Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Features of the Chloroplast Genomes of P. rhoeas and P. orientale
2.2. Codon Usage Analysis
2.3. Simple Sequence Repeats and Repeat Structure Analysis
2.4. IR Contraction and Expansion
2.5. Comparative Genome Analysis
2.7. Phylogenetic Analysis
3. Materials and Methods
3.1. Plant Material, DNA Extraction, and Sequencing
3.2. Chloroplast Genome Assembly and Annotation
3.3. Genome Structure Analysis and Genome Comparison
3.4. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
LSC | large single copy |
SSC | small single copy |
IR | inverted repeat |
SSR | simple sequence repeats |
References
- The Editorial Committee of Flora of China. Flora of China; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2008; Volume 7, pp. 278–280. [Google Scholar]
- Goldblatt, P. Biosystematic studies in Papaver section oxytona. Ann. Mo. Bot. Gard. 1974, 61, 264–296. [Google Scholar] [CrossRef]
- Hosokawa, K.; Shibata, T.; Nakamura, I.; Hishida, A. Discrimination among species of Papaver based on the plastid rpl16 gene and the rpl16-rpl14 spacer sequence. Forensic Sci. Int. 2004, 139, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Osalou, A.R.; Rouyandezagh, S.D.; Alizadeh, B.; Er, C.; Sevimay, C.S. A comparison of ice cold water pretreatment and α-bromonaphthalene cytogenetic method for identification of Papaver species. Sci. World J. 2013, 2013, 608650. [Google Scholar]
- Sarin, R. Enhancement of opium alkaloids production in callus culture of Papaver rhoeas linn. Indian J. Biotechnol. 2003, 2, 271–272. [Google Scholar]
- Shafiee, A.; Lalezari, I.; Assadi, F.; Khalafi, F. Alkaloids of Papaver orientale L. J. Pharm. Sci. 1977, 66, 1050–1052. [Google Scholar] [CrossRef] [PubMed]
- Soulimani, R.; Younos, C.; Jarmouni-Idrissi, S.; Bousta, D.; Khallouki, F.; Laila, A. Behavioral and pharmaco-toxicological study of Papaver rhoeas L. in mice. J. Ethnopharmacol. 2001, 74, 265–274. [Google Scholar] [CrossRef]
- Gürbüz, İ.; Üstün, O.; Yesilada, E.; Sezik, E.; Kutsal, O. Anti-ulcerogenic activity of some plants used as folk remedy in Turkey. J. Ethnopharmacol. 2003, 88, 93–97. [Google Scholar] [CrossRef]
- Sariyar, G.; Baytop, T. Alkaloids from Papaver pseudo-orientale (P. lasiothrix) of Turkish origin. Planta Med. 1980, 38, 378–380. [Google Scholar] [CrossRef]
- Ekici, L. Effects of concentration methods on bioactivity and color properties of poppy (Papaver rhoeas L.) sorbet, a traditional Turkish beverage. Food Sci. Technol. 2014, 56, 40–48. [Google Scholar] [CrossRef]
- Gonullu, H.; Karadas, S.; Dulger, A.C.; Ebinc, S. Hepatotoxicity associated with the ingestion of Papaver rhoease. JPMA J. Pak. Med. Assoc. 2014, 64, 1189–1190. [Google Scholar] [PubMed]
- Günaydın, Y.K.; Dündar, Z.D.; Çekmen, B.; Akıllı, N.B.; Köylü, R.; Cander, B. Intoxication due to Papaver rhoeas (corn poppy): Five case reports. Case Rep. Med. 2015, 2015, 321360. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Cheng, B.W.; Li, H. A preliminary study on species differences among Papaver somniferum L.; Papaver rhoeas L. and Cannabis sativa L. by AFLP technique. Chin. J. Forensic Med. 2008, 23, 157–159. [Google Scholar]
