Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration
Abstract
:1. Introduction
2. Results
2.1. XRD Results
2.2. Specific Surface Area and Morphology of Zeolites
2.3. Acidity of Zeolites
2.4. Zeta Potential of Oxides and Zeolites
2.4.1. Zeta Potential for Individual Oxides
2.4.2. Effect of Temperature
3. Discussion
4. Materials and Methods
4.1. Catalytic Materials
4.2. Characterization Methods
4.3. Zeta Potential Measurements
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mäki-Arvela, P.; Murzin, D.Y. Effect of catalyst synthesis parameters on the metal particle size. Appl. Catal. A Gen. 2013, 451, 251–281. [Google Scholar] [CrossRef]
- Murzin, D.Y.; Simakova, O.A.; Simakova, I.L.; Parmon, V.N. Thermodynamic analysis of the cluster size evolution in catalyst preparation by deposition precipitation. React. Kinet. Mech. Catal. 2011, 104, 259–266. [Google Scholar] [CrossRef]
- Zacahua-Tlacuatl, G.; Pérez-González, J.; Castro-Arellano, J.J.; Balmori-Ramírez, H. Rheological characterization and extrusion of suspensions of natural zeolites. Appl. Rheol. 2010, 20, 1. [Google Scholar]
- Zhou, Z.; Scales, P.J.; Boger, D.V. Chemical and physical control of the rheology of concentrated metal oxide suspensions. Chem. Eng. Sci. 2001, 56, 2901–2920. [Google Scholar] [CrossRef]
- Foundas, M.; Britcher, L.G.; Fornasiero, D.; Morris, G.E. Boehmite suspension behaviour upon adsorption of methacrylate–phosphonate copolymers. Powder Technol. 2015, 269, 385–391. [Google Scholar] [CrossRef]
- Mäurer, T.; Muller, S.P.; Kraushaar-Czarnetzki, B. Aggregation and peptization of zeolite crystals in sols and suspensions. Ind. Eng. Chem. Res. 2001, 40, 2573–2579. [Google Scholar] [CrossRef]
- Devyatkov, S.Y.; Zinnurova, A.; Aho, A.; Kronlund, D.; Peltonen, J.; Kuzichkin, N.V.; Lisitsyn, N.V.; Murzin, D.Y. Shaping of sulfated zirconia catalysts by extrusion: Understanding the role of binders. Ind. Eng. Chem. Res. 2016, 55, 6595–6606. [Google Scholar] [CrossRef]
- Soled, S.; Wachter, W.; Wo, H. Use of zeta potential measurements in catalyst preparation. Stud. Surf. Sci. Catal. 2010, 175, 101–107. [Google Scholar]
- Yang, W.; Wang, X.; Tang, Y.; Wang, Y.; Ke, C.; Fu, S. Layer-by-layer assembly of nanozeolite based on polymeric microsphere: Zeolite coated sphere and hollow zeolite spinel. J. Macromol. Sci. Pure Appl. Chem. A 2002, 39, 509–526. [Google Scholar] [CrossRef]
- Adamczyk, Z.; Nattich, M.; Wasilewska, M. Irreversible adsorption of latex particles on fibrinogen covered mica. Adsorption 2010, 16, 259–269. [Google Scholar] [CrossRef]
- Nishimura, S.; Scales, P.J.; Tateyama, H.; Tsunematsu, K.; Healy, T.W. Molecular-scale structure of the cation modified muscovite mica basal plane. Langmuir 1995, 11, 291. [Google Scholar] [CrossRef]
- Nosrati, J.; Addai-Mensah, W.; Skinner, W. pH-mediated interfacial chemistry and particle interactions in aqueous muscovite dispersions. Chem. Eng. J. 2009, 152, 406–414. [Google Scholar] [CrossRef]
- Zhuang, J.; Yu, G.R. Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 2002, 49, 619–628. [Google Scholar] [CrossRef]
- Yalcinkaya, E.E.; Guler, C. Electrokinetic properties of acid-activated montmorillonite dispersions. Sep. Sci. Technol. 2010, 45, 635–642. [Google Scholar] [CrossRef]
