Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources
Abstract
:1. Introduction
2. Aptasensors and Their Applications for Detecting Low Molecular Weight Pollutants in Water Sources
2.1. Types of Aptasensors
2.1.1. Fluorescence-Based Aptasensors
2.1.2. Colorimetric Aptasensors
2.1.3. Electrochemical Aptasensors
2.1.4. Some Other Portable Aptasensors
2.2. Applications of Aptasensors in Detection of Low Molecular Weight Pollutants in Water Sources
2.2.1. Detection of Heavy Metal Ions in Water Sources
2.2.2. Detection of Low Molecular Weight Toxins in Water Samples
2.2.3. Monitoring of Endocrine Disrupting Chemicals in Water Samples
2.2.4. Detection of Drugs in Water Samples
2.2.5. Monitoring of Pesticides in Water Samples
2.2.6. Other Compounds in Water Sources
3. Conclusions and Perspectives
- (1)
- Generate the aptamers with higher affinity for low weight molecules by modification of SELEX process and truncations of the original aptamers.
- (2)
- Highly sensitive and selective analyses by developing more powerful signal amplification methods.
- (3)
- On-site, long-period, remote monitoring and real-time analyses in water samples.
- (4)
- Ultrafast, simple, label-free, cost-effective and multiplex analyses of complex water samples.
- (5)
- Portable analyses through integration to miniaturized sensor elements.
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviation
References
- Adegbola, G.M.; Eniola, K.I.T.; Opasola, O.A. Isolation and identification of indigenous hydrocarbon tolerant bacteria from soil contaminated with used engine oil in Ogbomoso, Nigeria. Adv. Appl. Sci. Res. 2014, 5, 420–422. [Google Scholar]
- Tan, S.Y.; Praveena, S.M.; Abidin, E.Z.; Cheema, M.S. A review of heavy metals in indoor dust and its human health-risk implications. Rev. Environ. Health 2016, 31, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Dong, S.; Wang, H.; Tao, S.; Kiyama, R. Biological impact of environmental polycyclic aromatic hydrocarbons (epahs) as endocrine disruptors. Environ. Pollut. 2016, 213, 809–824. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, F.; Mayer, G. Selection and biosensor application of aptamers for small molecules. Front. Chem. 2016, 4, 25. [Google Scholar] [CrossRef] [PubMed]
- Lichnovsky, J.; Kupka, J.; Sterbova, V.; Andras, P.; Midula, P. Contamination of potentially toxic elements in streams and water sediments in the area of abandoned pb-zn-cu deposits (Hrubý Jesenník, Czech Republic). IOP Conf. Ser.: Earth Environ. Sci. 2017, 92, 012037. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Kwon, Y.S.; Gu, M.B. Aptamer-based environmental biosensors for small molecule contaminants. Curr. Opin. Biotechnol. 2017, 45, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Chiu, J.M.Y.; Degger, N.; Leung, J.Y.S.; Po, B.H.K.; Zheng, G.J.; Richardson, B.J.; Lau, T.C.; Wu, R.S.S. A novel approach for estimating the removal efficiencies of endocrine disrupting chemicals and heavy metals in wastewater treatment processes. Mar. Pollut. Bull. 2016, 112, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, T.; Selvarajan, R.; Tekere, M. Urban effluent discharges as causes of public and environmental health concerns in South Africa.’s aquatic milieu. Environ. Sci. Pollut. Res. Int. 2015, 22, 18301–18317. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, P.; Raj, A.; Bharagava, R.N. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere 2018, 194, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Q.X.; Lin, J.S. Prevention from the pollution of carcinogenic endocrine disrupting chemicals in water sources. Cancer Prev. Curr. Res. J. 2017, 1, 111. [Google Scholar]
- Gago-Ferrero, P.; Gros, M.; Ahrens, L.; Wiberg, K. Impact of on-site, small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals, personal care products, artificial sweeteners, pesticides, and perfluoroalkyl substances in recipient waters. Sci. Total Environ. 2017, 601–602, 1289–1297. [Google Scholar] [CrossRef] [PubMed]
- Famiglini, G.; Palma, P.; Pierini, E.; Trufelli, H.; Cappiello, A. Organochlorine pesticides by lc-ms. Anal. Chem. 2008, 80, 3445–3449. [Google Scholar] [CrossRef] [PubMed]
- Shrivas, K.; Wu, H.F. A rapid, sensitive and effective quantitative method for simultaneous determination of cationic surfactant mixtures from river and municipal wastewater by direct combination of single-drop microextraction with AP-MALDI mass spectrometry. J. Mass Spectrom. 2007, 42, 1637–1644. [Google Scholar] [CrossRef] [PubMed]
- Pitarch, E.; Hernandez, F.; ten Hove, J.; Meiring, H.; Niesing, W.; Dijkman, E.; Stolker, L.; Hogendoorn, E. Potential of capillary-column-switching liquid chromatography-tandem mass spectrometry for the quantitative trace analysis of small molecules. Application to the on-line screening of drugs in water. J. Chromatogr. A 2004, 1031, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Van Heuveln, F.; Meijering, H.; Wieling, J. Inductively coupled plasma-ms in drug development: Bioanalytical aspects and applications. Bioanalysis 2012, 4, 1933–1965. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, A.C.; Dunaway, L.E.; Roberts, J.G.; McCarty, G.S.; Sombers, L.A. Multiple scan rate voltammetry for selective quantification of real-time enkephalin dynamics. Anal. Chem. 2014, 86, 7806–7812. [Google Scholar] [CrossRef] [PubMed]
- Strehlitz, B.; Reinemann, C.; Linkorn, S.; Stoltenburg, R. Aptamers for pharmaceuticals and their application in environmental analytics. Bioanal. Rev. 2012, 4, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Saidur, M.R.; Aziz, A.R.; Basirun, W.J. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens. Bioelectron. 2017, 90, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.F.; Stovall, G.M.; Ellington, A.D. Aptamer therapeutics advance. Curr. Opin. Chem. Biol. 2006, 10, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, J.; Nilsen-Hamilton, M. Aptamers: Multifunctional molecules for biomedical research. J. Mol. Med. 2013, 91, 1333–1342. [Google Scholar] [CrossRef] [PubMed]
- Hong, K.L.; Sooter, L.J. Single-stranded DNA aptamers against pathogens and toxins: Identification and biosensing applications. BioMed Res. Int. 2015, 2015, 419318. [Google Scholar] [CrossRef] [PubMed]