- Zhang, C.J.; Cheng, C.G. Identification of Papaver somniferum L. And Papaver rhoeas using DSWT-FTIR-RBFNN. Spectrosc. Spect. Anal. 2009, 29, 1255–1259. [Google Scholar]
- Zhang, S.; Liu, Y.J.; Wu, Y.S.; Cao, Y.; Yuan, Y. Screening potential DNA barcode regions of genus Papaver. China J. Chin. Mater. Med. 2015, 40, 2964–2969. [Google Scholar]
- Daniell, H.; Chan, H.T.; Pasoreck, E.K. Vaccination via chloroplast genetics: Affordable protein drugs for the prevention and treatment of inherited or infectious human diseases. Annu. Rev. Genet. 2016, 50, 595–618. [Google Scholar] [CrossRef] [PubMed]
- Bock, R. Cell and Molecular Biology of Plastids; Springer: Berlin/Heidelberg, Germany, 2007; p. 377. [Google Scholar]
- Asaf, S.; Khan, A.L.; Khan, M.A.; Waqas, M.; Kang, S.-M.; Yun, B.-W.; Lee, I.-J. Chloroplast genomes of Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea: Structures and comparative analysis. Sci. Rep. 2017, 7, 7556. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhan, D.F.; Jia, X.; Mei, W.L.; Dai, H.F.; Chen, X.T.; Peng, S.Q. Complete chloroplast genome sequence of Aquilaria sinensis (Lour.) gilg and evolution analysis within the Malvales order. Front. Plant Sci. 2016, 7, 280. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.H.; Chan, M.T.; Liao, D.C.; Hsu, C.T.; Lee, Y.W.; Daniell, H.; Duvall, M.R.; Lin, C.S. Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol. 2010, 10, 68. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, X.; Cui, Y.; Sun, W.; Li, Y.; Wang, Y.; Song, J.; Yao, H. Molecular structure and phylogenetic analyses of complete chloroplast genomes of two Aristolochia medicinal species. Int. J. Mol. Sci. 2017, 18, 1839. [Google Scholar] [CrossRef] [PubMed]
- Raveendar, S.; Na, Y.W.; Lee, J.R.; Shim, D.; Ma, K.H.; Lee, S.Y.; Chung, J.W. The complete chloroplast genome of Capsicum annuum var. glabriusculum using illumina sequencing. Molecules 2015, 20, 13080–13088. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Zhang, X.W.; Liu, G.M.; Yin, Y.X.; Chen, K.F.; Yun, Q.Z.; Zhao, D.J.; Almssallem, I.S.; Yu, J. The complete chloroplast genome sequence of date palm (Phoenix dactylifera L.). PLoS ONE 2010, 5, e12762. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.; Lickey, E.B.; Schilling, E.E.; Small, R.L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot. 2007, 94, 275–288. [Google Scholar] [CrossRef] [PubMed]
- Shinozaki, K.; Ohme, M.; Tanaka, M.; Wakasugi, T.; Hayashida, N.; Matsubayashi, T.; Zaita, N.; Chunwongse, J.; Obokata, J.; Yamaguchi-Shinozaki, K. The complete nucleotide sequence of the tobacco chloroplast genome: Its gene organization and expression. EMBO J. 1986, 5, 2043–2049. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, K.; Fukuzawa, H.; Kohchi, T.; Shirai, H.; Sano, T.; Sano, S.; Umesono, K.; Shiki, Y.; Takeuchi, M.; Chang, Z. Chloroplast gene organization deduced from complete sequence of liverwort marchantia polymorpha chloroplast DNA. Nature 1986, 322, 572–574. [Google Scholar] [CrossRef]
- Alkan, C.; Sajjadian, S.; Eichler, E.E. Limitations of next-generation genome sequence assembly. Nat. Methods 2011, 8, 61–65. [Google Scholar] [CrossRef] [PubMed]
- NCBI. Genome. Available online: https://www.ncbi.nlm.nih.gov/genome/browse/?report=5 (accessed on 30 November 2017).