- Rozalen, M.; Brady, P.V.; Huertas, F.J. Surface chemistry of K-montmorillonite: Ionic strength, temperature dependence and dissolution kinetics. J. Colloid Interface Sci. 2009, 333, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Kuzniatsova, T.; Kim, Y.; Shqau, K.; Dutta, P.K.; Verweif, H. Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings. Microporous Mesoporous Mater. 2007, 103, 102–107. [Google Scholar] [CrossRef]
- Nikolakis, V. Understanding interactions in zeolite colloidal suspensions: A review. Curr. Opin. Colloid Interface Sci. 2005, 10, 203–210. [Google Scholar] [CrossRef]
- Mekhamer, W.K. The colloidal stability of raw bentonite deformed mechanically by ultrasound. J. Saudi Chem. Soc. 2010, 14, 301–306. [Google Scholar] [CrossRef]
- Alvarez-Silva, M.; Mirnezami, M.; Uribe-Salas, A.; Finch, J.A. The point of zero charge of phyllosilicate minerals using the Mular-Roberts titration technique. Min. Eng. 2010, 23, 383–389. [Google Scholar] [CrossRef]
- Yukselen, Y.; Kaya, A. Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolyzable metal ions. Water Air Soil Pollut. 2003, 145, 155–168. [Google Scholar] [CrossRef]
- Yukselen-Aksoy, Y.; Kaya, A. A study of factors affecting on the zeta potential of kaolinite and quartz powder. Environ. Earth Sci. 2011, 62, 697–705. [Google Scholar] [CrossRef]
- Chassagne, C.; Mietta, F.; Winterwerp, J.C. Electrokinetic study of kaolinite suspensions. J. Colloid Interface Sci. 2010, 336, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Erzin, Y.; Yukselen, Y. The use of neural networks for the prediction of zeta potential of kaolinite. Math. Geosci. 2009, 41, 779–797. [Google Scholar] [CrossRef]
- Dzenitis, J.M. Soil chemistry effects and flow prediction in electroremediation of soil. Environ. Sci. Technol. 1997, 31, 1191–1197. [Google Scholar] [CrossRef]
- Erdemoglu, M. Zeta potential of pyrophyllite in aqueous solutions of alkaline and alkaline earth metal cations and low-molecular-weight organic anions. J. Dispers. Sci. Technol. 2007, 28, 689–695. [Google Scholar] [CrossRef]
- Kursun, I. Determination of flocculation and adsorption desorption characteristics of Na-feldspar concentrate in the presence of different polymers. Physicochem. Probl. Min. Process. 2010, 44, 127–142. [Google Scholar]
- Cao, E.; Bryant, R.; Williams, D.J.A. Electrochemical properties of Na–attapulgite. J. Colloid Interface Sci. 1996, 179, 143–150. [Google Scholar] [CrossRef]
- Heath, D.; Tadros, T.F. Influence of pH, electrolyte, and poly(vinyl alcohol) addition on the rheological characteristics of aqueous dispersions of sodium montmorillonite. J. Colloid Interface Sci. 1983, 93, 307–319. [Google Scholar] [CrossRef]
- Neaman, A.; Singer, A. Rheological properties of aqueous suspensions of palygorskite. Soil Sci. Soc. Am. J. 2000, 64, 427. [Google Scholar] [CrossRef]
- Mockoviciakova, A.M.; Orolinova, Z.; Skvarla, J. Enhancement of the bentonite sorption properties. J. Hazard. Mater. 2010, 180, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Stathi, P.; Papadas, I.T.; Enotiadis, A.; Gengler, R.Y.N.; Gournis, D.; Rudolf, P.; Deligiannakis, Y. Effects of acetate on cation exchange capacity of a Zn-containing montmorillonite: Physicochemical significance and metal uptake. Langmuir 2009, 25, 6825–6833. [Google Scholar] [CrossRef] [PubMed]
- Valdés, H.; Tardón, R.F.; Zaror, C.A. Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated water. Chem. Eng. J. 2012, 211–212, 388–395. [Google Scholar] [CrossRef]
