Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Non-Volatile Organic Acids
2.2. Determination of Amino Acids
2.3. Relationship between Pixian Broad-Bean Paste Samples, Organic Acids, Amino Acids and Sensory Attributes
3. Materials and Methods
3.1. Materials
3.2. Preparation of Standard Solution
3.3. Measurement of Non-Volatile Organic Acids
3.4. Measurement of Amino Acids
3.5. Chromatographic Conditions
3.5.1. HPLC Equipment and Conditions
3.5.2. Amino Acid Automatic Analyzer Equipment and Conditions
3.6. Sensory Evaluation
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shin, Z.I.; Yu, R.; Park, S.A.; Chung, D.K.; Ahn, C.W.; Nam, H.S.; Kim, K.S.; Lee, H.J. His-His-Leu, and angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. Agric. Food Chem. 2001, 49, 3004–3009. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.O.; Park, S.Y.; Park, K.Y. Longer aging time increases the anticancer and antimetastatic properties of doenjang. Nutrition 2006, 22, 539–545. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.G.; Hong, J.K.; Song, C.K.; Shin, H.W.; Kim, K.O. Sensory characteristics and consumer acceptability of fermented soybean paste (Doenjang). J. Food Sci. 2010, 75, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Inoue, Y.; Kato, S.; Saikusa, M.; Suzuki, C.; Otsubo, Y.; Tanaka, Y.; Watanabe, H.; Hayase, F. Analysis of the cooked aroma and odorants that contribute to umami aftertaste of soy miso (Japanese soybean paste). Food Chem. 2016, 213, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.X.; Gu, X.H.; Liu, Y.M.; Wang, L.P. Study on the Volatile Flavor Compounds of the Traditional Chinese Soybean Paste. Food Sci. 2006, 27, 684–687. [Google Scholar]
- Peng, X.; Li, X.; Shi, X.; Guo, S. Evaluation of the aroma quality of Chinese traditional soy paste during storage based on principal component analysis. Food Chem. 2014, 151, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.J.; Cho, I.H.; Song, C.K.; Shin, H.W.; Kim, Y.S. Comparison of fermented soybean paste (Doenjang) prepared by different methods based on profiling of volatile compounds. Food Chem. 2011, 76, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, K.A. Evaluation of taste compounds in water-soluble extract of a doenjang (soybean paste). Food Chem. 2003, 83, 339–342. [Google Scholar] [CrossRef]
- Joo, H.K.; Kim, D.H.; Oh, K.T. Chemical composition changes in fermented doenjang depend on doenjang koji and its mixture. J. Korean Agric. Chem. Soc. 1992, 35, 351–360. [Google Scholar]
- Yang, S.H.; Choi, M.R.; Kim, J.K.; Chung, Y.G. Characteristics of the taste in traditional Korean soybean paste. J. Korean Soc. Food Nutr. 1992, 21, 443–448. [Google Scholar]
- Chung, H.Y.; Fung, P.K.; Kim, J.S. Aroma impact components in commercial plain sufu. J. Agric. Food Chem. 2005, 53, 1684–1691. [Google Scholar] [CrossRef] [PubMed]
- Leejeerajumnean, A.; Duckham, S.C.; Owens, J.D.; Ames, J.M. Volatile compounds in bacillus fermented soybeans. J. Sci. Food Agric. 2010, 81, 525–529. [Google Scholar] [CrossRef]
- Park, H.K.; Gil, B.; Kim, J.K. Characteristics of taste components of commercial soybean paste. Food Sci. Biotechnol. 2002, 11, 376–379. [Google Scholar]
- Shukla, S.; Choi, T.B.; Pare, H.K.; Kim, M.; Lee, I.K.; Kim, J.K. Determination of non-volatile and volatile organic acids in Korean traditional fermented soybean paste (Doenjang). Food Chem. Toxicol. 2010, 48, 2005–2010. [Google Scholar] [CrossRef] [PubMed]
- Innocenzo, G.C.; Gatta, M. Determination of aliphatic organic acids by high-performance liquid chromatography with pulsed electrochemical detection. J. Agric. Food Chem. 2002, 50, 23–29. [Google Scholar]
- Medlicott, A.P.; Thompson, A.K. Analysis of sugars and organic acids in ripening mango fruits (Mangifera indica L. Varkeitt) by high performance liquid chromatography. J. Sci. Food Agric. 2010, 36, 561–566. [Google Scholar] [CrossRef]
