Synthesis of a Novel Series of Amino Acid Prodrugs Based on Thienopyridine Scaffolds and Evaluation of Their Antiplatelet Activity
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Biological Activity Evaluation
2.2.1. Inhibition of ADP-induced Platelet Aggregation in Rats at a Dose of 3 mg/kg and 1 mg/kg
2.2.2. Determination of ED50 and BT2 of 5c and 5l
3. Discussion
4. Materials and Methods
4.1. General Information
4.2. Chemistry
4.3. Inhibition of ADP-Induced Platelet Aggregation in Rats
4.4. Determination of Bleeding Time
5. Conclusions
Supplementary Materials
Supplementary File 1Author Contributions
Acknowledgments
Conflicts of Interest
References
- Davì, G.; Patrono, C. Platelet Activation and Atherothrombosis. N. Engl. J. Med. 2007, 357, 2482–2494. [Google Scholar] [CrossRef] [PubMed]
- Angiolillo, D.J. ADP Receptor Antagonism. Am. J. Cardiovasc. Drugs 2007, 7, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Hollopeter, G.; Jantzen, H.M.; Vincent, D.; Li, G.; England, L.; Ramakrishnan, V.; Yang, R.B.; Nurden, P.; Nurden, A.; Julius, D.; et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 2001, 409, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Fagura, M.S.; Dainty, I.A.; McKay, G.D.; Kirk, I.P.; Humphries, R.G.; Robertson, M.J.; Dougall, I.G.; Leff, P. P2Y1-receptors in human platelets which are pharmacologically distinct from P2YADP-receptors. Br. J. Pharmacol. 1998, 124, 157–164. [Google Scholar] [CrossRef] [PubMed]
- André, P.; Delaney, S.M.; LaRocca, T.; Vincent, D.; DeGuzman, F.; Jurek, M.; Koller, B.; Phillips, D.R.; Conley, P.B. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. J. Clin. Investig. 2003, 112, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, M. P2Y12 receptors: Structure and function. J. Thromb. Haemost. 2015, 13 (Suppl. 1), 10–16. [Google Scholar] [CrossRef] [PubMed]
- Faria, R.; Ferreira, L.; Bezerra, R.; Frutuoso, V.; Alves, L. Action of Natural Products on P2 Receptors: A Reinvented Era for Drug Discovery. Molecules 2012, 17, 13009–13025. [Google Scholar] [CrossRef] [PubMed]
- Hagihara, K.; Kazui, M.; Ikenaga, H.; Nanba, T.; Fusegawa, K.; Takahashi, M.; Kurihara, A.; Okazaki, O.; Farid, N.A.; Ikeda, T. Comparison of formation of thiolactones and active metabolites of prasugrel and clopidogrel in rats and dogs. Xenobiotica 2009, 39, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Franchi, F.; Angiolillo, D.J. Novel antiplatelet agents in acute coronary syndrome. Nat. Rev. Cardiol. 2015, 12, 30–47. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.Y.; Franchi, F.; Rollini, F.; Rivas Rios, J.R.; Kureti, M.; Cavallari, L.H.; Angiolillo, D.J. Role of Genetic Testing in Patients undergoing Percutaneous Coronary Intervention. Expert Rev. Clin. Pharmacol. 2017, 11, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Golwala, H.; Bhatt, D.L. The timing of P2Y12 inhibitor initiation in the treatment of ACS? Dose the evidence exist in this era? Prog. Cardiovasc. Dis. 2018, 60, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Tantry, U.; Navarese, E.P.; Myat, A.; Gurbel, P. Selection of P2Y12 inhibitor in percutaneous coronary intervention and/or acute coronary syndrome. Prog. Cardiovasc. Dis. 2018, 60, 460–470. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.L.; Simon, T.; Collet, J.P.; Anderson, J.L.; Antman, E.M.; Bliden, K.; Cannon, C.P.; Danchin, N.; Giusti, B.; Gurbel, P.; et al. Reduced-Function CYP2C19 Genotype and Risk of Adverse Clinical Outcomes Among Patients Treated With Clopidogrel Predominantly for PCI. J. Am. Med. Assoc. 2010, 304, 1821–1830. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.; Verstuyft, C.; Mary-Krause, M.; Quteineh, L.; Drouet, E.; Méneveau, N.; Steg, P.G.; Ferrières, J.; Danchin, N.; Becquemont, L. Genetic Determinants of Response to Clopidogrel and Cardiovascular Events. N. Engl. J. Med. 2009, 360, 363–375. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef] [PubMed]
- James, S.K.; Roe, M.T.; Cannon, C.P.; Cornel, J.H.; Horrow, J.; Husted, S.; Katus, H.; Morais, J.; Steg, P.G.; Storey, R.F.; et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes intended for non-invasive management: Substudy from prospective randomized PLATelet inhibition and patient Outcomes (PLATO) trial. BMJ 2011, 342, 3527. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, O.; Bhatt, D.L. The evolution of antiplatelet therapy in cardiovascular disease. Nat. Rev. Cardiol. 2011, 8, 547–559. [Google Scholar] [CrossRef] [PubMed]
- Schoener, L.; Jellinghaus, S.; Richter, B.; Pfluecke, C.; Ende, G.; Christoph, M.; Quick, S.; Loehn, T.; Speiser, U.; Poitz, D.M.; et al. Reversal of the platelet inhibitory effect of the P2Y12 inhibitors clopidogrel, prasugrel, and ticagrelor in vitro: A new approach to an old issue. Clin. Res. Cardiol. 2017, 106, 868–874. [Google Scholar] [CrossRef] [PubMed]
- Vig, B.S.; Huttunen, K.M.; Laine, K.; Rautio, J. Amino acids as promoieties in prodrug design and development. Adv. Drug Deliv. Rev. 2013, 65, 1370–1376. [Google Scholar] [CrossRef] [PubMed]
- Sastry, T.U.; Rao, K.N.; Reddy, T.A.; Gandhi, P. Identification and Synthesis of Impurities Formed During Prasugrel Hydrochloride Preparation. Asian J. Chem. 2013, 25, 7783. [Google Scholar] [CrossRef]
- Liu, J.A.; Guo, X.P.; Liang, S.; An, F.; Shen, H.Y.; Xu, Y.J. Regioselective synthesis of 5’-amino acid esters of some nucleosides via orthogonal protecting protocol. Tetrahedron 2015, 71, 1409–1412. [Google Scholar] [CrossRef]
- Farid, N.A.; Smith, R.L.; Gillespie, T.A.; Rash, T.J.; Blair, P.E.; Kurihara, A.; Goldberg, M.J. The Disposition of Prasugrel, a Novel Thienopyridine, in Humans. Drug Metab. Dispos. 2007, 35, 1096–1104. [Google Scholar] [CrossRef] [PubMed]
- Pereillo, J.M.; Maftouh, M.; Andrieu, A.; Uzabiaga, M.F.; Fedeli, O.; Savi, P.; Pascal, M.; Herbert, J.M.; Maffrand, J.P.; Picard, C. Structure and stereochemistry of the active metabolite of clopidogrel. Drug Metab. Dispos. 2002, 30, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Sugidachi, A.; Asai, F.; Ogawa, T.; Inoue, T.; Koike, H. The in vivo pharmacological profile of CS-747, a novel antiplatelet agent with platelet ADP receptor antagonist properties. Br. J. Pharmacol. 2000, 129, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Niitsu, Y.; Jakubowski, J.A.; Sugidachi, A.; Asai, F. Pharmacology of CS-747 (Prasugrel, LY640315), a Novel, Potent Antiplatelet Agent with in Vivo P2Y12 Receptor Antagonist Activity. Semin. Thromb. Hemost. 2005, 31, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Jakubowski, J.A.; Winters, K.J.; Naganuma, H.; Wallentin, L. Prasugrel: A Novel Thienopyridine Antiplatelet Agent. A Review of Preclinical and Clinical Studies and the Mechanistic Basis for Its Distinct Antiplatelet Profile. Cardiovasc. Drug Rev. 2007, 25, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Velder, J.; Hirschhäuser, C.; Waldmann, C.; Taubert, D.; Bouman, H.J.; Schmalz, H.G. A Scalable Synthesis of (±)-2-Oxoclopidogrel. Synlett 2010, 3, 467–469. [Google Scholar] [CrossRef]
- Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194, 927–929. [Google Scholar] [CrossRef] [PubMed]
- Dejana, E.; Callioni, A.; Quintana, A.; de Gaetano, G. Bleeding time in laboratory animals II—A comparison of different assay conditions in rats. Thromb. Res. 1979, 15, 191–197. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds reported in this paper are available from the authors. |
Compound | R3 or R4 a (R1=COOCH3, R2=Cl) | Compound | R3 or R4 a (R1=COCH(CH2)2, R2=F) |
---|---|---|---|
5a | 5i | ||
5b | 5j | ||
5c | 5k | ||
5d | 5l | ||
5e | 5m | ||
5f | 5n | ||
5g | 5o | ||
5h | 5p |
Compounds | Inhibition Ration (%) | |
---|---|---|
3 mg/kg | 1 mg/kg | |
5a | 55.1 | 35.1 |
5b | 36.8 | 19.4 |
5c | 98.4 | 39.6 |
5d | 68.9 | 16.2 |
5e | 43.3 | 15.8 |
5f | 63.8 | 37.2 |
5g | 64.2 | 35.5 |
5h | 51.6 | 27.2 |
5i | 93.4 | 17.5 |
5j | 86.3 | 52.6 |
5k | 89.2 | 66.2 |
5l | 96.4 | 89.8 |
5m | 100 | 47.6 |
5n | 99.3 | 46.4 |
5o | 93.6 | 30.7 |
5p | 69.5 | 35.1 |
Clopidogrel | 34.4 | -- |
Prasugrel | 100 | 91.0 |
Compounds | ED50 (mg/kg) | BT2 (mg/kg) | ED50/BT2 |
---|---|---|---|
Clopidogrel | 3.96 | 3.82 | 1.04 |
Prasugrel | 0.50 | 0.51 | 0.98 |
5c | 2.16 | 2.32 | 0.93 |
5l | 0.74 | 0.70 | 1.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, N.; Li, L.; Zheng, X.; Zhang, S.; Li, Y.; Yuan, J.; Wei, Q.; Xu, Y.; Meng, F. Synthesis of a Novel Series of Amino Acid Prodrugs Based on Thienopyridine Scaffolds and Evaluation of Their Antiplatelet Activity. Molecules 2018, 23, 1041. https://doi.org/10.3390/molecules23051041
Lu N, Li L, Zheng X, Zhang S, Li Y, Yuan J, Wei Q, Xu Y, Meng F. Synthesis of a Novel Series of Amino Acid Prodrugs Based on Thienopyridine Scaffolds and Evaluation of Their Antiplatelet Activity. Molecules. 2018; 23(5):1041. https://doi.org/10.3390/molecules23051041
Chicago/Turabian StyleLu, Nan, Lingjun Li, Xuemin Zheng, Shijun Zhang, Yuquan Li, Jing Yuan, Qunchao Wei, Youjun Xu, and Fancui Meng. 2018. "Synthesis of a Novel Series of Amino Acid Prodrugs Based on Thienopyridine Scaffolds and Evaluation of Their Antiplatelet Activity" Molecules 23, no. 5: 1041. https://doi.org/10.3390/molecules23051041
APA StyleLu, N., Li, L., Zheng, X., Zhang, S., Li, Y., Yuan, J., Wei, Q., Xu, Y., & Meng, F. (2018). Synthesis of a Novel Series of Amino Acid Prodrugs Based on Thienopyridine Scaffolds and Evaluation of Their Antiplatelet Activity. Molecules, 23(5), 1041. https://doi.org/10.3390/molecules23051041