- Magriotis, Z.M.; Leal, P.V.B.; de Sales, P.F.; Papini, R.M.; Viana, P.R.M.; Arroyo, P.A. A comparative study for the removal of mining wastewater by kaolinite, activated carbon and beta zeolite. Appl. Clay Sci. 2014, 91–92, 55–62. [Google Scholar] [CrossRef]
- Gunko, V.M.; Zarko, V.I.; Leboda, R.; Chibowski, E. Aqueous suspension of fumed oxides: Particle size distribution and zeta potential. Adv. Colloid Interface Sci. 2001, 91, 1–112. [Google Scholar] [CrossRef]
- Wang, N.; Hsu, C.; Tseng, S.; Hsu, J.-P. Influence of metal oxide nanoparticles concentration on their zeta potential. J. Colloid Interface Sci. 2013, 407, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xionh, C.; Huang, L.; Li, Q. Synthesis and characterization of composite molecular sieves comprising zeolite Beta with MCM-41 structures. J. Mater. Chem. 2001, 11, 1886–1890. [Google Scholar] [CrossRef]
- Torozova, A.; Mäki-Arvela, P.; Aho, A.; Kumar, N.; Smeds, A.; Peurla, M.; Sjöholm, R.; Heinmaa, I.; Korchagina, D.V.; Volcho, K.P.; et al. Heterogeneous catalysis for transformation of biomass derived compounds beyond fuels: Synthesis of monoterpenoid dioxinols with analgesic activity. J. Mol. Catal. A. Chem. 2015, 397, 48–55. [Google Scholar] [CrossRef]
- Schmidt, S.A.; Kumar, N.; Shchukarev, A.; Eränen, K.; Mikkola, J.-P.; Murzin, D.Y.; Salmi, T. Preparation and characterization of neat and ZnCl2 modified zeolites and alumina for methyl chloride synthesis. Appl. Catal. A Gen. 2013, 468, 120–134. [Google Scholar] [CrossRef]
- Aho, A.; Kumar, N.; Eränen, K.; Salmi, T.; Hupa, M.; Murzin, D.Y. Catalytic pyrolysis of biomass in a fluidized bed reactor: Influence of the acidity of H-beta zeolite. Proc. Saf. Environ. Prot. 2007, 85, 473–480. [Google Scholar] [CrossRef]
- Li, S.; Zheng, A.; Su, Y.; Fang, H.; Shen, W.; Yu, Z.; Chen, L.; Deng, F. Extra-framework aluminium species in hydrated faujasite zeolite as investigated by two-dimensional solid-state NMR spectroscopy and theoretical calculations. Phys. Chem. Chem. Phys. 2010, 12, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Murzin, D. Engineering Catalysis; De Gryuter: Berlin, Germany, 2013; Volume 364. [Google Scholar]
- Junior, J.A.A.; Baldo, J.B. The behavior of Zeta potential of silica suspensions. New J. Glass Ceram. 2014, 4, 29. [Google Scholar] [CrossRef]
- Hesse, B.; Gläsel, J.; Kern, A.M.; Murzin, D.Y.; Etzold, B.J.M. Preparation of carbide-derived carbon supported platinum catalysts. Catal. Today 2015, 249, 30–37. [Google Scholar] [CrossRef]
- Kubicka, D.; Kumar, N.; Venäläinen, T.; Karhu, H.; Kubickova, I.; Österholm, H.; Murzin, D.Y. Metal−support interactions in zeolite-supported noble metals: Influence of metal crystallites on the support acidity. J. Phys. Chem. B 2006, 110, 4937–4946. [Google Scholar] [CrossRef] [PubMed]
- Niwa, M.; Katada, N. Measurements of acidic property of zeolites by temperature programmed desorption of ammonia. Catal. Surv. Asia 1997, 1, 215–226. [Google Scholar] [CrossRef]
- Yu, K.; Kumar, N.; Aho, A.; Roine, J.; Heinmaa, I.; Murzin, D.Y.; Ivaska, A. Determination of acid sites in porous aluminosilicate solid catalysts for aqueous phase reactions using potentiometric titration method. J. Catal. 2016, 335, 117–124. [Google Scholar] [CrossRef]
