Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of the 1,4-Dihydropyridines
2.2. P-glycoprotein Inhibitory Activity of the 1,4-Dihydropyridines
2.3. Antituberculotic Drug Toxicity Enhancing Properties of the 1,4-Dihydropyridines
2.4. Efflux Pumps as a Potential Target of the 1,4-Dihydropyridines
3. Material and Methods
3.1. Chemical Reagents and Instruments
3.2. General Procedure for the Synthesis of Compounds 1–10
3.3. P-gp Inhibitory Activity
3.4. Mtb Growth Inhibition Assay
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Global Tuberculosis Report 2017. Available online: www.who.int/publications/global-report/en/ (accessed on 3 March 2018).
- American Thoracic Society and Infectious Diseases Society of America. Treatment of tuberculosis. MMWR Recomm. Rep. 2003, 52, 1–77.
- Tuberculosis (TB) Treatment & Management. Available online: https://emidicine.medscape.com/article/23802-treatment (accessed on 9 November 2017).
- Spiegelmann, M.K. New tuberculosis therapeutics: A growing pipeline. J. Infect. Dis. 2007, 196, S28–S34. [Google Scholar] [CrossRef] [PubMed]
- Vesenbeckh, S.; Krieger, D.; Bettermann, G.; Schönfeld, N.; Bauer, T.T.; Rüssmann, H.; Mauch, H. Neuroleptic drugs in the treatment of tuberculosis: Minimal inhibitory concentrations of phenothiazines against Mycobacterium tuberculosis. Tuberculosis 2016, 98, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Kurbatova, E.V.; Cavanaugh, J.S.; Dalton, T.; Click, E.; Cegielski, J.P. Epidemiology of pyrazinamide-resistant tuberculosis in the United States, 1999–2009. Clin. Infect. Dis. 2013, 57, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Increasing Prevalence of Pyrazinamide-Resistant Tuberculosis. Available online: http://www.medscape.com/viewarticle/808192 (accessed on 29 July 2013).
- Rodrigues, L.; Parish, T.; Balganesh, M.; Ainsa, J.A. Antituberculosis drugs: Reducing efflux = increasing activity. Drug Discov. Today 2017, 22, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Katayama, K.; Noguchi, K.; Sugimoto, Y. Regulations of P-Glycoprotein/ABCB1/MDR1 in Human Cancer Cells. New J. Sci. 2014, 2014. [Google Scholar] [CrossRef]
- Swarnalatha, G.; Prasanthi, G.; Sirisha, N.; Madhusudhana Chetty, C. 1,4-Diyhdropyridines: A Multifunctional Molecule—A Review. Int. J. ChemTech Res. 2011, 3, 75–89. [Google Scholar]
- Blajovan, R.; Modra, D. The study synthesis of nifedipine—Calcium antagonist. Ann. West Univ. Timis. 2013, 22, 47–56. [Google Scholar]
- Getahun, H.; Matteelli, A.; Chaisson, R.E.; Raviglione, M. Latent Mycobacterium Infection. N. Engl. J. Med. 2015, 372, 2127–2135. [Google Scholar] [CrossRef] [PubMed]
- Garima, K.; Pathak, R.; Tandon, R.; Rathor, N.; Sinha, R.; Bose, M.; Varma-Basil, M. Differential expression of efflux pump genes of Mycobacterium tuberculosis in response to varied subinhibitory concentrations of antituberculotic agents. Tuberculosis 2015, 95, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Michelucci, A.; Cordes, T.; Ghelfi, J.; Pailot, A.; Reiling, N.; Goldman, O.; Binz, T.; Wegner, A.; Tallam, A.; Rausell, A. Immuneresponsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc. Natl. Acad. Sci. USA 2013, 110, 7820–7825. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds not are available from the authors. |
Cpd. | R1 | R2 | Increased Growth Inhibition (%) a,b | FAR Value a |
---|---|---|---|---|
1 | H | H | 35 ± 1.6 | n.d. c |
2 | H | 2-Me | 49 ± 0.7 | 1.45 ± 0.09 |
3 | H | 2-Cl | 61 ± 6.3 | 2.59 ± 0.14 |
4 | H | 3-Me | 64 ± 2.5 | 1.57 ± 0.09 |
5 | H | 3-Cl | 80 ± 0.8 | 3.61 ± 0.22 |
6 | 3-MeO | H | 12 ± 0.7 | 2.21 ± 0.31 |
7 | 3-MeO | 2-Me | 52 ± 1.0 | 1.53 ± 0.09 |
8 | 3-MeO | 3-Me | 86 ± 1.3 | 1.48 ± 0.08 |
9 | 3-MeO | 3-Cl | 79 ± 1.3 | 1.57 ± 0.09 |
10 | 3-NO2 | 3-Me | 76 ± 1.3 | 4.05 ± 0.71 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lentz, F.; Reiling, N.; Martins, A.; Molnár, J.; Hilgeroth, A. Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis. Molecules 2018, 23, 825. https://doi.org/10.3390/molecules23040825
Lentz F, Reiling N, Martins A, Molnár J, Hilgeroth A. Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis. Molecules. 2018; 23(4):825. https://doi.org/10.3390/molecules23040825
Chicago/Turabian StyleLentz, Fabian, Norbert Reiling, Ana Martins, Joseph Molnár, and Andreas Hilgeroth. 2018. "Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis" Molecules 23, no. 4: 825. https://doi.org/10.3390/molecules23040825
APA StyleLentz, F., Reiling, N., Martins, A., Molnár, J., & Hilgeroth, A. (2018). Discovery of Novel Enhancers of Isoniazid Toxicity in Mycobacterium tuberculosis. Molecules, 23(4), 825. https://doi.org/10.3390/molecules23040825