- Reinemann, C.; Stoltenburg, R.; Strehlitz, B. Investigations on the specificity of DNA aptamers binding to ethanolamine. Anal. Chem. 2009, 81, 3973–3978. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Ellington, A.D.; Szostak, J.W. In vitro selection of rna molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.L.; Joyce, G.F. Selection in vitro of an rna enzyme that specifically cleaves single-stranded DNA. Nature 1990, 344, 467–468. [Google Scholar] [CrossRef] [PubMed]
- Ouellet, E.; Foley, J.H.; Conway, E.M.; Haynes, C. Hi-fi selex: A high-fidelity digital-pcr based therapeutic aptamer discovery platform. Biotechnol. Bioeng. 2015, 112, 1506–1522. [Google Scholar] [CrossRef] [PubMed]
- Romero-Lopez, C.; Berzal-Herranz, A. Aptamers: Biomedical interest and applications. Pharmaceuticals 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhu, Y.; Xue, F.; Mei, Z.; Yao, L.; Wang, X.; Zheng, L.; Liu, J.; Liu, G.; Peng, C.; et al. Recent trends in selex technique and its application to food safety monitoring. Mikrochim. Acta 2014, 181, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Darmostuk, M.; Rimpelova, S.; Gbelcova, H.; Ruml, T. Current approaches in selex: An update to aptamer selection technology. Biotechnol. Adv. 2015, 33, 1141–1161. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Gu, M.B. Advances in aptamer screening and small molecule aptasensors. Adv. Biochem. Eng. Biotechnol. 2014, 140, 29–67. [Google Scholar] [CrossRef] [PubMed]
- Jafari, M.; Rezaei, M.; Kalantari, H.; Tabarzad, M.; Daraei, B. Dnazyme-aptamer or aptamer-dnazyme paradigm: Biochemical approach for aflatoxin analysis. Biotechnol. Appl. Biochem. 2017. [Google Scholar] [CrossRef] [PubMed]
- Iliuk, A.B.; Hu, L.; Tao, W.A. Aptamer in bioanalytical applications. Anal. Chem. 2011, 83, 4440–4452. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.A.; Pei, R.; Stojanovic, M.N. In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules. Methods 2016, 106, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Sett, A.; Das, S.; Bora, U. Functional nucleic-acid-based sensors for environmental monitoring. Appl. Biochem. Biotechnol. 2014, 174, 1073–1091. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Wu, S.; Dai, S.; Gu, H.; Hao, L.; Ye, H.; Wang, Z. Advances in aptasensors for the detection of food contaminants. Analyst 2016, 141, 3942–3961. [Google Scholar] [CrossRef] [PubMed]
- Robati, R.Y.; Arab, A.; Ramezani, M.; Langroodi, F.A.; Abnous, K.; Taghdisi, S.M. Aptasensors for quantitative detection of kanamycin. Biosens. Bioelectron. 2016, 82, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Muzyka, K.; Saqib, M.; Liu, Z.; Zhang, W.; Xu, G. Progress and challenges in electrochemiluminescent aptasensors. Biosens. Bioelectron. 2017, 92, 241–258. [Google Scholar] [CrossRef] [PubMed]
- Perez-Gonzalez, C.; Lafontaine, D.A.; Penedo, J.C. Fluorescence-based strategies to investigate the structure and dynamics of aptamer-ligand complexes. Front. Chem. 2016, 4, 33. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Dai, H.; Sun, Y.; Hu, J.; Ni, P.; Li, Z. Fluorescent sensing of cocaine based on a structure switching aptamer, gold nanoparticles and graphene oxide. Analyst 2013, 138, 7152–7156. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Shen, H.; Hu, J.; Fu, Q.; Yao, C.; Yu, S.; Xiao, W.; Tang, Y. Aptamer-based fluorescence-quenching lateral flow strip for rapid detection of mercury(ii) ion in water samples. Anal. Bioanal. Chem. 2017, 409, 5209–5216. [Google Scholar] [CrossRef] [PubMed]
- Feagin, T.A.; Olsen, D.P.; Headman, Z.C.; Heemstra, J.M. High-throughput enantiopurity analysis using enantiomeric DNA-based sensors. J. Am. Chem. Soc. 2015, 137, 4198–4206. [Google Scholar] [CrossRef] [PubMed]
- Alhadrami, H.A.; Chinnappan, R.; Eissa, S.; Rahamn, A.A.; Zourob, M. High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Anal. Biochem. 2017, 525, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cai, Y.; Xu, L.; Zheng, L.; Wang, L.; Qi, B.; Xu, C. Building an aptamer/graphene oxide fret biosensor for one-step detection of bisphenol A. ACS Appl. Mater. Interfaces 2015, 7, 7492–7496. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Wang, Y.; Lu, X.; Chen, J.; Wei, F.; Huang, Z.; Zhou, C.; Duan, Y. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Anal. Chim. Acta 2017, 984, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Ghows, N.; Mousavi Shaegh, S.A.; Abnous, K. A novel fluorescent aptasensor for ultrasensitive detection of microcystin-LR based on single-walled carbon nanotubes and dapoxyl. Talanta 2017, 166, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Taghdisi, S.M.; Emrani, S.S.; Tabrizian, K.; Ramezani, M.; Abnous, K.; Emrani, A.S. Ultrasensitive detection of lead(ii) based on fluorescent aptamer-functionalized carbon nanotubes. Environ. Toxicol. Pharmacol. 2014, 37, 1236–1242. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.S.; Shan, X.Y.; Chai, L.J.; Chen, J.R.; Feng, H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead(ii) ion. Biosens. Bioelectron. 2015, 68, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, L.P.; Luo, J.; Yu, J.P.; Yang, H.; Wei, H.P. Rapid colorimetric pyrazinamide susceptibility testing of mycobacterium tuberculosis. Int. J. Tuberc. Lung. Dis. 2016, 20, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Ping, J.; He, Z.; Liu, J.; Xie, X. Smartphone-based colorimetric chiral recognition of ibuprofen using aptamers-capped gold nanoparticles. Electrophoresis 2017. [Google Scholar] [CrossRef]