- Zarzycki, R.; Charmas, R.; Szabelski, P. Study of proton adsorption at heterogeneous oxide/electrolyte interface. Prediction of the surface potential using Monte Carlo simulations and 1-pK approach. J. Comput. Chem. 2004, 25, 704–711. [Google Scholar] [CrossRef] [PubMed]
- Zarzycki, R.; Szabelski, P.; Piasecki, W. Modelling of ζ-potential of the montmorillonite/electrolyte solution interface. Appl. Surf. Sci. 2007, 253, 5791–5796. [Google Scholar] [CrossRef]
- Yonli, A.H.; Gener, I.; Mignard, S. Influence of post-synthesis treatment on BEA zeolites hydrophobicity assessed under static and dynamic conditions. Microporous Mesoporous Mater. 2009, 122, 135–142. [Google Scholar] [CrossRef]
- Akhtar, F.; Andersson, L.; Oqunwumi, S.; Hedin, N.; Bergström, L. Structuring adsorbents and catalysts by processing of porous powders. J. Eur. Ceram. Soc. 2014, 34, 1643–1666. [Google Scholar] [CrossRef]
- Villegas, J.I.; Kumar, N.; Heikkilä, T.; Lehto, V.-P.; Salmi, T.; Murzin, D.Y. A study on the dimerization of 1-butene over Beta zeolite. Top. Catal. 2007, 45, 187–190. [Google Scholar] [CrossRef]
- Emeis, C.A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J. Catal. 1993, 141, 347–354. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Catalysts | Brønsted Acidity, (µmol/g) | Lewis Acidity, (µmol/g) | Ref. | ||||
---|---|---|---|---|---|---|---|
250 °C | 350 °C | 450 °C | 250 °C | 350 °C | 450 °C | ||
H-beta-25 | 219 | 187 | 125 | 82 | 43 | 25 | [39] |
H-beta-150 | 176 | 161 | 72 | 43 | 23 | 10 | [37] |
H-beta-300 | 54 | 49 | 23 | 28 | 9 | 4 | [39] |
Catalysts | Al(IV)a | Al(IV)b | Sum Al(IV) | Al(V) | Al(VI)a | Al(VI)b | Sum Al(VI) | Sum |
---|---|---|---|---|---|---|---|---|
H-beta-25 | 1.9 | 15.5 | 17.4 | 6.4 | 0.9 | 11.2 | 12.1 | 35.9 |
H-beta-150 | 3.8 | 15.1 | 18.9 | 6.8 | 0.5 | 11.9 | 12,4 | 38.2 |
H-beta-300 | 1.5 | 2.7 | 4.2 | 2.9 | 0.1 | 1.8 | 1.9 | 9.0 |
Material | Concentration (mg/mL) | T (°C) | Maximum Zeta Potential (mV) at pH as ( ) * | IEP 1 * | IEP2 * |
---|---|---|---|---|---|
H-beta-25 | 2–4 | 25 | 16 (4.5) | 4.0 | 5.7 |
2–4 | 50 | 0.7 (3.9) | 3.7 ** | 4.0 ** | |
2–4 | 65 | –3.7 (3.7) | no | ||
H-beta-150 | 2–4 | 25 | 14 (4.7) | 4 | 5.7 |
2–4 | 50 | –3 (3.9) | no | ||
H-beta-150 | 2–4 | 65 | –4.8 (3.6) | no | |
H-beta-300 | 2–4 | 25 | no | no | |
2–4 | 50 | no | no | ||
2–4 | 65 | no | no |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Mäki-Arvela, P.; Aho, A.; Vajglova, Z.; Gun’ko, V.M.; Heinmaa, I.; Kumar, N.; Eränen, K.; Salmi, T.; Murzin, D.Y. Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration. Molecules 2018, 23, 946. https://doi.org/10.3390/molecules23040946
Liu X, Mäki-Arvela P, Aho A, Vajglova Z, Gun’ko VM, Heinmaa I, Kumar N, Eränen K, Salmi T, Murzin DY. Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration. Molecules. 2018; 23(4):946. https://doi.org/10.3390/molecules23040946
Chicago/Turabian StyleLiu, Xuan, Päivi Mäki-Arvela, Atte Aho, Zuzana Vajglova, Vladimir M. Gun’ko, Ivo Heinmaa, Narendra Kumar, Kari Eränen, Tapio Salmi, and Dmitry Yu. Murzin. 2018. "Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration" Molecules 23, no. 4: 946. https://doi.org/10.3390/molecules23040946
APA StyleLiu, X., Mäki-Arvela, P., Aho, A., Vajglova, Z., Gun’ko, V. M., Heinmaa, I., Kumar, N., Eränen, K., Salmi, T., & Murzin, D. Y. (2018). Zeta Potential of Beta Zeolites: Influence of Structure, Acidity, pH, Temperature and Concentration. Molecules, 23(4), 946. https://doi.org/10.3390/molecules23040946