- Kim, H.W.; Kim, K.J. Complete plastid genome sequences of Coreanomecon hylomeconoides Nakai (Papaveraceae), a korea endemic genus. Mitochondrial DNA B 2016, 1, 601–602. [Google Scholar] [CrossRef]
- Sun, Y.; Moore, M.J.; Zhang, S.; Soltis, P.S.; Soltis, D.E.; Zhao, T.; Meng, A.; Li, X.; Li, J.; Wang, H. Phylogenomic and structural analyses of 18 complete plastomes across all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Mol. Phylogenet. Evol. 2015, 96, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Li, W.H. The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 1987, 15, 1281–1295. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.J.; Lee, H.L. Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 2004, 11, 247–261. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Gao, H.; Zhu, Y.; Xu, J.; Pang, X.; Yao, H.; Sun, C.; Li, X.; Li, C.; Liu, J.; et al. The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS ONE 2013, 8, e57607. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhou, J.G.; Chen, X.L.; Cui, Y.X.; Xu, Z.C.; Li, Y.H.; Song, J.Y.; Duan, B.Z.; Yao, H. Gene losses and partial deletion of small single-copy regions of the chloroplast genomes of two hemiparasitic taxillus species. Sci. Rep. 2017, 7, 12834. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.H.; Shang, A.Q.; Zhang, S.; Yu, X.Y.; Ren, Y.C.; Yang, M.S.; Wang, J.M. The first complete chloroplast genome sequences of ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. PLoS ONE 2017, 12, e0171264. [Google Scholar] [CrossRef] [PubMed]
- Powell, W.; Morgante, M.; Mcdevitt, R.; Vendramin, G.G.; Rafalski, J.A. Polymorphic simple sequence repeat regions in chloroplast genomes: Applications to the population genetics of pines. Proc. Natl. Acad. Sci. USA 1995, 92, 7759–7763. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.H.; Zhang, J.J.; Yao, X.H.; Huang, H.W. Chloroplast microsatellite markers in Liriodendron tulipifera (Magnoliaceae) and cross-species amplification in L. chinense. Am. J. Bot. 2011, 98, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Jia, H.M.; Li, X.W.; Chai, M.L.; Jia, H.J.; Chen, Z.; Wang, G.Y.; Chai, C.Y.; Weg, E.V.D.; Gao, Z.S. Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genom. 2012, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Yang, S.; Choi, G.; Kim, W.J.; Moon, B.C. The complete chloroplast genome sequences of aconitum pseudolaeve and aconitum longecassidatum, and development of molecular markers for distinguishing species in the aconitum subgenus lycoctonum. Molecules 2017, 22, 2012. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Liu, B.; Xie, Y.; Li, Z.; Huang, W.; Yuan, J.; He, G.; Chen, Y.; Qi, P.; Liu, Y. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Boetzer, M.; Henkel, C.V.; Jansen, H.J.; Butler, D.; Pirovano, W. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 2011, 27, 578–579. [Google Scholar] [CrossRef] [PubMed]
- Wyman, S.K.; Jansen, R.K.; Boore, J.L. Automatic annotation of organellar genomes with DOGMA. Bioinformatics 2004, 20, 3252–3255. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shi, L.; Zhu, Y.; Chen, H.; Zhang, J.; Lin, X.; Guan, X. CPGAVAS, an integrated web server for the annotation, visualization, analysis, and Genbank submission of completely sequenced chloroplast genome sequences. BMC Genom. 2012, 13, 715. [Google Scholar] [CrossRef] [PubMed]
- Lohse, M.; Drechsel, O.; Bock, R. OrganellarGenomeDRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr. Genet. 2007, 52, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- MISA—Microsatellite Identification Tool. Available online: http://pgrc.ipk-gatersleben.de/misa/ (accessed on 21 September 2017).
- Li, X.W.; Gao, H.H.; Wang, Y.T.; Song, J.Y.; Henry, R.; Wu, H.Z.; Hu, Z.G.; Hui, Y.; Luo, H.M.; Luo, K. Complete chloroplast genome sequence of Magnolia grandiflora and comparative analysis with related species. Sci. China Life Sci. 2013, 56, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. Reputer: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef] [PubMed]
