009, 14, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Kuhne, S.; Wijtmans, M.; Lim, H.D.; Leurs, R.; de Esch, I.J.P. Several down, a few to go: Histamine H3 receptor ligands making the final push towards the market? Expert Opin. Investig. Drugs 2011, 20, 1629–1648. [Google Scholar] [CrossRef] [PubMed]
- Berlin, M.; Boyce, C.W.; De Lera Ruiz, M. Histamine H3 Receptor as a Drug Discovery Target. J. Med. Chem. 2011, 54, 26–53. [Google Scholar] [CrossRef] [PubMed]
- Ligneau, X.; Perrin, D.; Landais, L.; Camelin, J.C.; Calmels, T.P.; Berrebi-Bertrand, I.; Lecomte, J.M.; Parmentrier, R.; Anaclet, C.; Lin, J.S.; et al. BF2.649 [1-{3-[3-(4-Chlorophenyl)propoxy]propyl}piperidine, Hydrochloride], a Nonimidazole Inverse Agonist/Antagonist at the Human Histamine H3 Receptor: Preclinical Pharmacology. J. Pharmacol. Exp. Ther. 2007, 320, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Frymarkiewicz, A.; Walczyński, K. Non-imidazole histamine H3 ligands, Part IV: SAR of 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine derivatives. Eur. J. Med. Chem. 2009, 44, 1674–1681. [Google Scholar] [CrossRef] [PubMed]
- Guryn, R.; Staszewski, M.; Walczyński, K. Non-imidazole histamine H3 ligands: Part V. synthesis and preliminary pharmacological investigation of 1-[2-thiazol-4-yl- and 1-[2-thiazol-5-yl-(2-aminoethyl)]-4-n-propylpiperazine derivatives. Med. Chem. Res. 2013, 22, 3640–3652. [Google Scholar] [CrossRef] [PubMed]
- Vollinga, R.C.; Zuiderveld, O.P.; Scheerens, H.; Bast, A.; Timmerman, H. A simple and rapid in vitro test system for the screening of histamine H3 ligands. Methods Find. Exp. Clin. Pharmacol. 1992, 105, 747–751. [Google Scholar]
- Arunlakshana, O.; Schild, H.O. Some quantitative uses of drug antagonists. Br. J. Pharmacol. 1959, 14, 48–55. [Google Scholar] [CrossRef]
- Bongers, G.; Sallmen, T.; Passani, M.B.; Mariottini, C.; Wendelin, D.; Lozada, A.; van Marle, A.; Navis, M.; Blandina, P.; Bakker, R.A.; et al. The Akt/GSK-3b axis as a new signaling pathway of the histamine H3 receptor. J. Neurochem. 2007, 103, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Clineschmidt, B.V.; Lotti, V.J. Histamine: Intraventricular injection suppresses ingestive behavior of the cat. Arch. Int. Pharmacodyn. Ther. 1973, 206, 288–298. [Google Scholar] [PubMed]
- Lecklin, A.; Etu-Seppälä, P.; Stark, H.; Tuomisto, L. Effects of intracerebroventricularly infused histamine and selective H1, H2 and H3 agonists on food and water intake and urine flow in Wistar rats. Brain Res. 1998, 793, 279–288. [Google Scholar] [CrossRef]
- Masaki, T.; Chiba, S.; Yasuda, T.; Noguchi, H.; Kakuma, T.; Watanabe, T.; Yoshimatsu, H. Involvement of hypothalamic histamine H1 receptor in the regulation of feeding rhythm and obesity. Diabetes 2004, 53, 2250–2260. [Google Scholar] [CrossRef] [PubMed]
- Provensi, G.; Blandina, P.; Passani, M.B. The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 2016, 106, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Ligneau, X.; Lin, J.S.; Vanni-Mercier, G.; Jouvet, M.; Muir, J.L.; Ganellin, C.R.; Stark, H.; Elz, S.; Schunack, W.; Schwartz, J.-C. Neurochemical and Behavioral Effects of Ciproxifan, a Potent Histamine H3-Receptor Antagonist. JPET 1998, 297, 658–666. [Google Scholar]
