Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phenolic Compounds and Antioxidant Activity of Cocoa Shell
2.2. Methylxanthines of Cocoa Shell
2.3. Response Surface Analysis and Optimization
2.4. Sugar Content of Cocoa Shell
3. Materials and Methods
3.1. Material
3.2. Subcritical Water Extraction (SWE)
3.3. Experimental Design
3.4. HPLC Method for Determination of Phenolic Compounds and Methylxanthines
3.5. HPLC Method for Determination of Sugars and Their Derivatives
3.6. Determination of DPPH Scavenging Activity
3.7. Determination of Total Phenolic Content (TP)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Martin-Cabrejas, M.A.; Valiente, C.; Esteban, R.M.; Molla, E. Cocoa hull: A potential source of dietary fibre. J. Sci. Food Agric. 1994, 66, 307–311. [Google Scholar] [CrossRef]
- Nsor-Atindana, J.; Zhong, F.; Mothibe, K.J. In vitro hypoglycemic and cholesterol lowering effects of dietary fiber prepared from cocoa (Theobroma cacao L.) shells. J. Funct. Food 2012, 3, 1044–1050. [Google Scholar] [CrossRef] [PubMed]
- Okiyama, D.C.G.; Navarro, S.L.; Rodrigues, C.E.C. Cocoa shell and its compounds: Applications in the food industry. Trends Food Sci. Technol. 2017, 63, 103–112. [Google Scholar] [CrossRef]
- EI-Saied, H.M.; Morsi, M.K.; Amer, M.M.A. Composition of cocoa shell fat as related to cocoa butter. