Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization
2.2. Anti-Saprolegnia Activity
2.3. Structure-Activity Relationship
3. Materials and Methods
3.1. General Experimental Procedures
3.2. General Procedure for the Synthesis of Bisalkoxychalcones 2–10
3.3. Saprolegnia australis Strain
3.4. Anti-Saprolegnia Activity
3.4.1. Minimum Inhibitory Concentration
3.4.2. Minimum Oomycidal Concentrations
3.4.3. Cellular Leakage
3.5. Statistical Analysis
3.6. Computational Details
3.7. Structure-Activity Relationship
3.8. Cross-Validation QSRR Model
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Banfield, M.J.; Kamoun, S. Hooked and Cooked: A Fish Killer Genome Exposed. PLoS Genet. 2013, 9, e1003590. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.J.; Anderson, V.L.; Robertson, E.J.; Secombes, C.J.; van West, P. New insights into animal pathogenic oomycetes. Trends Microbiol. 2008, 16, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Beakes, G.W.; Glockling, S.L.; Sekimoto, S. The evolutionary phylogeny of the oomycete “fungi”. Protoplasma 2012, 249, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Sudova, E.; Machova, J.; Svobodova, Z.; Vesely, T. Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: A review. Vet. Med. 2007, 52, 527–539. [Google Scholar] [CrossRef]
- Schreier, T.M.; Rach, J.J.; Howe, G.E. Efficacy of formalin, hydrogen peroxide, and sodium chloride on fungal-infected rainbow trout eggs. Aquaculture 1996, 140, 323–331. [Google Scholar] [CrossRef]
- Hussein, M.M.A.; Wada, S.; Hatai, K.; Yamamoto, A. Antimycotic Activity of Eugenol against Selected Water Molds. J. Aquat. Anim. Health 2000, 12, 224–229. [Google Scholar] [CrossRef]
- Caruana, S.; Yoon, G.H.; Freeman, M.A.; Mackie, J.A.; Shinn, A.P. The efficacy of selected plant extracts and bioflavonoids in controlling infections of Saprolegnia australis (Saprolegniales; Oomycetes). Aquaculture 2012, 358–359, 146–154. [Google Scholar] [CrossRef]
- Pottinger, G.; Day, J.G. A Saprolegnia parasitica challenge system for rainbow trout: Assessment of Pyceze as an anti-fungal agent for both fish and ova. Dis. Aquat. Org. 1999, 36, 129–141. [Google Scholar] [CrossRef] [PubMed]
- Piamsomboon, P.; Lukkana, M.; Wongtavatchai, J. Safety and Toxicity Evaluation of Bronopol in Striped Catfish (Pangasianodon hypophthalmus). Thai. J. Vet. Med. 2013, 43, 477–481. [Google Scholar]
- Chen, X.; Mukwaya, E.; Wong, M.S.; Zhang, Y. A systematic review on biological activities of prenylated flavonoids. Pharm. Biol. 2014, 52, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Bodet, C.; Burucoa, C.; Rouillon, S.; Bellin, N.; Taddeo, V.A.; Fiorito, S.; Genovese, S.; Epifano, F. Antibacterial activities of oxyprenylated chalcones and napthtoquinone against Helicobacter pylori. Nat. Prod. Commun. 2014, 9, 1299–1301. [Google Scholar] [PubMed]
- Flores, S.; Montenegro, I.; Villena, J.; Cuellar, M.; Werner, E.; Godoy, P.; Madrid, A. Synthesis and Evaluation of novel oxyalkylated derivatives of 2′,4′-dihydroxychalcone as anti-oomycete agents against bronopol resistant strains of Saprolegnia sp. Int. J. Mol. Sci. 2016, 17, 1366. [Google Scholar] [CrossRef] [PubMed]
- Escobar, B.; Montenegro, I.; Villena, J.; Werner, E.; Godoy, P.; Olguín, Y.; Madrid, A. Hemi-Synthesis and Anti-Oomycete Activity of Analogues of Isocordoin. Molecules 2017, 22, 968. [Google Scholar] [CrossRef] [PubMed]
- Barron, D.; Ibrahim, R.K. Isoprenylated flavonoids—A survey. Phytochemistry 1996, 43, 921–982. [Google Scholar] [CrossRef]
- Ngaini, Z.; Fadzillah, S.M.H.; Hussain, H. Synthesis and antimicrobial studies of hydroxylated chalcone derivatives with variable chain length. Nat. Prod. Res. 2012, 26, 892–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnott, J.A.; Planey, S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012, 7, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Seyedi, S.M.; Jafari, Z.; Attaran, N.; Sadeghian, H.; Saberi, M.R.; Riazi, M.M. Design, synthesis and SAR studies of 4-allyoxyaniline amides as potent 15-lipoxygensae inhibitors. Bioorg. Med. Chem. 2009, 17, 1614–1622. [Google Scholar] [CrossRef] [PubMed]
- Amis, E. Solvent Effects on Chemical Phenomena; Academic Press, Inc.: New York, NY, USA; Elsevier Science B.V.: Amsterdam, The Netherlands, 1973; Volume 1, pp. 332–333. [Google Scholar]
- Da Silva, G.; da Silva, M.; Souza, E.; Barison, A.; Simões, S.; Varotti, F.; Barbosa, L.; Viana, G.; Villar, J. Design and synthesis of new chalcones substituted with azide/triazole groups and analysis of their cytotoxicity towards HeLa Cells. Molecules 2012, 17, 10331–10343. [Google Scholar] [CrossRef] [PubMed]
- Yee, L.C.; Wei, Y.C. Current modeling methods used in QSAR/QSPR. In Statistical Modelling of Molecular Descriptors in QSAR/QSPR; John Wiley & Sons: Hoboken, NJ, USA, 2012; Volume 10, pp. 1–31. [Google Scholar]
- Carloni, P.; Alber, F. Quantum Medicinal Chemistry; Mannhold, R., Kubinyi, H., Folkers, G., Eds.; Wiley-VCH Verlag GmbH & Co., KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Chermette, H. Chemical reactivity indexes in density functional theory. J. Comp. Chem. 1999, 20, 129–154. [Google Scholar] [CrossRef]
- Li, W.; Xu, K.; Xu, L.; Hu, J.; Ma, F.; Guo, Y. Preparation of highly ordered mesoporous AlSBA-15–SO3H hybrid material for the catalytic synthesis of chalcone under solvent-free condition. Appl. Surf. Sci. 2010, 256, 3183–3190. [Google Scholar] [CrossRef]
- Pearson, R.G. The principle of maximum hardness. Acc. Chem. Res. 1993, 26, 250–255. [Google Scholar] [CrossRef]
- Lopez, J.M.; Ensuncho, A.E.; Robles, J.R. Global and local reactivity descriptors for the design of new anticancer drugs based on cis-platinum(II). Quim. Nova 2013, 36, 1308–1317. [Google Scholar] [CrossRef]
- Ghosh, D.C.; Bhattacharyya, S. Molecular Orbital and Density Functional Study of the Formation, Charge Transfer, Bonding and the Conformational Isomerism of the Boron Trifluoride (BF3) and Ammonia (NH3) Donor-Acceptor Complex. Int. J. Mol. Sci. 2004, 5, 239–264. [Google Scholar] [CrossRef]
- Barua, N.; Sarmah, P.; Hussain, I.; Deka, R.C.; Buragohain, A.K. DFT-based QSAR models to predict the antimycobacterial activity of chalcones. Chem. Biol. Drug Des. 2012, 79, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.H. Discovery of 2′,4′-dimethoxychalcone as a Hsp90 inhibitor and its effect on iressa-resistant non-small cell lung cancer (NSCLC). Arch. Pharm. Res. 2015, 38, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian 03, Revision C.02; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Golbraikh, A.; Alexander, T. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–10 are available from the authors. |
Compound | MIC (µg·mL−1) | MOC (µg·mL−1) | Damage (%) b |
---|---|---|---|
1 | 6.25 | 12.5 | 100 |
2 | 150 | 175 | 5 |
3 | 200 | >200 | 0 |
4 | 75 | 100 | 74 |
5 | 100 | 125 | 37 |
6 | >200 | >200 | 0 |
7 | >200 | >200 | 0 |
8 | 50 | 50 | 81 |
9 | >200 | >200 | 0 |
10 | 150 | 175 | 20 |
Bronopol | >200 | >200 | 30 |
Fluconazole | 150 | 175 | Nd |
SDS | Nd | Nd | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montenegro, I.; Muñoz, O.; Villena, J.; Werner, E.; Mellado, M.; Ramírez, I.; Caro, N.; Flores, S.; Madrid, A. Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis. Molecules 2018, 23, 1377. https://doi.org/10.3390/molecules23061377
Montenegro I, Muñoz O, Villena J, Werner E, Mellado M, Ramírez I, Caro N, Flores S, Madrid A. Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis. Molecules. 2018; 23(6):1377. https://doi.org/10.3390/molecules23061377
Chicago/Turabian StyleMontenegro, Iván, Ociel Muñoz, Joan Villena, Enrique Werner, Marco Mellado, Ingrid Ramírez, Nelson Caro, Susana Flores, and Alejandro Madrid. 2018. "Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis" Molecules 23, no. 6: 1377. https://doi.org/10.3390/molecules23061377
APA StyleMontenegro, I., Muñoz, O., Villena, J., Werner, E., Mellado, M., Ramírez, I., Caro, N., Flores, S., & Madrid, A. (2018). Structure-Activity Relationship of Dialkoxychalcones to Combat Fish Pathogen Saprolegnia australis. Molecules, 23(6), 1377. https://doi.org/10.3390/molecules23061377