- Kang, M.J.; Kim, S.H.; Joo, H.K.; Lee, G.S.; Yim, M.H. Isolation and identification of microorganisms producing the soy protein-hydrolyzing enzyme from traditional mejus. J. Korean Agric. Chem. Biotechnol. 2000, 43, 86–94. [Google Scholar]
- Frias, J.; Song, Y.S.; Villaluenga, C.M.; Mejia, E.G.D.; Valverde, C.V. Immunoreactivity and amino acid content of fermented soybean products. Agric. Food Chem. 2008, 56, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Kim, M. Determination of amino acid and free sugar contents in Korean traditional fermented soybean products of Doenjang and evaluation of their sensory attributes. Pak. J. Pharm. Sci. 2016, 29, 1101–1107. [Google Scholar] [PubMed]
- Han, B.Z.; Wang, J.H.; Rombouts, F.M.; Nout, M.R. Effect of NaCl on textural changes and protein and lipid degradation during the ripening of sufu, a Chinese fermented soybean food. J. Sci. Food Agric. 2003, 83, 899–904. [Google Scholar] [CrossRef]
- Esteves, V.I.; Lima, S.S.F.; Lima, D.L.D.; Duarte, A.C. Using capillary electrophoresis for the determination of organic acids in Port wine. Anal. Chim. Acta 2004, 513, 163–167. [Google Scholar] [CrossRef]
- Choi, U.K.; Kim, M.H.; Lee, N.H.; Jeong, Y.S.; Kwon, O.J.; Kim, Y.C. The characteristics of Cheonggukjang, a fermented soybean product, by the degree of germination of raw soybean. Food Sci. Technol. 2007, 16, 734–739. [Google Scholar]
- Choi, U.K.; Bajpai, V.K. Comparative study of quality characteristics of meju, a Korean soybean fermentation starter, made by soybeans germinated under dark and light conditions. Food Chem. Toxicol. 2010, 48, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Peres, R.G.; Moraes, E.P.; Micke, G.A.; Tonin, F.G.; Tavares, M.F.M.; Rodriguez-Amaya, D.B. Rapid method for the determination of organic acids in wine by capillary electrophoresis with indirect UV detection. Food Control 2009, 20, 548–552. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Xu, W.Z.; Yang, G.H.; Liu, Y.F.; Yue, P.; Zhang, L. Dynamic analysis of physiochemical properties and mineral elements during the latter ripening of Pixian soybean paste. Food Ferment. Ind. 2017, 43, 81–86. [Google Scholar]
- Ambati, P.; Ayyanna, C. Optimizing medium constituents and fermentation conditions for citric acid production from palmyrajaggery using response surface method. World J. Microbiol. Biotechnol. 2001, 17, 331–335. [Google Scholar] [CrossRef]
- Sakurai, A.; Imai, H.; Takenaka, Y.; Sakakibara, M. Simulation of citric acid production by rotating disk contactor. Biotechnol. Bioeng. 2000, 6, 689–696. [Google Scholar] [CrossRef]
- Sunitha, I.; Rao, M.V.S.; Ayyanna, C. Optimization of medium constituents and fermentation conditions for the production of l-Glutamic acid by the coimmobilized whole cells of Micrococcus glutamicus and Pseudomonas reptilivora. Bioproc. Eng. 1998, 18, 353–359. [Google Scholar] [CrossRef]
- Collar, C.; Martinez, C.S. Amino acid profiles of fermenting wheat sour doughs. J. Food Sci. 1993, 58, 1324–1328. [Google Scholar] [CrossRef]
- Kim, M.-J.; Rhee, H.-S. Studies on the changes of taste components during soy paste fermentation. Korean J. Food Cookery Sci. 1990, 6, 1–8. [Google Scholar]
- Chou, C.C.; Hwan, C.H. Effect of ethanol on the hydrolysis of protein and lipid during the ageing of a Chinese fermented soya bean curd-sufu. J. Sci. Food Agric. 1994, 66, 393–398. [Google Scholar] [CrossRef]
- Sousa, M.; Ard, Y.; Mcsweeney, P. Advances in the study of proteolysis during cheese ripening. Int. Dairy J. 2001, 11, 327–345. [Google Scholar] [CrossRef]
- Niu, Y.W.; Zhang, X.M.; Xiao, Z.B.; Song, S.Q.; Jia, C.S.; Yu, H.Y.; Fang, L.I.; Xu, C.H. Characterization of taste-active compounds of various cherry wines and their correlation with sensory attributes. J. Chromatogr. B 2012, 902, 55–60. [Google Scholar] [CrossRef] [PubMed]
- National Standardization Technical Committee of the National Committee of the Seventh Branch of the Literature. GB/T 30987-2014 Determination of Free Amino Acids in Plants. China, 2014. Available online: http://www.zbgb.org/Fulltext2520426.htm (accessed on 1 March 2015).
- National Standardization Technical Committee of the National Committee of the Seventh Branch of the Literature. GB/T 16291.1-2012 Sensory Analysis—General Guidance for the Selection, Training and Monitoring of Assessors. China, 2012. Available online: http://www.zbgb.org/2/StandardDetail499856.htm (accessed on 1 November 2012).
- Copyright International Organization for Standardization Provided by IHS underlicense with ISO. ISO 8589: 2007 Sensory Analysis—General Guidance for the Design of Test Rooms. Switzerland, 2007. Available online: https://www.iso.org/standard/36385.html (accessed on 15 December 2007).
Sample Availability: Samples of the compounds 1–6 are available from the authors. |
Organic Acids | Retention Time (min) | Regression Equation | Coefficient of Determination (R2) |
---|---|---|---|
Oxalic acid | 7.7 | Y = 578960x − 310149 | 0.9988 |
Ketoglutaric acid | 8.2 | Y = 424580x − 67687 | 0.9998 |
Citric acid | 9.3 | Y = 258516x − 1317.7 | 0.9999 |
Tartaric acid | 10.0 | Y = 185717x − 3217.2 | 0.9998 |
Malic acid | 11.1 | Y = 81471x − 4245.2 | 1.0000 |
Succinic acid | 13.2 | Y = 34040x − 3970.7 | 0.9999 |
Lactic acid | 14.9 | Y = 90125x − 79730 | 0.9980 |
Fumaric acid | 15.7 | Y = 6187179.8x + 55173.5 | 0.9949 |
Organic Acids (mg/g) | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
---|---|---|---|---|---|---|
Oxalic acid | 1.7374 ± 0.023 b | 2.2211 ± 0.180 a,b | 2.0544 ± 0.220 a,b | 1.8466 ± 0.235 a,b | 2.0358 ± 0.221 a,b | 2.4724 ± 0.427 a |
Ketoglutaric acid | ND a | ND a | ND a | ND a | ND a | 0.3339 ± 0.135 b |
Citric acid | 4.8283 ± 0.922 a,b | 6.3 ± 0.170 a | 5.1342 ± 0.154 a,b | 5.2523 ± 0.360 a,b | 4.1978 ± 0.394 b | 4.3645 ± 0.375 b |
Tartaric acid | 0.2551 ± 0.001 a | 0.3896 ± 0.084 a | 0.261 ± 0.164 a | 0.1893 ± 0.110 a | 0.1957 ± 0.166 a | 1.3544 ± 1.354 b |
Malic acid | 3.6491 ± 0.190 b | 3.0998 ± 0.362 a,b | 2.7515 ± 0.462 ab | 2.162 ± 0.500 a | 2.3646 ± 0.883 a,b | 2.797 ± 0.330 a,b |
Succinic acid | 0.4142 ± 0.385 a | 0.2499 ± 0.144 a | 0.5556 ± 0.226 a | 0.1031 ± 0.098 a | 0.0976 ± 0.710 a | 0.9397 ± 0.066 b |
Lactic acid | 0.4107 ± 0.114 b | 0.0925 ± 0.075 a | 0.1078 ± 0.090 a | 0.1065 ± 0.095 a | 0.3859 ± 0.125 b | 0.1026 ± 0.095 a |
Fumaric acid | 0.0052 ± 0.002 d | 0.0022 ± 0.002 c | 0.0038 ± 0.001 d | 0.0005 ± 0.0004 a | 1.974 × 10−5 ± 10 × 10−5 a,b | 0.0008 ± 0.0006 a |
Adipic acid | ND a | ND a | ND a | ND a | ND a | ND a |
Total | 11.3000 ± 1.432 b | 12.3550 ± 0.906 a | 10.8680 ± 1.330 b | 9.2781 ± 1.516 c | 9.6597 ± 1.287 b,c | 12.3643 ± 0.934 a |
Taste | Amino Acid | |
---|---|---|
1 | Sweet, Savory | Threonine (Thr), Serine (Ser), Glycine (Gly), Alanine (Ala), Proline (Pro) |
2 | Savory, Sour | Glutamine(Gln), Glutamic acid (Glu), Aspartic acid (Asp), Asparagine (Asn) |
3 | Bitter, Sweet | Lysine (Lys), Histidine (His), Arginine (Arg) |
4 | Bitter | Methionine (Met), Isoleucine (Ile), Leucine (Leu), Valine (Val), Tyrosine (Tyr), Phenylalanine (Phe) |
5 | Salty | Cysteine (Cys) |
Taste | Amino Acid (mg/g) | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 | Sample 6 |
---|---|---|---|---|---|---|---|
Sweet Savory | Threonine (Thr) | 0.675 ± 0.009 d | 0.607 ± 0.010 e | 0.877 ± 0.009 b | 0.678 ± 0.007 d | 0.768 ± 0.009 c | 1.473 ± 0.006 a |
Serine (Ser) | 0.826 ± 0.016 b | 0.680 ± 0.013 b | 1.097 ± 0.577 b | 0.715 ± 0.041 b | 0.934 ± 0.011 b | 1.940 ± 0.018 a | |
Glycine (Gly) | 0.434 ± 0.007 d | 0.368 ± 0.007 e | 0.597 ± 0.004 b | 0.423 ± 0.018 d | 0.455 ± 0.005 c | 1.048 ± 0.010 a | |
Alanine (Ala) | 0.959 ± 0.018 d | 0.936 ± 0.017 d | 1.336 ± 0.005 b | 1.103 ± 0.008 c | 1.089 ± 0.004 c | 2.578 ± 0.034 a | |
Proline (Pro) | 2.170 ± 0.059 b | 1.311 ± 0.021 d | 1.597 ± 0.048 c | 1.098 ± 0.019 e | 1.644 ± 0.019 c | 2.820 ± 0.040 a | |
Total | 5.063 ± 0.010 a | 3.902 ± 0.068 e | 5.505 ± 0.011 a | 4.018 ± 0.057 d | 4.891 ± 0.0.37 c | 9.858 ± 0.030 b | |
Savory Sour | Glutamine (Gln) | ND a | ND a | ND a | ND a | ND a | ND a |
Glutamic acid (Glu) | 2.696 ± 0.020 c | 1.794 ± 0.034 e | 2.951 ± 0.001 b | 1.832 ± 0.002 e | 2.590 ± 0.030 d | 4.447 ± 0.047 a | |
Aspartic acid (Asp) | 1.722 ± 0.015 f | 1.799 ± 0.031 e | 2.760 ± 0.002 b | 2.337 ± 0.023 c | 2.171 ± 0.025 d | 4.980 ± 0.063 a | |
Asparagine (Asn) | 2.042 ± 0.045 a | 0.407 ± 0.007 e | 0.723 ± 0.011 d | 0.771 ± 0.010 c | 1.483 ± 0.014 b | 0.775 ± 0.005 c | |
Total | 6.460 ± 0.080 b | 4.000 ± 0.072 c | 6.434 ± 0.014 a | 4.940 ± 0.014 ab | 6.244 ± 0.068 b | 10.201 ± 0.106 d | |
Bitter Sweet | Lysine (Lys) | 1.014 ± 0.004 d | 0.832 ± 0.011 f | 1.356 ± 0.003 b | 0.882 ± 0.003 e | 1.081 ± 0.016 c | 2.286 ± 0.035 a |