- Cheng, R.; Liu, S.; Shi, H.; Zhao, G. A highly sensitive and selective aptamer-based colorimetric sensor for the rapid detection of PCB 77. J. Hazard. Mater. 2018, 341, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhao, H.; Chen, X.; Tan, B.; Zhang, Y.; Quan, X. A colorimetric aptasensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nickel@palladium hybrids. Anal. Biochem. 2017, 525, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Qian, J.; Yang, X.; Jiang, D.; Du, X.; Wang, K.; Mao, H.; Wang, K. A facile label-free colorimetric aptasensor for acetamiprid based on the peroxidase-like activity of hemin-functionalized reduced graphene oxide. Biosens. Bioelectron. 2015, 65, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Saberian, M.; Hamzeiy, H.; Aghanejad, A.; Asgari, D. Aptamer-based nanosensors: Juglone as an attached-redox molecule for detection of small molecules. BioImpacts 2011, 1, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Liu, R.; Ding, X.; Zhao, J.; Yu, H.; Wang, L.; Xu, Q.; Wang, X.; Lou, X.; He, M.; et al. Nanoprobe-enhanced, split aptamer-based electrochemical sandwich assay for ultrasensitive detection of small molecules. Anal. Chem. 2015, 87, 7712–7719. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, W.; Xu, X.; Zhou, J.; Nie, Z. Electrochemical aptamer sensor for small molecule assays. Methods Mol. Biol. 2012, 800, 119–132. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, M.; Johari-Ahar, M.; Hamzeiy, H.; Barar, J.; Mashinchian, O.; Omidi, Y. Electrochemical impedance spectroscopic sensing of methamphetamine by a specific aptamer. BioImpacts 2012, 2, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.D.; Qi, P.P.; Fu, X.C.; Liu, H.; Li, J.C.; Wang, Q.; Fan, H. A novel electrochemical PCB77-binding DNA aptamer biosensor for selective detection of PCB77. J. Electroanal. Chem. 2016, 771, 45–49. [Google Scholar] [CrossRef]
- Madianos, L.; Tsekenis, G.; Skotadis, E.; Patsiouras, L.; Tsoukalas, D. A highly sensitive impedimetric aptasensor for the selective detection of acetamiprid and atrazine based on microwires formed by platinum nanoparticles. Biosens. Bioelectron. 2018, 101, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Lu, X.; Fu, X.; Wu, L.; Liu, H. Gold nanoparticles dotted reduction graphene oxide nanocomposite based electrochemical aptasensor for selective, rapid, sensitive and congener-specific PCB77 detection. Sci. Rep. 2017, 7, 5191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, H.; Ma, L.; Liu, D.; Wang, Z. A label-free electrochemical impedance aptasensor for cylindrospermopsin detection based on thionine-graphene nanocomposites. Analyst 2015, 140, 5570–5577. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.B.; Ren, H.X.; Gan, N.; Zhou, Y.; Cao, Y.; Li, T.; Chen, Y. A triple-amplification spr electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling. Biosens. Bioelectron. 2016, 86, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhu, Z.; Zou, Y.; Huang, Y.; Liu, D.; Jia, S.; Xu, D.; Wu, M.; Zhou, Y.; Zhou, S.; et al. Target-responsive “sweet” hydrogel with glucometer readout for portable and quantitative detection of non-glucose targets. J. Am. Chem. Soc. 2013, 135, 3748–3751. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Wu, Y.; Wang, L.; Zhan, X.; Zhou, P. A mini-review on functional nucleic acids-based heavy metal ion detection. Biosens. Bioelectron. 2016, 86, 353–368. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Xiao, M.; Fu, Q.; Yu, S.; Shen, H.; Bian, H.; Tang, Y. A portable smart-phone readout device for the detection of mercury contamination based on an aptamer-assay nanosensor. Sensors 2016, 16, 1871. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Nagi, R.; Sadeghi, K.; Feng, S.; Yan, E.; Ki, S.J.; Caire, R.; Tseng, D.; Ozcan, A. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano 2014, 8, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Long, F.; He, M.; Shi, H.C.; Gu, A.Z. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ. Sci. Process. Impacts 2014, 16, 1379–1386. [Google Scholar] [CrossRef] [PubMed]
- Xiang, A.; Lei, X.; Ren, F.; Zang, L.; Wang, Q.; Zhang, J.; Lu, Z.; Guo, Y. An aptamer-based immunoassay in microchannels of a portable analyzer for detection of microcystin-leucine-arginine. Talanta 2014, 130, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Warsinke, A.; Nagel, B. Towards separation-free electrochemical affinity sensors by using antibodies, aptamers, and molecularly imprinted polymers—A review. Anal. Lett. 2006, 39, 2507–2556. [Google Scholar] [CrossRef]
- Tan, F.; Cong, L.; Saucedo, N.M.; Gao, J.; Li, X.; Mulchandani, A. An electrochemically reduced graphene oxide chemiresistive sensor for sensitive detection of Hg(2+) ion in water samples. J. Hazard. Mater. 2016, 320, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wong, N.K.; Sun, M.; Yan, C.; Ma, S.; Yang, Q.; Li, Y. Regenerable fluorescent nanosensors for monitoring and recovering metal ions based on photoactivatable monolayer self-assembly and host-guest interactions. ACS Appl. Mater. Interfaces 2015, 7, 8868–8875. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.B.; Liu, H.; Gu, Z.Z. An exothermic chip for point-of-care testing using a forehead thermometer as a readout. Lab Chip 2016, 16, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Zhu, A.; Shi, H.; Wang, H.; Liu, J. Rapid on-site/in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Sci. Rep. 2013, 3, 2308. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Xiu, F.R.; Yu, G.; Huang, L.; Li, B. Simple and rapid chemiluminescence aptasensor for Hg(2+) in contaminated samples: A new signal amplification mechanism. Biosens. Bioelectron. 2017, 87, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Zeng, G.; Zhang, C.; Huang, D.; Lai, C.; Tang, L.; Zhou, Y.; Xu, P.; Wang, H.; Qin, L.; Cheng, M. Practical and regenerable electrochemical aptasensor based on nanoporous gold and thymine-Hg(2+)-thymine base pairs for Hg(2+) detection. Biosens. Bioelectron. 2017, 90, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Chen, Z.; Zhao, Y.; Wei, X.; Li, Y.; Zhang, C.; Wei, X.; Hu, X. Dual channel sensor for detection and discrimination of heavy metal ions based on colorimetric and fluorescence response of the aunps-DNA conjugates. Biosens. Bioelectron. 2016, 85, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Ha, H.D.; Kim, Y.T.; Jung, J.H.; Kim, S.H.; Kim, D.H.; Seo, T.S. Combination of a sample pretreatment microfluidic device with a photoluminescent graphene oxide quantum dot sensor for trace lead detection. Anal. Chem. 2015, 87, 10969–10975. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Gao, C.; He, S.; Wang, Q.; Wu, A. Label-free electrochemical lead(ii) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform. Biosens. Bioelectron. 2016, 81, 15–22. [Google Scholar] [CrossRef] [PubMed]
- An, J.H.; Jang, J. A highly sensitive fet-type aptasensor using flower-like mos2 nanospheres for real-time detection of arsenic(iii). Nanoscale 2017, 9, 7483–7492. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wu, J.; Ju, H. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens. Bioelectron. 2016, 79, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liu, L.; Zhan, S.; Wang, F.; Zhou, P. Ultrasensitive aptamer biosensor for arsenic(iii) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 2012, 137, 4171–4178. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhan, S.; Xing, H.; He, L.; Xu, L.; Zhou, P. Nanoparticles assembled by aptamers and crystal violet for arsenic(iii) detection in aqueous solution based on a resonance rayleigh scattering spectral assay. Nanoscale 2012, 4, 6841–6849. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhan, S.; Wang, F.; He, L.; Zhi, W.; Zhou, P. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic(iii) in aqueous solution. Chem. Commun. 2012, 48, 4459–4461. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Mao, K.; Zhou, X.; Hu, J. A novel biosensor based on au@ag core-shell nanoparticles for SERS detection of arsenic(iii). Talanta 2016, 146, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Elshafey, R.; Siaj, M.; Zourob, M. DNA aptamers selection and characterization for development of label-free impedimetric aptasensor for neurotoxin anatoxin-a. Biosens. Bioelectron. 2015, 68, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Mu, L.; Wen, J.; Zhou, Q. Immobilized smart rna on graphene oxide nanosheets to specifically recognize and adsorb trace peptide toxins in drinking water. J. Hazard. Mater. 2012, 213–214, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, R.; Shi, H.; Tang, B.; Xiao, H.; Zhao, G. A simple highly sensitive and selective aptamer-based colorimetric sensor for environmental toxins microcystin-LR in water samples. J. Hazard. Mater. 2016, 304, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Zhao, S.; Wu, S.; Wang, Z. Upconversion nanoparticles grafted molybdenum disulfide nanosheets platform for microcystin-lr sensing. Biosens. Bioelectron. 2017, 90, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yang, X.; Li, H.; Luo, Y.; Yu, R.; Zhang, L.; Yang, Y.; Song, Q. Au nanoflower-ag nanoparticle assembled sers-active substrates for sensitive mc-lr detection. Chem. Commun. 2015, 51, 16908–16911. [Google Scholar] [CrossRef] [PubMed]
- Bilibana, M.P.; Williams, A.R.; Rassie, C.; Sunday, C.E.; Makelane, H.; Wilson, L.; Ntshongontshi, N.; Jijana, A.N.; Masikini, M.; Baker, P.G.; et al. Electrochemical aptatoxisensor responses on nanocomposites containing electro-deposited silver nanoparticles on poly(propyleneimine) dendrimer for the detection of microcystin-LR in freshwater. Sensors 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.X.; Zheng, X.; Wu, J.W. A biolayer interferometry-based competitive biosensor for rapid andsensitive detection of saxitoxin. Sensor Actuator B-Chem. 2017, 246, 169–174. [Google Scholar] [CrossRef]
- Gao, S.; Zheng, X.; Hu, B.; Sun, M.; Wu, J.; Jiao, B.; Wang, L. Enzyme-linked, aptamer-based, competitive biolayer interferometry biosensor for palytoxin. Biosens. Bioelectron. 2017, 89, 952–958. [Google Scholar] [CrossRef] [PubMed]
- Elshafey, R.; Siaj, M.; Zourob, M. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers. Anal. Chem. 2014, 86, 9196–9203. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhao, G.; Shi, H.; Liu, M.; Wang, Y.; Ke, H. A femtomolar level and highly selective 17beta-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environ. Sci. Technol. 2014, 48, 5754–5761. [Google Scholar] [CrossRef] [PubMed]
- Akki, S.U.; Werth, C.J.; Silverman, S.K. Selective aptamers for detection of estradiol and ethynylestradiol in natural waters. Environ. Sci. Technol. 2015, 49, 9905–9913. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, N.; Long, F.; Gao, C.; He, M.; Shi, H.C.; Gu, A.Z. Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environ. Sci. Technol. 2012, 46, 3288–3294. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.I.; Shrivastava, S.; Duy, L.T.; Yeong Kim, B.; Son, Y.M.; Lee, N.E. A smartphone imaging-based label-free and dual-wavelength fluorescent biosensor with high sensitivity and accuracy. Biosens. Bioelectron. 2017, 94, 643–650. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Xia, B.; Wang, L.; Ye, J.; Du, G.; Feng, H.; Zhou, X.; Zhang, T.; Wang, W. Fluorescent aptasensor for 17β-estradiol determination based on gold nanoparticles quenching the fluorescence of rhodamine B. Anal. Biochem. 2017, 523, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Zhao, G.; Shi, H.; Liu, M. A simple and label-free aptasensor based on nickel hexacyanoferrate nanoparticles as signal probe for highly sensitive detection of 17β-estradiol. Biosens. Bioelectron. 2015, 68, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.H.; Lim, H.J.; Lee, S.D.; Son, A. Highly sensitive detection of bisphenol a by nanoaptamer assay with truncated aptamer. ACS Appl. Mater. Interfaces 2017, 9, 14889–14898. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wang, J.; Liu, Z.E.; Yang, X.; Hu, X.; Deng, J.; Yang, N.; Wan, Q.; Yuan, Q. High-performance electrochemical catalysts based on three-dimensional porous architecture with conductive interconnected networks. ACS Appl. Mater. Interfaces 2016, 8, 28265–28273. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Hu, Y.; Zhang, Z.; Tang, Y. Universal fluorometric aptasensor platform based on water-soluble conjugated polymers/graphene oxide. Anal. Bioanal. Chem. 2018, 410, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, K.V.; Selvakumar, L.S.; Thakur, M.S. Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chem. Commun. 2013, 49, 5960–5962. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.Y.; Niu, C.G.; Wang, X.Y.; Huang, D.W.; Zhang, L.; Zeng, G.M. Magnetic separate “turn-on” fluorescent biosensor for bisphenol A based on magnetic oxidation graphene. Talanta 2017, 168, 196–202. [Google Scholar] [CrossRef] [PubMed]
- He, M.Q.; Wang, K.; Wang, J.; Yu, Y.L.; He, R.H. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal. Bioanal. Chem. 2017, 409, 1797–1803. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Li, J.; Li, H.; Fang, H.; Fan, D.; Wang, W. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized zno nanopencils. Biosens. Bioelectron. 2016, 86, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.; Jeon, J.; Yu, J.; Lee, C.; Choo, J. Surface-enhanced raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Biosens. Bioelectron. 2015, 64, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Contreras Jimenez, G.; Eissa, S.; Ng, A.; Alhadrami, H.; Zourob, M.; Siaj, M. Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal. Chem. 2015, 87, 1075–1082. [Google Scholar] [CrossRef] [PubMed]
- Reinemann, C.; Freiin von Fritsch, U.; Rudolph, S.; Strehlitz, B. Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens. Bioelectron. 2016, 77, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Nikolaus, N.; Strehlitz, B. DNA-aptamers binding aminoglycoside antibiotics. Sensors 2014, 14, 3737–3755. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, M.; Mehrabi, F.; Ganjali, M.R.; Norouzi, P. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters. Luminescence 2016, 31, 1339–1343. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.B.; Kwon, Y.S.; Lee, J.E.; Cullen, D.; Noh, H.M.; Gu, M.B. A novel reflectance-based aptasensor using gold nanoparticles for the detection of oxytetracycline. Analyst 2015, 140, 6671–6675. [Google Scholar] [CrossRef] [PubMed]
- Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron. 2015, 70, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, D.; Wang, Q.; Wang, Q. Aptamer-based resonance light scattering for sensitive detection of acetamiprid. Anal. Sci. 2016, 32, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Bala, R.; Kumar, M.; Bansal, K.; Sharma, R.K.; Wangoo, N. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens. Bioelectron. 2016, 85, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Zhu, C.; Liu, J.; Yan, M.; Yang, S.; Chen, A. Gold nanoparticle-based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Environ. Toxicol. Chem. 2015, 34, 2244–2249. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Zhao, X.; Zhu, Q.; Gao, L.; Cui, H. Highly chemiluminescent magnetic beads for label-free sensing of 2,4,6-trinitrotoluene. Anal. Chem. 2017, 89, 7145–7151. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Man, Y.; Jin, X.; Pan, L.; Liu, X. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Anal. Chim. Acta 2016, 936, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Bauerova, P.; Vinklerova, J.; Hranicek, J.; Corba, V.; Vojtek, L.; Svobodova, J.; Vinkler, M. Associations of urban environmental pollution with health-related physiological traits in a free-living bird species. Sci. Total Environ. 2017, 601–602, 1556–1565. [Google Scholar] [CrossRef] [PubMed]
- Farzin, L.; Shamsipur, M.; Sheibani, S. A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta 2017, 174, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Wanekaya, A.K. Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 2011, 136, 4383–4391. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhao, T.; Wang, S.; Hou, X. Semicondutor quantum dots-based metal ion probes. Nanoscale 2014, 6, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Hayat, A.; Marty, J.L. Aptamer based electrochemical sensors for emerging environmental pollutants. Front. Chem. 2014, 2, 41. [Google Scholar] [CrossRef] [PubMed]
- Okpala, C.O.R.; Sardo, G.; Vitale, S.; Bono, G.; Arukwe, A. Hazardous properties and toxicological update of mercury: From fish food to human health safety perspective. Crit. Rev. Food Sci. Nutr. 2017, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.J.; Kim, S.; Han, Y.D.; Kim, D.W.; Kim, K.R.; Kim, H.S.; Kim, J.H.; Yoon, H.C. Water-soluble mercury ion sensing based on the thymine-hg(2+)-thymine base pair using retroreflective janus particle as an optical signaling probe. Biosens. Bioelectron. 2018, 104, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhou, X.; Shi, H.; Luo, Y. T-T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+. Biosens. Bioelectron. 2016, 78, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Bala, A.; Gorski, L. Peptide nucleic acid as a selective recognition element for electrochemical determination of Hg(2). Bioelectrochemistry 2018, 119, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.F.; Liu, H.X.; Gai, Q.Q.; Liu, G.J.; Wei, Z. A facile and sensitive electrochemiluminescence biosensor for Hg2+ analysis based on a dual-function oligonucleotide probe. Biosens. Bioelectron. 2015, 71, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Zhan, S.; Xu, H.; Zhang, D.; Xia, B.; Zhan, X.; Wang, L.; Lv, J.; Zhou, P. Fluorescent detection of Hg2+ and Pb2+ using genefinder and an integrated functional nucleic acid. Biosens. Bioelectron. 2015, 72, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Karimfar, M.H.; Bargahi, A.; Moshtaghi, D.; Farzadinia, P. Long-term exposure of lead acetate on rabbit renal tissue. Iran. Red. Crescent. Med. J. 2016, 18, e22157. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, C.; Zhu, S.; Yan, M.; Ge, S.; Yu, J. 3d origami electrochemical device for sensitive Pb(2+) testing based on DNA functionalized iron-porphyrinic metal-organic framework. Biosens. Bioelectron. 2017, 87, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yu, C.; Niu, Y.; Chen, J.; Zhao, Y.; Zhang, Y.; Gao, R.; He, J. Target triggered cleavage effect of dnazyme: Relying on pd-pt alloys functionalized fe-mofs for amplified detection of Pb(2). Biosens. Bioelectron. 2018, 101, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Teh, H.B.; Li, H.; Yau Li, S.F. Highly sensitive and selective detection of Pb2+ ions using a novel and simple dnazyme-based quartz crystal microbalance with dissipation biosensor. Analyst 2014, 139, 5170–5175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Lu, L.; Hu, Q.; Huang, F.; Lin, Z. Zno nanoflower-based photoelectrochemical dnazyme sensor for the detection of Pb2+. Biosens. Bioelectron. 2014, 56, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Pace, C.; Dagda, R.; Angermann, J. Antioxidants protect against arsenic induced mitochondrial cardio-toxicity. Toxics 2017, 5. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rahman, A.; Khan, M.Z.K.; Renzaho, A.M.N. Human health risks and socio-economic perspectives of arsenic exposure in bangladesh: A scoping review. Ecotoxicol. Environ. Saf. 2018, 150, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.W.; Wei, C.C.; Liao, V.H. A low cost color-based bacterial biosensor for measuring arsenic in groundwater. Chemosphere 2015, 141, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Siddiki, M.S.; Shimoaoki, S.; Ueda, S.; Maeda, I. Thermoresponsive magnetic nano-biosensors for rapid measurements of inorganic arsenic and cadmium. Sensors 2012, 12, 14041–14052. [Google Scholar] [CrossRef] [PubMed]
