Next Article in Journal
Fluorescent Dendritic Micro-Hydrogels: Synthesis, Analysis and Use in Single-Cell Detection
Previous Article in Journal
Huberine, a New Canthin-6-One Alkaloid from the Bark of Picrolemma huberi
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Structural Diversity and Biological Activities of Diterpenoids Derived from Euphorbia fischeriana Steud

1
Graduate School of Heilongjiang University of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
2
Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
*
Author to whom correspondence should be addressed.
Molecules 2018, 23(4), 935; https://doi.org/10.3390/molecules23040935
Submission received: 9 March 2018 / Revised: 26 March 2018 / Accepted: 6 April 2018 / Published: 18 April 2018

Abstract

:
Diterpenoids are the focus of natural product drug discovery because of their great structural diversity and pronounced biological activities. Euphorbia fischeriana Steud is a Chinese traditional medicinal herb for curing edema, ascites, and cancer. This plant contains rich diterpenoids. Based on the carbon skeleton and substituents, it can be classified into thirteen subtypes: ent-abietane, daphnane, tigliane, ingenane, ent-atisane, ent-rosane, ent-kaurene, ent-kaurane, secotigliane, lathyrane, ent-pimarene, isopimarene and dimeric. In this paper, we reviewed the chemical structures and biological activities of 90 diterpenoids isolated from this medicinal herb. We hope that this work can serve as a reference for further research of these diterpenoids and lay the foundation for drug discovery.

1. Introduction

Euphorbia fischeriana Steud is a perennial herbaceous plant belonging to the family Euphorbiaceae, which is primarily distributed in northeastern mainland China [1]. The dried plant roots of E. fischeriana in traditional Chinese medicine, have been used as a remedy for the treatment of ailments, including edema, ascites and cancer [2,3,4]. The main components of E. fischeriana are diterpenoids, triterpenes, steroids, aromatic compounds and tannins [3]. Among them, diterpenoids are the primary bioactive constituents of this plant. Diterpenoids are a focus of natural product drug discovery because of their great structural diversity and pronounced biological activities [5]. In the last few years, a tigliane-type diterpenoid prostratin extracted from the roots of E. fischeriana has attracted great interest because of its unique ability to activate latent viral reservoirs and protect healthy cells from infection [5,6]. It is a protein kinase C activator that can reactivate HIV-1 latency and help to avoid the new infection of CD4+ Cells [5,6]. It brings new hope for the treatment of HIV. This result encouraged us to screen more bioactive diterpenoids from E. fischeriana for disease treatment.
In this review article, we focus on the structures and biological activities of 90 diterpenoids with different structures derived from E. fischeriana. We hope this work can serve as a reference for drug discovery.

2. Chemical Structure of Diterpenoids Derived from E. fischeriana

Diterpenoids are the major components of E. fischeriana. According to the literature, almost 90 diterpenoids have been isolated from the roots of this plant since the 1970s. Types of diterpenoids include ent-abietane, daphnane, tigliane, ingenane, ent-atisane, ent-rosane, ent-kaurene, ent-kaurane, secotigliane lathyrane, ent-pimarene, isopimarene and dimeric. Their names, subtypes and corresponding references are compiled in Table 1. Their chemical structures (190) are shown in Figure 1.

3. Biological Activities of Diterpenoids

Diterpenoids isolated from E. fischeriana exert many different activities, including antitumor, anti-inflammatory, anti-HIV-1, feeding deterrent and others.

3.1. Antitumor Activity

Many investigations have been performed on the antitumor activity of diterpenoids from E. fischeriana. Compounds with different skeletal types (e.g., abietane, ingenane, tigliane and lathyrane) proved to have moderate or strong antiproliferative effects on different human cancer cell lines [5,15]. Jolkinolide B (1), a typical ent-abietane-type diterpenoid isolated from E. fischeriana, was found to induce time- and dose-dependent cytotoxicity in cells derived from liver [18], breast [19,20], gastric [18], cervical cancers [18], as well as human leukemic [21,22]. The anticancer effect of Jolkinolide B are associated with various kinds of mechanisms. Jolkinolide B is capable of inducing apoptosis in breast cancer cells through inhibition of the PI3K/Akt signaling pathway [19,20]. It can block cell cycles at G1 in human myeloid Leukemic cell K562 [22]. Moreover, it restrains the metastasis in breast cancer MDA-MB-231 cells through suppression of β1-integrin expression and phosphorylation of focal adhesion kinase (FAK) [23]. 17-Acetoxyjolkinolide B (4), has the potential to irreversibly inhibit IκB kinase and induce apoptosis of tumor cells. Nuclear factor-κB (NF-κB) plays an important role in tumor cell survival, growth, angiogenesis, and metastasis. 17-Acetoxyjolkinolide B is a novel type of anticancer drug candidate, as a NF-κB pathway inhibitor [24]. 17-Hydroxyjolkinolide B (5), a natural bioactive molecule, exerts its cytotoxicity against liver [18], breast 18], gastric [18], cervical [18], lung [18], ovarian [25], prostate [25], colorectal [25], cervix cancers [25]. Thorough examination proved that 17-hydroxyjolkinolide B can inhibit signal transducers and activators of transcription 3 signaling by covalently cross-linking Janus kinases and induce apoptosis of human cancer cells [25]. 12-deoxyphorbol 13-palmitate (32), a tigliane-type diterpenoid isolated from E. fischerian is another effective antineoplastic compound. 12-Deoxyphorbol 13-palmitate was found to mediate cell growth inhibition, G2-M cell cycle arrest and apoptosis in BGC823 cells [26]. It also reportedly has the ability to inhibit VEGF induced angiogenesis via suppression of VEGFR-2-signaling pathway [27]. Three ingenol diterpenoids including ingenol 3-palmitate (76), ingenol-3-myristinate (77), ingenol 6,7-epoxy-3-tetradecanoate (80) showed significant cytotoxicity against A549 with IC50 value of 3.35, 2.85, 2.88 μg/mL, respectively [2]. Two ent-atisane-type diterpenoids ent-1β,3β,16β,17-tetrahydroxyatisane (60), ent-1β,3α,16β,17-tetrahydroxyatisane (61) showed inhibitory effects against MCF-7 with IC50 levels of 23.21 and 15.42 mM [15]. Moreover, 13 diterpenoids, including jolkinolide B (1), euphorin E (9), euphorin H (12), yuexiandajisu E (22), ebractenoid C (48), ebractenoid F (52), euphorinC (53), ent-3β-hydroxyatis-16-ene-2,14-dione (71), 19-O-β-Dglucopyranosyl-ent-atis-16-ene-3,14-dione (73), ingenol-3-palmitate (76), ingenol-3-myristinate (77), ingenol-20-myristinate (79), and jolkinol A (88) showed inhibitory activity on mammosphere formation in human breast cancer MCF-7 cells at a final concentration of 10 μM, suggesting the potential of these bioactive diterpenoids for further investigation of the action targeting cancer stem cells [7,16]. The previous article provide more detailed descriptions about the anticancer mechanisms of these bioactive diterpenoids [28].

3.2. Anti-Inflammatory

Jolkinolide B (1) was reported to have a protective effect on LPS-induced ALI in mice [29]. It was revealed that jolkinolide B significantly inhibited LPS-induced histological alterations, lung edema, inflammatory cell infiltration, myeloperoxidase (MPO) activity [29]. At the molecular level, jolkinolide B reduced the production of TNF-α, IL-6 and IL-1β. Furthermore jolkinolide B was shown to inhibit LPS-induced the degradation of IκBα and phosphorylation of NF-κB p65 and MAPK [29]. 17-Hydroxy-jolkinolide B (5) was found to a potential anti-inflammatory drug candidate. It can inhibit LPS-induced the production of PGE 2, NO, IL-6, and TNF-α in RAW264 cells. 17-Hydroxy-jolkinolide B has the ability to reduce the expression of COX-2, iNOS, IL-6, and TNF-α gene through the suppression of MAPK phosphorylation and NF-κB activation. In addition, it induced the HO-1 expression [30]. Five diterpenoids including jolkinolide B (1), 11β-hydroxy-8,14-epoxy-ent-abieta-13(15)-en-16,12α-olide (8), yuexiandajisu D (23), ebractenoid F (52), jolkinol A (88) exhibited promising inhibitory effects on NO production in LPS-induced RAW 264.7 macrophages [8]. These compounds may be worthy of further investigation for the treatment of inflammatory diseases associated with enhanced production of NO [8]. Here, these studies are summarized in Table 2.

3.3. Anti-HIV-1

Prostratin (28), a tigliane-type diterpenoid, has been shown to be highly effective in inducing HIV-1 reactivation in latent reservoirs of infected Jurkat-LAT-GFP cells [5,31]. Five tigliane-type diterpenoids, including prostratin (28), fischeroside A (37), fischeroside B (38), fischeroside C (39), 12-deoxyphorbol-13,20-diacetate (40), were tested for cytotoxicities against C8166 cells. Compounds 3739 showed weak activity in preventing the cytopathic effects of HIV-1 in C8166 cells [12]. Prostratin exerted the strongest anti-HIV-1 activity, with an EC50 of 0.00006 μM and a TI of 8500 [12]. 12-Deoxyphorbol-13,20-diacetate displayed anti-HIV-1 activity, with an EC50 of 0.003 μM and a TI of 366.67 [12]. This assay demonstrated that introducing an O-acetyl or glucopyranosyl moiety at C-20 of prostratin may dramatically reduce its anti-HIV-1 activity [12].

3.4. Feeding Deterrent

Feeding deterrent activities of 17-hydroxyjolkinolide A (3), 17-hydroxyjolkinolide B (5), jolkinolide B (1), 12-deoxyphorbol 13-(9Z)-octadecenoate 20-acetate (34) have been studied against two stored-product insects, T. castaneum and S. zeamais [4]. The experiment results are shown in Table 3. Jolkinolide B exhibited significant feeding deterrent activity against S. zeamais (EC50 = 342.1) and T. castaneum adults (EC50 = 361.4) [4].

3.5. Other Activities

Three diterpenoids 4β,9α,20-trihydroxy-13,15-secotiglia-1,6-diene-3,13-dione 20-O-β-d-[6-galloyl]glu-copyranoside (45), euphopiloside A (46), ent-8(14)-pimarene-12β,15S,16-triol (87) displayed moderate inhibitory effects against α-glucosidase [13]. These compounds could be applied to slow down the glucose level for diabetes [13]. 17-Hydroxyjolkinolide B (3) exhibited an inhibitory effect against mycobacterium smegmatis [1]. This means that it possesses a potential antituberculosis effect [1]. 17-Hydroxy-jolkinolide A (5) exerted an inhibitory effect on bone loss by preventing osteoclast formation and bone resorption [32]. 17-Hydroxy-jolkinolide A (5) treatment led to down-regulation of the expression of tartrate-resistant acid phosphatase (TRAP), cathepsin K (Cts K) and MMP-9 [32]. This compound may be useful as a therapeutic reagent for bone loss-associated diseases [32]. Here, we summarize these studies in Table 4.

4. Conclusions

Natural plants contain a variety of bioactive compounds. They are frequently used as drugs or lead compounds in drug development. Almost 70% of modern drugs have a natural product origin [5,33,34]. Therefore, searching for compounds with important biological activities from natural plants is of great significance. Diterpenoids are a constant focus of drug discovery because of their great structural diversity, resulting in various bioactivities. E. fischeriana is especially rich in diterpenoids [34]. In this paper, we have summarized 90 diterpenoids that have been isolated and identified from E. fischeriana, many of which are novel diterpenoids. Up to now, the majority of these diterpenoids have not been studied in terms of their biological activities. We hope to discover more potential drug leads in the future study. The mechanisms of bioactive ingredients from E. fischeriana need deeper research. Thoroughly understanding the targets for active compounds will help us to design effective new drugs. This review provides reference for further research of these diterpenoids and lays the foundation for drug discovery.

Acknowledgments

This work was supported by a grant from the National Natural Science Foundation of China (No. 81573660) and the Intramural Research Program of the Qiqihar Medical University (No. QY2016Z-01).

Author Contributions

Baiyu Jian conceived and wrote the manuscript; Hao Zhang collected the literature; Jicheng Liu revised the manuscript.