- Frazer, K.A.; Pachter, L.; Poliakov, A.; Rubin, E.M.; Dubchak, I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004, 32, W273. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Rozas, J. Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed]
- Posada, D.; Crandall, K.A. Modeltest: Testing the model of DNA substitution. Bioinformatics 1998, 14, 817–818. [Google Scholar] [CrossRef] [PubMed]
- Swofford, D.L. Paup: Phylogenetic Analysis Using Parsimony (and Other Methods); Version 4.0b10; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Species | Regions | Positions | T(U) (%) | C (%) | A (%) | G (%) | Length (bp) |
---|---|---|---|---|---|---|---|
P. rhoeas | LSC | 31.9 | 19.2 | 30.8 | 18.1 | 83,172 | |
SSC | 33.3 | 17.8 | 33.3 | 15.6 | 17,971 | ||
IRa | 28.6 | 22.2 | 28.3 | 21.0 | 25,881 | ||
IRb | 28.3 | 21.0 | 28.6 | 22.2 | 25,881 | ||
Total | 30.9 | 19.8 | 30.3 | 19.0 | 152,905 | ||
CDS 1 | 31.0 | 18.0 | 30.4 | 20.6 | 78,285 | ||
1st position 2 | 23.5 | 18.9 | 30.4 | 27.2 | 26,095 | ||
2nd position 3 | 32.1 | 20.6 | 29.2 | 18.1 | 26,095 | ||
3rd position 4 | 37.4 | 14.6 | 31.5 | 16.5 | 26,095 | ||
P. orientale | LSC | 32.0 | 19.1 | 30.9 | 18.1 | 83,151 | |
SSC | 33.4 | 17.7 | 33.5 | 15.4 | 17,934 | ||
IRa | 28.6 | 22.2 | 28.3 | 20.9 | 25,857 | ||
IRb | 28.3 | 20.9 | 28.6 | 22.2 | 25,857 | ||
Total | 31.0 | 19.7 | 30.4 | 18.9 | 152,799 | ||
CDS | 31.1 | 18.0 | 30.4 | 20.6 | 78,117 | ||
1st position | 23.5 | 18.9 | 30.4 | 27.2 | 26,039 | ||
2nd position | 32.2 | 20.5 | 29.2 | 18.1 | 26,039 | ||
3rd position | 37.5 | 14.6 | 31.5 | 16.4 | 26,039 |
Classificaion of Genes | Gene Names | Number of Genes |
---|---|---|
Photosystem I | psaA, psaB, psaC, psaI, psaJ | 5 |
Photosystem II | psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ | 15 |
Cytochrome b/f complex | petA, petB *, petD *, petG, petL, petN | 6 |
ATP synthase | atpA, atpB, atpE, atpF *, atpH, atpI | 6 |
NADH dehydrogenase | ndhA *, ndhB *(×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK | 12 |
RubisCO large subunit | rbcL | 1 |
RNA polymerase | rpoA, rpoB, rpoC1 *, rpoC2 | 4 |
Ribosomal proteins (SSU) | rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12 **(×2), rps14, rps15, rps16 *, rps18, rps19 | 14 |
Ribosomal proteins (LSU) | rpl2 *(×2), rpl14, rpl16 *, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36 | 11 |
Ribosomal RNAs | rrn4.5(×2), rrn5(×2), rrn16(×2), rrn23(×2) | 8 |
Proteins of unknown function | ycf1(×2), ycf2(×2), ycf3 **, ycf4 | 6 |
Transfer RNAs | 37 tRNAs (6 contain an intron, 7 in the inverted repeats (IRs)) | 37 |
Other genes | accD, clpP **, matK, ccsA, cemA, infA | 6 |
SSR Type | Repeat Unit | Amount | Ratio(%) | ||
---|---|---|---|---|---|
P. rhoeas | P. orientale | P. rhoeas | P. orientale | ||
Mono | A/T | 72 | 83 | 92.3 | 92.2 |
C/G | 6 | 7 | 7.7 | 7.8 | |
Di | AG/CT | 20 | 18 | 52.6 | 51.4 |
AT/AT | 16 | 15 | 42.1 | 42.9 | |
AC/GT | 2 | 2 | 5.3 | 5.7 | |
Tri | AAG/CTT | 25 | 25 | 41.7 | 43.9 |
AAT/ATT | 12 | 12 | 20.0 | 21.1 | |
AAC/GTT | 8 | 8 | 13.3 | 14.0 | |
ACC/GGT | 3 | 1 | 5.0 | 1.7 | |
ACT/AGT | 1 | 1 | 1.7 | 1.7 | |
AGC/CTG | 5 | 5 | 8.3 | 8.8 | |
AGG/CCT | 3 | 2 | 5.0 | 3.5 | |
ATC/ATG | 3 | 3 | 5.0 | 5.3 | |
Tetra | AAAC/GTTT | 1 | 1 | 25.0 | 25.0 |
AAAT/ATTT | 1 | 1 | 25.0 | 25.0 | |
AACC/GGTT | 1 | 1 | 25.0 | 25.0 | |
AGAT/ATCT | 1 | 1 | 25.0 | 25.0 | |
Hexa | AAGAAT/ATTCTT | 2 | 0 | 100.0 | 0.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Cui, Y.; Chen, X.; Li, Y.; Xu, Z.; Duan, B.; Li, Y.; Song, J.; Yao, H. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis. Molecules 2018, 23, 437. https://doi.org/10.3390/molecules23020437
Zhou J, Cui Y, Chen X, Li Y, Xu Z, Duan B, Li Y, Song J, Yao H. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis. Molecules. 2018; 23(2):437. https://doi.org/10.3390/molecules23020437
Chicago/Turabian StyleZhou, Jianguo, Yingxian Cui, Xinlian Chen, Ying Li, Zhichao Xu, Baozhong Duan, Yonghua Li, Jingyuan Song, and Hui Yao. 2018. "Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis" Molecules 23, no. 2: 437. https://doi.org/10.3390/molecules23020437
APA StyleZhou, J., Cui, Y., Chen, X., Li, Y., Xu, Z., Duan, B., Li, Y., Song, J., & Yao, H. (2018). Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis. Molecules, 23(2), 437. https://doi.org/10.3390/molecules23020437