- Irvine, G.W.; Tan, S.N.; Stillman, M.J. A simple metallothionein-based biosensor for enhanced detection of arsenic and mercury. Biosensors 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Verma, N.C.; Khan, S.; Nandi, C.K. Carbon dots for naked eye colorimetric ultrasensitive arsenic and glutathione detection. Biosens. Bioelectron. 2016, 81, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Mello, F.D.; Braidy, N.; Marcal, H.; Guillemin, G.; Nabavi, S.M.; Neilan, B.A. Mechanisms and effects posed by neurotoxic products of cyanobacteria/microbial eukaryotes/dinoflagellates in algae blooms: A review. Neurotox. Res. 2018, 33, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Morabito, S.; Silvestro, S.; Faggio, C. How the marine biotoxins affect human health. Nat. Prod. Res. 2018, 32, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Justino, C.I.L.; Duarte, A.C.; Rocha-Santos, T.A.P. Recent progress in biosensors for environmental monitoring: A review. Sensors 2017, 17. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Han, C.; Jia, B.P.; Saint, C.; Nadagouda, M.; Falaras, P.; Sygellou, L.; Vogiazi, V.; Dionysiou, D.D. A 3d graphene-based biosensor as an early microcystin-LR screening tool in sources of drinking water supply. Electroch. Acta 2017, 236, 319–327. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Chen, M.; Li, H.Y.; Yan, F.Q.; Pang, P.F.; Wang, H.B.; Wu, Z.; Yang, W.R. A molybdenum disulfide/gold nanorod composite-based electrochemical immunosensor for sensitive and quantitative detection of microcystin-LR in environmental samples. Sensor. Actuator B-Chem. 2017, 244, 606–615. [Google Scholar] [CrossRef]
- Catanante, G.; Espin, L.; Marty, J.L. Sensitive biosensor based on recombinant PP1α for microcystin detection. Biosens. Bioelectron. 2015, 67, 700–707. [Google Scholar] [CrossRef] [PubMed]
- O'Neill, K.; Musgrave, I.F.; Humpage, A. Low dose extended exposure to saxitoxin and its potential neurodevelopmental effects: A review. Environ. Toxicol. Pharmacol. 2016, 48, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Le, T.; Esteve-Turrillas, F.A.; Armenta, S.; de la Guardia, M.; Quinones-Reyes, G.; Abad-Fuentes, A.; Abad-Somovilla, A. Dispersive magnetic immunoaffinity extraction. Anatoxin-A determination. J. Chromatogr. A 2017, 1529, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, X.; Korenkova, E.; Jobst, K.J.; MacPherson, K.A.; Reiner, E.J. A high throughput targeted and non-targeted method for the analysis of microcystins and anatoxin-A using on-line solid phase extraction coupled to liquid chromatography-quadrupole time-of-flight high resolution mass spectrometry. Anal. Bioanal. Chem. 2017, 409, 4959–4969. [Google Scholar] [CrossRef] [PubMed]
- Roy-Lachapelle, A.; Solliec, M.; Sinotte, M.; Deblois, C.; Sauve, S. High resolution/accurate mass (HRMS) detection of anatoxin-a in lake water using LDTD-APCI coupled to a Q-exactive mass spectrometer. Talanta 2015, 132, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, J.A.; Otero, P.; Alfonso, A.; Ramos, V.; Vasconcelos, V.; Araoz, R.; Molgo, J.; Vieytes, M.R.; Botana, L.M. Detection of anatoxin-a and three analogs in Anabaena spp. Cultures: New fluorescence polarization assay and toxin profile by LC-MS/MS. Toxins 2014, 6, 402–415. [Google Scholar] [CrossRef] [PubMed]
- Bergman, A.; Heindel, J.J.; Kasten, T.; Kidd, K.A.; Jobling, S.; Neira, M.; Zoeller, R.T.; Becher, G.; Bjerregaard, P.; Bornman, R.; et al. The impact of endocrine disruption: A consensus statement on the state of the science. Environ. Health Perspect. 2013, 121, A104–106. [Google Scholar] [CrossRef] [PubMed]
- Plahuta, M.; Tisler, T.; Toman, M.J.; Pintar, A. Toxic and endocrine disrupting effects of wastewater treatment plant influents and effluents on a freshwater isopod asellus aquaticus (isopoda, crustacea). Chemosphere 2017, 174, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Shafei, A.E.; Ramzy, M.M.; Hegazy, A.I.; Husseny, A.K.; El-Hadary, U.G.; Taha, M.M.; Mosa, A.A. The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer. Gene 2018. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Cheng, C.; Terry, P.; Chen, J.; Cui, H.; Wu, J. Rapid and sensitive detection of bisphenol a from serum matrix. Biosens. Bioelectron. 2017, 91, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhou, S. Label-free DNA y junction for bisphenol a monitoring using exonuclease iii-based signal protection strategy. Biosens. Bioelectron. 2016, 77, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Zehani, N.; Fortgang, P.; Saddek Lachgar, M.; Baraket, A.; Arab, M.; Dzyadevych, S.V.; Kherrat, R.; Jaffrezic-Renault, N. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens. Bioelectron. 2015, 74, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, L.; Xu, W.; Song, B.; Sheng, J.; He, M.; Shi, H. A reusable evanescent wave immunosensor for highly sensitive detection of bisphenol a in water samples. Sci. Rep. 2014, 4, 4572. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.C.; Bacher, G.; Bhand, S. A label free immunosensor for ultrasensitive detection of 17 beta-estradiol in water. Electrochim. Acta 2017, 232, 30–37. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, C.C. Detection of 17 beta-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors 2017, 7. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Wei, T. Detection of 17beta-estradiol in water samples by a novel double-layer molecularly imprinted film-based biosensor. Talanta 2015, 141, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Reder-Christ, K.; Bendas, G. Biosensor applications in the field of antibiotic research—A review of recent developments. Sensors 2011, 11, 9450–9466. [Google Scholar] [CrossRef] [PubMed]