Conflicts of Interest

The authors declare no conflict of interest

References

  1. Wang, C.J.; Yan, Q.L.; Ma, Y.F.; Sun, C.P.; Chen, C.M.; Tian, X.G.; Han, X.Y.; Wang, C.; Deng, S.; Ma, X.C. Ent-Abietane and Tigliane Diterpenoids from the Roots of Euphorbia fischeriana and Their Inhibitory Effects against Mycobacterium Smegmatis. J. Nat. Prod. 2017, 80, 1248–1254. [Google Scholar] [CrossRef] [PubMed]
  2. Wang, H.B.; Chen, W.; Zhang, Y.Y.; Wang, X.Y.; Liu, L.P.; Tong, L.J.; Chen, Y. Four New Diterpenoids from the Roots of Euphorbia fischeriana. Fitoterapia 2013, 91, 211–216. [Google Scholar] [CrossRef] [PubMed]
  3. Sun, Y.X.; Liu, J.C. Chemical Constituents and Biological Activities of Euphorbia fischeriana Steud. Chem. Biodivers. 2011, 8, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
  4. Geng, Z.F.; Liu, Z.L.; Wang, C.F.; Liu, Q.Z.; Shen, S.M.; Liu, Z.M.; Du, S.S.; Deng, Z.W. Feeding Deterrents against Two Grain Storage Insects from Euphorbia fischeriana. Molecules 2011, 16, 466–476. [Google Scholar] [CrossRef] [PubMed]
  5. Vasas, A.; Hohmann, J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012). Chem. Rev. 2014, 114, 8579–8612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  6. Wang, Y.B.; Huang, R.; Wang, H.B.; Jin, H.Z.; Lou, L.G.; Qin, G.W. Diterpenoids from the Roots of Euphorbia fischeriana. J. Nat. Prod. 2006, 69, 967–970. [Google Scholar] [CrossRef] [PubMed]
  7. Kuang, X.; Li, W.; Kanno, Y.; Yamashita, N.; Kikkawa, S.; Azumaya, I.; Nemoto, K.; Asada, Y.; Koike, K. Euphorins A-H: Bioactive Diterpenoids from Euphorbia fischeriana. J. Nat. Med. 2016, 70, 412–422. [Google Scholar] [CrossRef] [PubMed]
  8. Lee, J.W.; Lee, C.; Jin, Q.; Jang, H.; Lee, D.; Lee, H.J.; Shin, J.W.; Han, S.B.; Hong, J.T.; Kim, Y.; et al. Diterpenoids from the Roots of Euphorbia fischeriana with Inhibitory Effects on Nitric Oxide Production. J. Nat. Prod. 2016, 79, 126–131. [Google Scholar] [CrossRef] [PubMed]
  9. Shi, H.M.; Williams, I.D.; Sung, H.H.; Zhu, H.X.; Ip, N.Y.; Min, Z.D. Cytotoxic Diterpenoids from the Roots of Euphorbia Ebracteolata. Planta Med. 2005, 71, 349–354. [Google Scholar] [CrossRef] [PubMed]
  10. Wang, H.B.; Chu, W.J.; Wang, Y.; Ji, P.; Wang, Y.B.; Yu, Q.; Qin, G.W. Diterpenoids from the Roots of Euphorbia fischeriana. J. Asian Nat. Prod. Res. 2010, 12, 1038–1043. [Google Scholar] [CrossRef] [PubMed]
  11. Wang, M.; Wei, Q.; Wang, Q.H.; Xia, Y.G.; Yang, B.Y.; Kuang, H.X. Antitumor Activity of Tigliane Type Diterpene from Euphorbia fischeriana Steud. Acta Chin. Med. Pharmacol. 2013, 4, 11–14. [Google Scholar]
  12. Pan, L.L.; Fang, P.L.; Zhang, X.J.; Ni, W.; Li, L.; Yang, L.M.; Chen, C.X.; Zheng, Y.T.; Li, C.T.; Hao, X.J.; et al. Tigliane-Type Diterpenoid Glycosides from Euphorbia fischeriana. J. Nat. Prod. 2011, 74, 1508–1512. [Google Scholar] [CrossRef] [PubMed]
  13. Wei, Y.L.; Yu, Z.L.; Huo, X.K.; Tian, X.G.; Feng, L.; Huang, S.S.; Deng, S.; Ma, X.C.; Jia, J.M.; Wang, C. Diterpenoids from the Roots of Euphorbia fischeriana and Their Inhibitory Effects on Alpha-Glucosidase. J. Asian Nat. Prod. Res. 2017, 1–8. [Google Scholar] [CrossRef]
  14. Shi, Q.; Sun, Y.W.; Meng, D. Phytochemical and Cytotoxic Studies on the Roots of Euphorbia fischeriana. Bioorg. Med. Chem. Lett. 2017, 27, 266–270. [Google Scholar] [CrossRef] [PubMed]
  15. Wang, M.; Wang, Q.; Wei, Q.; Li, J.; Guo, C.; Yang, B.; Kuang, H. Two New ent-Atisanes from the Root of Euphorbia fischeriana Steud. Nat. Prod. Res. 2016, 30, 144–149. [Google Scholar] [CrossRef] [PubMed]
  16. Kuang, X.; Li, W.; Kanno, Y.; Yamashita, N.; Nemoto, K.; Asada, Y.; Koike, K. ent-Atisane Diterpenoids from Euphorbia fischeriana Inhibit Mammosphere Formation in MCF-7 Cells. J. Nat. Med. 2016, 70, 120–126. [Google Scholar] [CrossRef] [PubMed]
  17. Wang, J.L.; Wang, Y.Q.; Li, T.; Wang, H.; Zhao, M.; Zhang, S.J. Study on the Chemical Constituents from Fresh Roots of Euphorbia fischeriana. Zhong Yao Cai 2010, 33, 1406–1409. [Google Scholar] [PubMed]
  18. Wang, M.; Li, J.; Qing, W.; Wang, Q.H.; Yang, B.Y.; Kuang, H.X. Antitumor Activity of Abietane Type Diterpene from Euphorbia fischeriana Steud. China Pharm. 2015, 8, 1261–1262. [Google Scholar]
  19. Xu, H.Y.; Chen, Z.W.; Hou, J.C.; Du, F.X.; Liu, J.C. Jolkinolide B Induces Apoptosis in MCF-7 Cells through Inhibition of the PI3k/Akt/Mtor Signaling Pathway. Oncol. Rep. 2013, 29, 212–218. [Google Scholar] [CrossRef] [PubMed]
  20. Lin, Y.; Cui, H.; Xu, H.; Yue, L.; Xu, H.; Jiang, L.; Liu, J. Jolkinolide B Induces Apoptosis in MDA-MB-231 Cells through Inhibition of the PI3k/Akt Signaling Pathway. Oncol. Rep. 2012, 27, 1976–1980. [Google Scholar] [PubMed]
  21. Wang, J.H.; Zhou, Y.J.; Bai, X.; He, P. Jolkinolide B from Euphorbia fischeriana Steud Induces Apoptosis in Human Leukemic U937 Cells through PI3k/Akt and Xiap Pathways. Mol. Cells 2011, 32, 451–457. [Google Scholar] [CrossRef] [PubMed]
  22. Luo, H.; Wang, A. Induction of Apoptosis in K562 Cells by Jolkinolide B. Can. J. Physiol. Pharmacol. 2006, 84, 959–965. [Google Scholar] [CrossRef] [PubMed]
  23. Sun, C.; Cui, H.; Yang, H.; Du, X.; Yue, L.; Liu, J.; Lin, Y.U. Anti-Metastatic Effect of Jolkinolide B and the Mechanism of Activity in Breast Cancer Mda-Mb-231 Cells. Oncol. Lett. 2015, 10, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
  24. Yan, S.S.; Li, Y.; Wang, Y.; Shen, S.S.; Gu, Y.; Wang, H.B.; Qin, G.W.; Yu, Q. 17-Acetoxyjolkinolide B Irreversibly Inhibits Ikappab Kinase and Induces Apoptosis of Tumor Cells. Mol. Cancer Ther. 2008, 7, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
  25. Wang, Y.; Ma, X.; Yan, S.; Shen, S.; Zhu, H.; Gu, Y.; Wang, H.; Qin, G.; Yu, Q. 17-Hydroxy-Jolkinolide B Inhibits Signal Transducers and Activators of Transcription 3 Signaling by Covalently Cross-Linking Janus Kinases and Induces Apoptosis of Human Cancer Cells. Cancer Res. 2009, 69, 7302–7310. [Google Scholar] [CrossRef] [PubMed]
  26. Xu, H.Y.; Chen, Z.W.; Li, H.; Zhou, L.; Liu, F.; Lv, Y.Y.; Liu, J.C. 12-Deoxyphorbol 13-Palmitate Mediated Cell Growth Inhibition, G2-M Cell Cycle Arrest and Apoptosis in BGC823 Cells. Eur. J. Pharmacol. 2013, 700, 13–22. [Google Scholar] [CrossRef] [PubMed]
  27. Xu, H.Y.; Pan, Y.M.; Chen, Z.W.; Lin, Y.; Wang, L.H.; Chen, Y.H.; Jie, T.T.; Lu, Y.Y.; Liu, J.C. 12-Deoxyphorbol 13-Palmitate Inhibit Vegf-Induced Angiogenesis Via Suppression of Vegfr-2-Signaling Pathway. J. Ethnopharmacol. 2013, 146, 724–733. [Google Scholar] [CrossRef] [PubMed]