Histidine (His) | 0.283 ± 0.004 c | 0.247 ± 0.006 d | 0.317 ± 0.005 b | 0.225 ± 0.004 e | 0.228 ± 0.001 e | 0.486 ± 0.001 a | |
Arginine (Arg) | 1.213 ± 0.001 d | 1.035 ± 0.017 e | 1.480 ± 0.023 b | 0.850 ± 0.015 f | 1.350 ± 0.002 c | 2.705 ± 0.067 a | |
Total | 2.510 ± 0.009 a | 2.115 ± 0.035 d | 3.153 ± 0.025 b | 1.957 ± 0.023 d | 2.659 ± 0.014 a | 5.478 ± 0.046 c | |
Bitter | Methionine (Met) | 0.116 ± 0.002 b | 0.066 ± 0.001 e | 0.083 ± 0.001 d | 0.003 ± 0 f | 0.108 ± 0 c | 0.183 ± 0.002 a |
Isoleucine (Ile) | 0.781 ± 0.007 d | 0.718 ± 0.01 2f | 1.094 ± 0.006 b | 0.735 ± 0.004 e | 0.814 ± 0.004 c | 2.143 ± 0.008 a | |
Leucine (Leu) | 1.194 ± 0.014 cd | 1.022 ± 0.017 e | 1.698 ± 0.005 b | 1.168 ± 0.017 d | 1.227 ± 0.015 c | 3.266 ± 0.039 a | |
Tyrosine (Tyr) | 0.638 ± 0.009 c | 0.550 ± 0.010 d | 0.813 ± 0.001 b | 0.562 ± 0.023 e | 0.617 ± 0.007 d | 1.359 ± 0.007 a | |
Phenylalanine (Phe) | 0.782 ± 0.020 c | 0.673 ± 0.013 c | 1.064 ± 0.003 b | 0.738 ± 0.023 c | 0.782 ± 0.085 c | 1.859 ± 0.114 a | |
Valine (Val) | 0.884 ± 0.045 d | 0.858 ± 0.013 d | 1.222 ± 0.049 b | 0.858 ± 0.018 d | 0.991 ± 0.003 c | 2.326 ± 0.051 a | |
Total | 4.394 ± 0.105 d | 3.887 ± 0.069 b | 5.975 ± 0.045 a | 4.065 ± 0.086 b | 4.540 ± 0.023 a | 11.137 ± 0.124 b,c | |
Salty | Cysteine (Cys) | ND a | ND a | ND a | ND a | ND a | ND a |
Total | ND a | ND a | ND a | ND a | ND a | ND a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.; Yu, X.; Fang, J.; Lu, Y.; Liu, P.; Xing, Y.; Wang, Q.; Che, Z.; He, Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules 2018, 23, 1299. https://doi.org/10.3390/molecules23061299
Lin H, Yu X, Fang J, Lu Y, Liu P, Xing Y, Wang Q, Che Z, He Q. Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules. 2018; 23(6):1299. https://doi.org/10.3390/molecules23061299
Chicago/Turabian StyleLin, Hongbin, Xiaoyu Yu, Jiaxing Fang, Yunhao Lu, Ping Liu, Yage Xing, Qin Wang, Zhenming Che, and Qiang He. 2018. "Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids" Molecules 23, no. 6: 1299. https://doi.org/10.3390/molecules23061299
APA StyleLin, H., Yu, X., Fang, J., Lu, Y., Liu, P., Xing, Y., Wang, Q., Che, Z., & He, Q. (2018). Flavor Compounds in Pixian Broad-Bean Paste: Non-Volatile Organic Acids and Amino Acids. Molecules, 23(6), 1299. https://doi.org/10.3390/molecules23061299