- Song, K.M.; Jeong, E.; Jeon, W.; Cho, M.; Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem. 2012, 402, 2153–2161. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Z.; Ge, J.; Yang, R.; Zhang, L.; Qu, L.B.; Wang, H.Q.; Zhang, L. An aptamer-based signal-on bio-assay for sensitive and selective detection of kanamycin a by using gold nanoparticles. Talanta 2015, 139, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.I.; Sales, M.G. Development of paper-based color test-strip for drug detection in aquatic environment: Application to oxytetracycline. Biosens. Bioelectron. 2015, 65, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Okoth, O.K.; Yan, K.; Liu, Y.; Zhang, J. Graphene-doped bi2s3 nanorods as visible-light photoelectrochemical aptasensing platform for sulfadimethoxine detection. Biosens. Bioelectron. 2016, 86, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Song, K.M.; Jeong, E.; Jeon, W.; Jo, H.; Ban, C. A coordination polymer nanobelt (cpnb)-based aptasensor for sulfadimethoxine. Biosens. Bioelectron. 2012, 33, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Zhang, L.; Chen, J. Paracetamol in the environment and its degradation by microorganisms. Appl. Microbiol. Biotechnol. 2012, 96, 875–884. [Google Scholar] [CrossRef] [PubMed]
- Macary, F.; Morin, S.; Probst, J.L.; Saudubray, F. A multi-scale method to assess pesticide contamination risks in agricultural watersheds. Ecol. Indic. 2014, 36, 624–639. [Google Scholar] [CrossRef] [Green Version]
- Chien-jung Tien, C.S.C. Assessing the toxicity of organophosphorous pesticides to indigenous algae with implication for their ecotoxicological impact to aquatic ecosystems. J. Environ. Sci. Health Part B 2012, 47, 901–912. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, P.; Kumar, N.; Nara, S. Colorimetric sensing of malathion using palladium-gold bimetallic nanozyme. Biosens. Bioelectron. 2017, 92, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Belkhamssa, N.; Justino, C.I.; Santos, P.S.; Cardoso, S.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T.; Ksibi, M. Label-free disposable immunosensor for detection of atrazine. Talanta 2016, 146, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Techera, A.; Zon, M.A.; Molina, P.G.; Fernandez, H.; Gonzalez-Sapienza, G.; Arevalo, F.J. Development of a highly sensitive noncompetitive electrochemical immunosensor for the detection of atrazine by phage anti-immunocomplex assay. Biosens. Bioelectron. 2015, 64, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Choi, I. Recent advances in nanoplasmonic sensors for environmental detection and monitoring. J. Nanosci. Nanotechnol. 2016, 16, 4274–4283. [Google Scholar] [CrossRef] [PubMed]
Class | Target | Sensor Types | Limit of Detection | Chemistry | Sampling | Recovery (%) | Response Range | Year | Reference |
---|---|---|---|---|---|---|---|---|---|
Metals | Hg2+ | Electrochemical | 0.5 nM | DNA | Tap water River water | 98.6–111.9% 90.5–116.7% | 0.5 nM–990 nM | 2016 | [69] |
Metals | Hg2+ | Fluorescence | 0.415 μM | DNA | Water | / | / | 2015 | [70] |
Metals | Hg2+ | Fluorescence | 0.13 μg·L−1 | DNA | River water | 90.0–113.0% | 0.13 μg·L−1–4 μg·L−1 | 2017 | [40] |
Metals | Hg2+ | Others | 0.045 μM | DNA | Mineral drinking water Purified drinking water Tap water | 112.0% 104.0% 96.0% | 0.1 μM –10 μM | 2015 | [71] |
Metals | Hg2+ | Fluorescence | 1.2 nM | DNA | Natural lake water | / | 0 nM–100 nM | 2013 | [72] |
Metals | Hg2+ | Colorimetric | 16 pM | DNA | Tap water Lake water | 96.3–98.9% 95.3–104.2% | 0.62 nM–1.2 μM | 2016 | [73] |
Metals | Hg2+ | Electrochemical | 0.0036 nM | DNA | River water Tap water Landfill leachate | 100.5–100.6% 100.5–103.0% 100.7% | 0.01 nM–5000 nM | 2017 | [74] |
Metals | Hg2+ | Colorimetric and Fluorescence | 30 nM | DNA | River water | / | / | 2016 | [75] |
Metals | Hg2+ | Optical, smartphone based | 0.28 μg·L−1 | DNA | Tap water River water | 93.0–113.0% 101.0–110.0% | 1 μg·L−1–32 μg·L−1 | 2016 | [64] |
Metals | Cu2+ | Fluorescence | 1.5 μM | DNA | Water | / | 1 μM–14 μM | 2015 | [70] |
Metals | Cu2+ | Colorimetric and Fluorescence | 16 μM | DNA | River water | / | / | 2016 | [75] |
Metals | Fe2+ | Fluorescence | 0.592 μM | DNA | Water | / | / | 2015 | [70] |
Metals | Pb2+ | Colorimetric and Fluorescence | 0.24 μM | DNA | River water | / | / | 2016 | [75] |
Metals | Pb2+ | Others | 0.081 μM | DNA | Mineral drinking water Purified drinking water Tap water | / | 0.1 μM–10 μM | 2015 | [71] |
Metals | Pb2+ | Fluorescence | 0.64 nM | DNA | Drink water; Tap water; Lake water | 95.4–104.0% 82–116.4% 95.4–104.4% | 1 nM–1000 nM | 2015 | [76] |
Metals | Pb2+ | Electrochemical | 0.032 pM | DNA | River water Tap water | / | 0.16 pM–0.1 nM | 2016 | [77] |
Metals | Ag+ | Colorimetric and Fluorescence | 0.463 μM | DNA | River water | / | / | 2016 | [75] |
Metals | Zn2+ | Colorimetric and Fluorescence | 15.3 μM | DNA | River water | / | / | 2016 | [75] |
Metals | Cd2+ | Colorimetric and Fluorescence | 88.9 μM | DNA | River water | / | / | 2016 | [75] |
Metals | Mn2+ | Colorimetric and Fluorescence | 1.8 μM | DNA | River water | / | / | 2016 | [75] |
Metals | Cr3+ | Colorimetric and Fluorescence | 0.96 μM | DNA | River water | / | / | 2016 | [75] |
Metals | Sn4+ | Colorimetric and Fluorescence | 0.667 μM | DNA | River water | / | / | 2016 | [75] |
Metals | As3+ | Field-effect transistor | 1 pM | DNA | River water | / | 1 pM–10 nM | 2013 | [78] |
Heavy metal | As3+ | Electrochemical | 0.15 nM | DNA | Tap water Lake water | 96.2–99.5% 107.3–117.5% | 0.2 nM–100 nM | 2016 | [79] |
Metals | As3+ | Colorimetric and resonance scattering (RS) | 40 ppb naked eye 0.6 ppb colorimetric 0.77 ppb RS | DNA | Water | Colorimetric 94.6–124.0% RS 94.6–117.0% | 1 ppb–1500 ppb | 2012 | [80] |
Metals | As3+ | Resonance Rayleigh Scattering | 0.2 ppb | DNA | Water | 96.7–104.0% | 0.1 ppb–200 ppb | 2012 | [81] |
Metals | As3+ | Colorimetric | 5.3 ppb | DNA | Aqueous solution | / | / | 2012 | [82] |
Metals | As3+ | Surface-enhanced Raman scattering | 0.1 ppb | DNA | Lake water | 86.33–97.20% | 0.5 ppb–10 ppb | 2015 | [83] |
Toxins | Anatoxin-a | Electrochemical | 0.5 nM | DNA | Drink water | 94.8–108.6% | 1 nM–100 nM | 2015 | [84] |
Toxins | MC-LR | Colorimetric | 0.5 ng·L−1–1 ng·L−1 | RNA | Drink water | 88.0 ± 3.0% | / | 2012 | [85] |
Toxins | MC-LR | Colorimetric | 0.37 nM | DNA | Tap water Pond water | 95.0% 97.0–102.2% | 0.5 nM–7.5 μM | 2015 | [86] |
Toxins | MC-LR | Fluorescence | 0.002 μg·L−1 | DNA | Tap water and lake water | 94.0–112.0% | 0.015 μg·L−1–50 μg·L−1 | 2017 | [87] |