  28. Jian, B.; Zhang, H.; Han, C.; Liu, J. Anti-Cancer Activities of Diterpenoids Derived from Euphorbia fischeriana Steud. Molecules 2018, 23, 387. [Google Scholar] [CrossRef] [PubMed]
  29. Yang, H.; Li, Y.; Huo, P.; Li, X.O.; Kong, D.; Mu, W.; Fang, W.; Li, L.; Liu, N.; Fang, L.; et al. Protective Effect of Jolkinolide B on Lps-Induced Mouse Acute Lung Injury. Int. Immunopharmacol. 2015, 26, 119–124. [Google Scholar] [CrossRef] [PubMed]
  30. Uto, T.; Qin, G.W.; Morinaga, O.; Shoyama, Y. 17-Hydroxy-Jolkinolide B, a Diterpenoid from Euphorbia fischeriana, Inhibits Inflammatory Mediators but Activates Heme Oxygenase-1 Expression in Lipopolysaccharide-Stimulated Murine Macrophages. Int. Immunopharmacol. 2012, 12, 101–109. [Google Scholar] [CrossRef] [PubMed]
  31. Warrilow, D.; Gardner, J.; Darnell, G.A.; Suhrbier, A.; Harrich, D. Hiv Type 1 Inhibition by Protein Kinase C Modulatory Compounds. AIDS Res. Hum. Retrovir. 2006, 22, 854–864. [Google Scholar] [CrossRef] [PubMed]
  32. Wang, Y.; Xu, X.; Wang, H.B.; Wu, D.; Li, X.O.; Peng, Q.; Liu, N.; Sun, W.C. 17-Hydroxy-Jolkinolide a Inhibits Osteoclast Differentiation through Suppressing the Activation of Nf-Kappab and Mapks. Int. Immunopharmacol. 2015, 29, 513–520. [Google Scholar] [CrossRef] [PubMed]
  33. Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the 30 Years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
  34. Ahmed, A.A.; Mahmoud, A.A.; Ahmed, U.M.; El-Bassuony, A.A.; El-Razk, M.H.A.; Pare, P.W.; Karchesy, J. Manoyl Oxide Alpha-Arabinopyranoside and Grindelic Acid Diterpenoids from Grindelia Integrifolia. J. Nat. Prod. 2001, 64, 1365–1367. [Google Scholar] [CrossRef] [PubMed]
Figure 1. The chemical structures of diterpenoids derived from E. fischeriana.
Figure 1. The chemical structures of diterpenoids derived from E. fischeriana.
Molecules 23 00935 g001aMolecules 23 00935 g001bMolecules 23 00935 g001cMolecules 23 00935 g001d
Table 1. Emerging diterpenoids in E. fischeriana.
Table 1. Emerging diterpenoids in E. fischeriana.
No.CompoundSubtypeRef.
1jolkinolide Bent-abietane[3]
2jolkinolide Aent-abietane[3]
317-hydroxyjolkinolide Bent-abietane[3]
417-acetoxyjolkinolide Bent-abietane[3]
517-hydroxyjolkinolide Aent-abietane[3]
613β-hydroxy-ent-abiet-8(14)-en-7-oneent-abietane[6]
717-acetoxyjolkinolide Aent-abietane[2]
811β-hydroxy-8,14-epoxy-ent-abieta-13(15)-en-16,12-olideent-abietane[2]
9euphorin Eent-abietane[7]
10euphorin Fent-abietane[7]
11euphorin Gent-abietane[7]
12euphorin Hent-abietane[7]
13ent-11α-hydroxy-abieta-8(14),13(15)-dien-16,12α-olideent-abietane[7]
1411α,17-dihydroxyhelioscopinolide Eent-abietane[1]
156β,11α,17-trihydroxyhelioscopinolide Eent-abietane[1]
1611-oxo-ebracteolatanolide Bent-abietane[1]
177-deoxylangduin B.ent-abietane[1]
18ent-11β-hydroxyabieta-8(14),13(15)-dien-16,12β-olideent-abietane[2]
197β,11β,12β-trihydroxy-ent-abieta-8(14),13(15)-dien-16,12-olideent-abietane[1]
20langduin Bent-abietane[1]
21(4R,4aR)-dihydroxy-3-hydroxymethyl-7,7,10a-trimethyl-2,4,4a,5,6,6a,7,8,9,10,10a,l0b-dodecahydrophenanthro[3,2-b]furan-2-oneent-abietane[1]
22yuexiandajisu Eent-abietane[1]