- Fink, K.B.; Göthert, M. 5-HT receptor regulation of neurotransmitter release. Pharmacol. Rev. 2007, 59, 360–417. [Google Scholar] [CrossRef] [PubMed]
- Glowinski, J.; Iversen, L.L. Regional studies of catecholamines in the rat Brain-I. The disposition of [3H]norepinephrine, [3H]dopamine and [3H]dopa in various region of the brain. J. Neurochem. 1966, 13, 655–669. [Google Scholar] [CrossRef] [PubMed]
- Taylor, K.M.; Snyder, S.H. Isotopic microassay of histamine, histidine, histidine decarboxylase and histamine methyltransferase in brain tissue. J. Neurochem. 1972, 19, 1343–1358. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.J.; Tipton, K.F. The Concentration dependence of the oxidation of tyramine by the two forms of rat liver mitochondrial monoamine oxidase. Biochem. Pharmacol. 1981, 30, 3329–3332. [Google Scholar] [CrossRef]
- Gómez, N.; Balsa, D.; Unzeta, M. A comparative study of some kinetic and molecular properties of microsomal and mitochondrial monoamine oxidase. Biochem. Pharmacol. 1988, 37, 3407–3413. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Cpd. | Code Cpd. | m | n | pA2 (SEM) | pA2 (SEM) | ||
---|---|---|---|---|---|---|---|
H3 | N (Caviae) | H1 | N (Caviae) | ||||
2a [31] | ADS-529 | 2 | 1 | 7.76 (0.06) | 18 (5) | NA | |
2b [32] | ADS-530 | 2 | 2 | 7.61 (0.06) | 9 (3) | NA | |
2c [31] | ADS-531 | 2 | 3 | 8.27 (0.05) | 20 (6) | NA | |
3a | ADS-562 | 3 | 1 | 8.38 (0.02) | 15 (5) | 5.5 (0.11) | 9 (3) |
3b | ADS-563 | 3 | 2 | 7.81 (0.10) | 12 (4) | NT | |
3c | ADS-564 | 3 | 3 | 7.46 (0.11) | 12 (4) | NT | |
3d | ADS-565 | 4 | 1 | 7.95 (0.10) | 12 (4) | 6.25 (0.13) | 9 (3) |
3e | ADS-566 | 4 | 2 | 7.97 (0.03) | 12 (4) | NT | |
3f | ADS-567 | 4 | 3 | 7.91 (0.12) | 12 (4) | NT |
Group | MAO-A | MAO-B | HNMT | |
---|---|---|---|---|
pmol/min/mg protein | pmol/min/mg protein | |||
CTX | CTX | CTX | HTH | |
ADS-531 | 1625 ± 49.99 | 1044 ± 38.91 | 48.19 ± 0.47 | 37.58 ± 2.42 |
Ciproxifan | 1654 ± 31.42 | 1049 ± 56.16 | 46.90 ± 3.59 | 44.68 ± 5.50 |
Control | 1506 ± 29.42 | 1054 ± 19.31 | 45.97 ± 1.28 | 34.33 ± 3.18 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guryn, R.; Staszewski, M.; Stasiak, A.; McNaught Flores, D.; Fogel, W.A.; Leurs, R.; Walczyński, K. Non-Imidazole Histamine H3 Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines. Molecules 2018, 23, 326. https://doi.org/10.3390/molecules23020326
Guryn R, Staszewski M, Stasiak A, McNaught Flores D, Fogel WA, Leurs R, Walczyński K. Non-Imidazole Histamine H3 Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines. Molecules. 2018; 23(2):326. https://doi.org/10.3390/molecules23020326
Chicago/Turabian StyleGuryn, Roman, Marek Staszewski, Anna Stasiak, Daniel McNaught Flores, Wiesława Agnieszka Fogel, Rob Leurs, and Krzysztof Walczyński. 2018. "Non-Imidazole Histamine H3 Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines" Molecules 23, no. 2: 326. https://doi.org/10.3390/molecules23020326
APA StyleGuryn, R., Staszewski, M., Stasiak, A., McNaught Flores, D., Fogel, W. A., Leurs, R., & Walczyński, K. (2018). Non-Imidazole Histamine H3 Ligands. Part VII. Synthesis, In Vitro and In Vivo Characterization of 5-Substituted-2-thiazol-4-n-propylpiperazines. Molecules, 23(2), 326. https://doi.org/10.3390/molecules23020326