Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Computational Studies
2.2.1. Geometry Optimization with the DFT Method
2.2.2. Global Reactivity Descriptors
2.3. Antibacterial Activity
3. Materials and Methods
3.1. General Methods
3.2. Synthesis of 5-(4-Acetylphenylazo)-4-phenyl-2-substituted thiazoles 2–6
3.3. Synthesis of N-(4-Phenylthiazol-2-yl)-2-arylhydrazono-2-cyano-acetamide derivatives 8a–e
4. Conclusions
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Nechak, R.; Bouzroura, S.A.; Benmalek, Y.; Salhi, L.; Martini, S.P.; Morizur, V.; Dunach, E.; Kolli, B.N. Synthesis and antimicrobial evaluation of novel 4-thiazolodinones containing a pyrone moiety. Synth. Commun. 2015, 45, 262–272. [Google Scholar] [CrossRef]
- Ramagiri, R.K.; Vedula, R.R.; Thupurani, M.K. A facile one-step multi-component approach toward the synthesis of 3-(2-amino-4-thiazolyl)coumarins by using trimethylsilyl isothiocyanate and their antioxidant and anti-inflammatory activity. Phosphorus Sulfur Silicon Relat. Elem. 2015, 190, 1393–1397. [Google Scholar] [CrossRef]
- Branowska, D.; Farahat, A.A.; Kumar, A.; Wenzler, T.; Brun, R.; Liu, Y.; Wilson, W.D.; Boykin, D.W. Synthesis and antiprotozoal activity of 2,5-bis[amidinoaryl]-thiazoles. Bioorg. Med. Chem. 2010, 18, 3551–3558. [Google Scholar] [CrossRef] [PubMed]
- Makam, P.; Thakur, P.K.; Kannan, T. In vitro and in silico antimalarial activity of 2-(2-hydrazinyl)thiazole derivatives. Eur. J. Pharm. Sci. 2014, 52, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem. 2013, 70, 740–749. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, V.; Prashantha Kumar, B.R.; Sankar, S.; Agrawal, R.K. Predicting anti-HIV activity of 1,3,4-thiazolidinone derivatives: 3D-QSAR approach. Eur. J. Med. Chem. 2009, 44, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, N.; Arshad, M.F.; Ahsan, W.; Alam, M.S. Thiazoles: A valuable insight into the recent advances and biological activities. Int. J. Pharm. Sci. Drug Res. 2009, 1, 136–143. [Google Scholar]
- Newman, D.J.; Cragg, G.M.; Snade, K.M. Natural products as sources of new drugs over the period 1981–2002. J. Nat. Prod. 2003, 66, 1022–1037. [Google Scholar] [CrossRef] [PubMed]
- Bagley, M.C.; Dale, J.W.; Merritt, E.A.; Xiong, X. Thiopeptide antibiotics. Chem. Rev. 2005, 105, 685–714. [Google Scholar] [CrossRef] [PubMed]
- Mishra, C.B.; Kumari, S.; Tiwari, M. Thiazole: A promising heterocycle for the development of potent CNS active agents. Eur. J. Med. Chem. 2015, 92, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Laine, L.; Kivitz, A.J.; Bello, A.E.; Grahn, A.Y.; Schiff, M.H.; Taha, A.S. Double-blind randomized trials of single-tablet ibuprofen/high-dose famotidine vs. ibuprofen alone for reduction of gastric and duodenal ulcers. Am. J. Gastroenterol. 2012, 107, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Borelli, C.; Schaller, M.; Niewerth, M.; Nocker, K.; Baasner, B.; Berg, D.; Tiemann, R.; Tietjen, K.; Fugmann, B.; Lang-Fugmann, S.; et al. Modes of action of the new arylguanidine abafungin beyond interference with ergosterol biosynthesis and in vitro activity against medically important fungi. Chemotherapy 2008, 54, 245–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guay, D.R.P. Cefdinir: An advanced-generation, broad-spectrum oral cephalosporin. Clin. Ther. 2002, 24, 473–489. [Google Scholar] [CrossRef]
- Ueno, K.; Tanaka, K.; Tsujimura, K.; Morishima, Y.; Iwashiqe, H.; Yamazki, K.; Nakata, I. Impairment of cefdinir absorption by iron ion. Clin. Pharmacol. Ther. 1993, 54, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Obach, R.S.; Kalgutkar, A.S.; Ryder, T.F.; Walker, G.S. In vitro metabolism and covalent binding of enol-carboxamide derivatives and anti-inflammatory agents sudoxicam and meloxicam: Insights into the hepatotoxicity of sudoxicam. Chem. Res. Toxicol. 2008, 21, 1890–1899. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, G.; Homma, D.; Schlegel, K.; Utzmann, R.; Schnitzler, C. Anti-inflammatory, analgesic, antipyretic and related properties of meloxicam, a new non-steroidal anti-inflammatory agent with favourable gastrointestinal tolerance. Inflamm. Res. 1995, 44, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Kaupp, G.; Amer, F.A.; Metwally, M.A.; Abdel-Latif, E. Versatile 2-aminothiazoles, building blocks for highly functionalised heterocycles. J. Heterocycl. Chem. 2003, 40, 963–971. [Google Scholar] [CrossRef]
- Wu, X.; Ray, A.K. Density-functional study of water adsorption on the PuO2 (110) surface. Phys. Rev. B 2002, 65, 85403–85409. [Google Scholar] [CrossRef]
- Hehre, W.J.; Radom, L.; Schleyer, P.V.R.; Pople, J.A. Ab Initio Molecular Orbital Theory; John Wiley: New York, NY, USA, 1986. [Google Scholar]
- Materials Studio, version 6.0; Accelrys Software Inc.: San Diego, CA, USA, 2011.