23yuexiandajisu Dent-abietane[8,9]
24fischeriolide Aentt-abietane[8]
25fischeriolide Bent-abietane[8]
26fischeriolide Centt-abietane[8]
27fischeriolide Dent-abietane[8]
28prostratintigliane[3]
2914-didehydrolangduin Atigliane[10]
30langduin Ftigliane[10]
313-hydroxyl-4-dehydro-10-dehydroxylphorboltigliane[10]
3212-deoxyphorbol 13-palmitatetigliane[3]
3312-deoxyphorbaldehyde-13-hexadecacetatetigliane[3]
3412-deoxyphorbol 13-(9Z)-octadecenoate 20-acetatetigliane[4,10]
3513-O-acetyl-phorboltigliane[11]
3612-deoxyphorbaldehyde-13-acetatetigliane[3]
37fischeroside Atigliane[12]
38fischeroside Btigliane[12]
39fischeroside Ctigliane[12]
4012-deoxyphorbol-13,20-diacetatetigliane[12]
419-deoxy-11β-hydroxyprostratintigliane[1]
42prostratin 20-O-(4′-galloyl)-β-d-glucopyranosidetigliane[1]
43prostratin 20-O-(3′-galloyl)-β-d-glucopyranosidetigliane[1]
44langduin Adaphnane[3]
454β,9α,20-trihydroxy-13,15-secotiglia-1,6-diene-3,13-dione 20-O-β-d-[6-galloyl]glu-copyranosidesecotigliane[13]
46euphopiloside Adaphnane[13]
47ent-3β-hydroxy-rosa-1(10),15-dieneent-rosane[7]
48ebractenoid Cent-rosane[7]
49yuexiandajisu Fent-rosane[7]
50euphorin Aent-rosane[7]
51euphorin Bent-rosane[7]
52ebractenoid Fent-rosane[7]
53euphorin Cent-rosane[7]
54fischeria Aent-rosane[7]
55euphorin Dent-rosane[7]
563,20-dihydroxy-ent-1(10), 15-rosadieneent-rosane[2]
573,7-dihydroxy-ent-1(10), 15-rosadieneent-rosane[2]
58ent-(3α,5β,8β,9α,10β,12β)-3-hydroxyatis-16-en-14-oneent-atisane[14]
59ent-atisane-3α,16β,17-triolent-atisane[14]
60ent-1β,3β,16β,17-tetrahydroxyatisaneent-atisane[15]
61ent-1β,3α,16β,17-tetrahydroxyatisaneent-atisane[15]
62ent-3β,13S-dihydroxy-atis-16-en-14-oneent-atisane[15]
63ent-16α,17-dihydroxyatisan-3-oneent-atisane[15]
64ent-atisane-3β,16α,17-triolent-atisane[15]
65ent-13-hydroxyatis-16-ene-3,14-dioneent-atisane[2]
66ent-13S-hydroxy-16-atisene-3,14-dioneent-atisane[12]
67ent-13α-hydroxyatis-16-ene-3,14-dioneent-atisane[16]
68ent-3β,13α-dihydroxyatis-16-ene-14-oneent-atisane[16]
69ent-atis-16-ene-3,14-dioneent-atisane[16]
70ent-3β-hydroxyatis-16-ene-14-oneent-atisane[16]
71ent-3β-hydroxyatis-16-ene-2,14-dioneent-atisane[16]
72ent-16α,17-dihydroxyatis-16-ene-3,14-dioneent-atisane[16]
7319-O-β-Dglucopyranosyl-ent-atis-16-ene-3,14-dioneent-atisane[16]
7419-O-(6-galloyl)-β-d-glucopyranosyl-ent-atis-16-ene-3,14-dioneent-atisane[16]
75ingenolingenane[7]
76ingenol-3-palmitateingenane[7]
77ingenol-3-myristinateingenane[7]
78ingenol-20-palmitateingenane[7]
79ingenol-20-myristinateingenane[7]
80ingenol-6,7-epoxy-3-tetradecanoateingenane[2]
81ent-kaurane-3-oxo-17β-olent-kaurane[14]
82ent-kaur-16-en-14-olent-kaurene[2]
833S,16S,17-trihydroxy-2-one-ent-kauraneent-kaurane[15]
84ent-16α,17-dihydroxy-kauran-3-oneent-kaurane[7]
853α,17-dihydroxy-ent-pimara-8(14),15-dieneent-pimarene[3]
86isopimara-9(11),15-diene-3,19-diolisopimarene[2]
87ent-8(14)-pimarene-12β,15S,16-triolent-pimarene[13]
88jolkinol Alathyrane[7]
89langduin Cdimeric[3,17]
90langduin Ddimeric[16]
Table 2. Summary of the anti-inflammatory activities of diterpenoids.
Table 2. Summary of the anti-inflammatory activities of diterpenoids.
No.Bioactive IngredientModelConclusionsRef.