Toxins | MC-LR | Photodiode-based | 0.3 μg·L−1 | DNA | Lake water Pond water Tap water | 110.9–112.7% 98.2–109.1% 94.5–107.5% | 0.5 μg·L−1–4.0 μg·L−1 | 2014 | [67] |
Toxins | MC-LR | Surface-enhanced Raman scattering | 8.6 pM | DNA | Lake water | 94.48–97.70% | / | 2015 | [88] |
Toxins | MC-LR | Electrochemical | 0.04 μg·L−1 | DNA | Tap water; distilled water; wastewater | / | 0.1 μg·L−1–1.1 μg·L−1 | 2017 | [89] |
Toxins | Saxitoxin | Optical | 0.5 μg·L−1 | DNA | Sea water | 101.4–105.5% | 100 μg·L−1–800 μg·L−1 | 2017 | [90] |
Toxins | Palytoxin | Biolayer interferometry | 0.04 ng·L−1 | DNA | Sea water | 100.27–105.04% | 200 ng·L−1–700 ng·L−1 | 2016 | [91] |
Toxins | Cylindrospermopsin | Electrochemical | 0.117 μg·L−1 | DNA | Lake water | 96.3–104.6% | 0.39 μg·L−1–78 μg·L−1 | 2015 | [60] |
Toxins | Cylindrospermopsin | Electrochemical | 100 pM | DNA | Tap water | 95.8–103.2% | 0.1 nM–80 nM | 2014 | [92] |
EDCs | 17β-estradiol | Photoelectrochemical | 33 fM | DNA | Medical wastewater; lake water and tap water | / | 0.05 pM–15 pM | 2014 | [93] |
EDCs | 17β-estradiol | Equilibrium filtration | 0.6 μM a | DNA | Laboratory; lake water and tap water | / | / | 2015 | [94] |
EDCs | 17β-estradiol | Fluorescence | 2.1 nM | DNA | Wastewater effluent | 94.1–104.8% | / | 2012 | [95] |
EDCs | 17β-estradiol | Fluorescence | 1 fg·L−1 | DNA | Wastewater | 66.7–77.8% | 1 fg·L−1–100 fg·L−1 | 2017 | [96] |
EDCs | 17β-estradiol | Fluorescence | 0.48 nM | DNA | Water | 94.3–111.7% | 0.48 nM–200 nM | 2017 | [97] |
EDCs | 17β-estradiol | Electrochemical | 0.8 fM | DNA | Wastewater | 93.6–100.2% | 1 fM– 600 fM | 2015 | [98] |
EDCs | 17-α ethynylestradiol | Equilibrium filtration | 0.5 μM–1.0 μM a | DNA | Laboratory; lake water and tap water | / | / | 2015 | [94] |
EDCs | BPA | Fiber-optic | 1.86 nM | DNA | Tap and wastewater | 91.7–110.4% | 2 nM–100 nM | 2014 | [66] |
EDCs | BPA | Probe and AC electrokinetics capacitive | 1.0 fM | DNA | Water | / | 1.0 fM–10 fM | 2016 | [99] |
EDCs | BPA | Electrochemical | 0.33 nM | DNA | Lake water | 94.0–108.0% | 10 nM–1 mM | 2015 | [100] |
EDCs | BPA | Fluorescence | 0.005 μg·L−1 | DNA | Tap water | 95.0–105.0% | 0–1.0 μg·L−1 | 2017 | [101] |
EDCs | BPA | Fluorescence | 0.1 μg·L−1 | DNA | Water | / | 1 μg·L−1–10,000 μg·L−1 | 2013 | [102] |
EDCs | BPA | Fluorescence | 0.071 μg·L−1 | DNA | Tap water; pure water; river water | / | 0.2 μg·L−1–10 μg·L−1 | 2017 | [103] |
EDCs | BPA | Fluorescence | 2 nM | DNA | River water | / | 2 nM–20 nM | 2017 | [104] |
EDCs | BPA | Photoelectrochemical | 0.5 nM | DNA | Drinking water | 96.2–108.4% | 1 nM–1000 nM | 2016 | [105] |
EDCs | BPA | Fluorescence | 0.05 μg·L−1 | DNA | Tap water River water | 96.0–102.4% 97.2–104.5% | 0.1 μg·L−1–10 μg·L−1 | 2015 | [43] |
EDCs | BPA | Surface-enhanced Raman scattering | 10 fM | DNA | Tap water | / | 10 fM–100 nM | 2015 | [106] |
EDCs | PCB77 | Electrochemical | 0.01 μg·L−1 | DNA | Tap water | / | 0.2 μg·L−1–200 μg·L−1 | 2016 | [57] |
EDCs | PCB77 | Colorimetric | 0.05 nM | DNA | Pond water; river water | 96.67–108.78% | 0.5 nM–900 nM | 2017 | [50] |
EDCs | PCB77 | Electrochemical | 0.1 pg·L−1 | DNA | Tap water | / | 1 pg·L−1–10 μg·L−1 | 2017 | [59] |
EDCs | Progesterone | Electrochemical | 0.9 μg·L−1 | DNA | Tap water | / | 10 μg·L−1–60 μg·L−1 | 2015 | [107] |
EDCs | Progesterone | Fluorescence | 110 ng·L−1 | DNA | Tap water | 88.6–95.2% | 10 ng·L−1–100 ng·L−1 | 2017 | [42] |
Drugs | Sulfadimethoxine | Colorimetric | 0.7 μg·L−1 | DNA | Lake water | 95.1–107.8% | 1 μg·L−1–500 μg·L−1 | 2017 | [51] |
Drugs | Quinolones | Fluorescence | 0.1 nM–56.9 nM a | DNA | Sewage plant; wetlands and tap water | / | / | 2015 | [108] |
Drugs | Ampicillin | Fluorescence | 0.07 μg·L−1 | DNA | Polluted river water | 90.0–120.0% | 0.1 μg·L−1–100 μg·L−1 | 2017 | [44] |
Drugs | Kanamycin A | Fluorescence | 0.5 μM | DNA | Cleaned waste water | / | 0–50 μM | 2014 | [109] |
Drugs | Oxytetracycline | Fluorescence | 0.1 nM | DNA | Tap water | 97.5–98.5% | 0.5 nM–100 nM | 2015 | [110] |
Drugs | Oxytetracycline | Colorimetric | 1 nM | DNA | Tap water | / | 0–5 nM | 2015 | [111] |
Pesticides | Acetamiprid | Electrochemical | 0.017 fM | DNA | Water | 96.0–106.6% | 0.05 fM–0.1 μM | 2015 | [112] |
Pesticides | Acetamiprid | Resonance light-scattering | 1.2 nM | DNA | Lake water | 92.2–112.6% | 0–100 nM | 2016 | [113] |
Pesticides | Acetamiprid | Electrochemical | 1 pM | DNA | Tap water Mineral water | 86.0–102.0% 106.0–112.0% | 10 pM–100 pM | 2017 | [58] |
Pesticides | Malathion | Colorimetric | 0.06 pM | DNA | Lake water | 88.0–104.0% | 0.5 pM–1000 pM | 2016 | [114] |
Pesticides | Isocarbophos | Colorimetric | / | DNA | River water | 72.0% | / | 2015 | [115] |
Pesticides | Phosalone | Colorimetric | / | DNA | River water | 135.0% | / | 2015 | [115] |
Pesticides | Methamidophos | Colorimetric | / | DNA | River water | 123.0% | / | 2015 | [115] |
Pesticides | Acephate | Colorimetric | / | DNA | River water | 89.0% | / | 2015 | [115] |
Pesticides | Trichlorfon | Colorimetric | / | DNA | River water | 78.0% | / | 2015 | [115] |
Pesticides | Dursban | Colorimetric | / | DNA | River water | 80.0% | / | 2015 | [115] |
Pesticides | Atrazine | Electrochemical | 10 pM | DNA | Tap water Mineral water | 79.0–99.0% 106.0–113.0% | 100 pM–1 μM | 2017 | [58] |
Others | TNT | Chemiluminescent | 17 ng·L−1 | Peptide | River water | 90.0–108.0% | 0.05 μg·L−1–25 μg·L−1 | 2017 | [116] |
Others | Ethanolamine | Electrochemical | 0.08 nM | DNA | Tap water | / | 0.16 nM–16 nM | 2016 | [117] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Liu, Q.X.; Guo, Z.H.; Lin, J.S. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources. Molecules 2018, 23, 344. https://doi.org/10.3390/molecules23020344
Zhang W, Liu QX, Guo ZH, Lin JS. Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources. Molecules. 2018; 23(2):344. https://doi.org/10.3390/molecules23020344
Chicago/Turabian StyleZhang, Wei, Qing Xiu Liu, Zhi Hou Guo, and Jun Sheng Lin. 2018. "Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources" Molecules 23, no. 2: 344. https://doi.org/10.3390/molecules23020344
APA StyleZhang, W., Liu, Q. X., Guo, Z. H., & Lin, J. S. (2018). Practical Application of Aptamer-Based Biosensors in Detection of Low Molecular Weight Pollutants in Water Sources. Molecules, 23(2), 344. https://doi.org/10.3390/molecules23020344