- Hammer, B.; Hansen, L.B.; Nørskov, J.K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421. [Google Scholar] [CrossRef] [Green Version]
- Matveev, A.; Staufer, M.; Mayer, M.; Rösch, N. Density functional study of small molecules and transition-metal carbonyls using revised PBE functionals. Int. J. Quantum Chem. 1999, 75, 863–873. [Google Scholar] [CrossRef]
- Hatakeyama, T.; Quinn, F.X. Thermal Analysis Fundamentals and Applications to Polymer Science, 2nd ed.; John Wiley and Sons: Chichester, UK, 1994. [Google Scholar]
- El-Gammal, O.A. Synthesis, characterization, molecular modeling and antimicrobial activity of 2-(2-(ethylcarbamothioyl)hydrazinyl)-2-oxo-N-phenylacetamide copper complexes. Spectrochim. Acta Part A 2010, 75, 533–542. [Google Scholar] [CrossRef] [PubMed]
- El-Gammal, O.A.; Rakha, T.H.; Metwally, H.M.; Abu El-Reash, G.M. Synthesis, characterization, DFT and biological studies of isatinpicolinohydrazone and its Zn(II), Cd(II) and Hg(II) complexes. Spectrochim. Acta Part A 2014, 127, 144–156. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Periandy, S.; Carthigayen, K. FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene. Spectrochim. Acta Part A 2012, 97, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Stylianakis, I.; Kolocouris, A.; Kolocouris, N.; Fytas, G.; Foscolos, G.B.; Padalko, E.; Neyts, J.; Clercq, E.D. Spiro[pyrrolidine-2,2′-adamantanes]: Synthesis, anti-influenza virus activity and conformational properties. Bioorg. Med. Chem. Lett. 2003, 13, 1699–1703. [Google Scholar] [CrossRef]
- Lawrence, P.G.; Harold, P.L.; Francis, O.G. Antibiotic and Chemotherapy; Edinburgh: London, UK, 1980; Volume 5, p. 1597. [Google Scholar]
- Koch, A.L. Bacterial wall as target for attack: Past, present, and future research. Clin. Microbiol. Rev. 2003, 16, 673–687. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the author. |
Cpd. No. | EHOMO | ELUOM | EHOMO-ELUOM | χ | μ | η | S | ω | σ | Binding Energy |
---|---|---|---|---|---|---|---|---|---|---|
2 | −4.718 | −3.128 | −1.590 | 3.923 | −3.923 | 0.795 | 0.629 | 9.679 | 1.258 | −4292.325 |
3 | −4.493 | −2.916 | −1.577 | 3.704 | −3.704 | 0.788 | 0.634 | 8.702 | 1.268 | −4865.082 |
4 | −4.872 | −3.287 | −1.585 | 4.079 | −4.079 | 0.792 | 0.631 | 10.499 | 1.262 | −5828.195 |
5 | −4.938 | −3.353 | −1.585 | 4.145 | −4.145 | 0.792 | 0.631 | 10.842 | 1.262 | −4844.288 |
6 | −4.885 | −3.317 | −1.568 | 4.101 | −4.101 | 0.784 | 0.638 | 10.726 | 1.275 | −6461.612 |
8a | −4.684 | −2.857 | −1.827 | 3.771 | −3.771 | 0.913 | 0.547 | 7.781 | 1.095 | −4488.996 |
8b | −5.147 | −3.809 | −1.338 | 4.478 | −4.478 | 0.669 | 0.747 | 14.987 | 1.495 | −4724.220 |
8c | −5.127 | −3.78 | −1.347 | 4.453 | −4.453 | 0.6735 | 0.742 | 14.724 | 1.485 | −4725.903 |
8d | −4.802 | −3.047 | −1.755 | 3.924 | −3.924 | 0.8775 | 0.569 | 8.7758 | 1.139 | −4618.547 |
8e | −5.392 | −3.654 | −1.738 | 4.523 | −4.523 | 0.869 | 0.575 | 11.771 | 1.151 | −5491.744 |
Compound Number | E. coli (mg/mL) | |
---|---|---|
Diameter of Inhibition Zone (in mm) | % Activity Index | |
2 | 8 | 33.3 |
3 | 12 | 50.0 |
4 | NA | ---- |
5 | 15 | 62.5 |
6 | 19 | 79.2 |
8a | 16 | 66.7 |
8b | 18 | 75.0 |
8c | 14 | 58.3 |
8d | 16 | 66.7 |
8e | NA | ---- |
Ampicillin | 24 | 100 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Melha, S. Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules 2018, 23, 434. https://doi.org/10.3390/molecules23020434
Abu-Melha S. Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules. 2018; 23(2):434. https://doi.org/10.3390/molecules23020434
Chicago/Turabian StyleAbu-Melha, Sraa. 2018. "Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents" Molecules 23, no. 2: 434. https://doi.org/10.3390/molecules23020434
APA StyleAbu-Melha, S. (2018). Design, Synthesis and DFT/DNP Modeling Study of New 2-Amino-5-arylazothiazole Derivatives as Potential Antibacterial Agents. Molecules, 23(2), 434. https://doi.org/10.3390/molecules23020434