1jolkinolide B LPS-induced ALI mouse modelit has a protective effect on LPS-induced ALI in mice, the anti-inflammatory mechanism of JB may be attributed to its suppression of NF-κB and MAPK activation[29]
LPS-induced RAW 264.7 macrophagesit exhibited inhibitory effect on NO production (IC50 4.9 μM)[8]
517-hydroxyjolkinolide BLPS stimulated RAW264 murine macrophagesit can inhibit inflammatory mediators but activate heme oxygenase-1 expression in LPS-stimulated murine macrophages[30]
811β-hydroxy-8,14-epoxy-ent-abieta-13(15)-en-16,12α-olideLPS-induced RAW 264.7 macrophagesit exhibited inhibitory effect on NO production (IC50 12.6 μM)[8]
23yuexiandajisu DLPS-induced RAW 264.7 macrophagesit exhibited inhibitory effect on NO production (IC50 5.6 μM)[8]
52ebractenoid FLPS-induced RAW 264.7 macrophagesit exhibited inhibitory effect on NO production (IC50 7.4 μM)[8]
88jolkinol ALPS-induced RAW 264.7 macrophagesit exhibited inhibitory effect on NO production (IC50 9.4 μM)[8]
Table 3. Feeding deterrent activities of diterpenoids from Euphorbia fischeriana.
Table 3. Feeding deterrent activities of diterpenoids from Euphorbia fischeriana.
No.CompoundInsect TypeEC50 (ppm)Ref.
1jolkinolide BS. Zeamais
T. castaneum
342.1
361.4
[4]
317-hydroxyjolkinolide BS. Zeamais
T. castaneum
543.9
551.5
517-hydroxyjolkinolide AS. Zeamais
T. castaneum
631.9
656.5
3512-deoxyphorbol 13-(9Z)-octadecenoate 20-acetateS. Zeamais
T. castaneum
884.3
1058.4
Table 4. Other bioactive diterpenoids from Euphorbia fischeriana.
Table 4. Other bioactive diterpenoids from Euphorbia fischeriana.
No.Bioactive IngredientPharmacological ActivityRef.
317-hydroxyjolkinolide Bantituberculosis effect (it exhibited the inhibitory effect against mycobacterium smegmatis)[1]
517-hydroxyjolkinolide Aanti-osteoporosis (it can prevent osteoclast formation and bone resorption)[32]
454β,9α,20-trihydroxy-13,15-secotiglia-1,6-diene-3,13-dione 20-O-β-d-[6-galloyl]glu-copyranosideanti-diabetic effect (it possesses the moderate inhibitory effects against α-glucosidase)[13]
46euphopiloside Aanti-diabetic effect (it possesses the moderate inhibitory effects against α-glucosidase)[13]
87ent-8(14)-pimarene-12β,15S,16-triolanti-diabetic effect (it possesses the moderate inhibitory effects against α-glucosidase)[13]

Share and Cite

MDPI and ACS Style

Jian, B.; Zhang, H.; Liu, J. Structural Diversity and Biological Activities of Diterpenoids Derived from Euphorbia fischeriana Steud. Molecules 2018, 23, 935. https://doi.org/10.3390/molecules23040935

AMA Style

Jian B, Zhang H, Liu J. Structural Diversity and Biological Activities of Diterpenoids Derived from Euphorbia fischeriana Steud. Molecules. 2018; 23(4):935. https://doi.org/10.3390/molecules23040935

Chicago/Turabian Style

Jian, Baiyu, Hao Zhang, and Jicheng Liu. 2018. "Structural Diversity and Biological Activities of Diterpenoids Derived from Euphorbia fischeriana Steud" Molecules 23, no. 4: 935. https://doi.org/10.3390/molecules23040935

APA Style

Jian, B., Zhang, H., & Liu, J. (2018). Structural Diversity and Biological Activities of Diterpenoids Derived from Euphorbia fischeriana Steud. Molecules, 23(4), 935. https://doi.org/10.3390/molecules23040935

Article Metrics

Back to TopTop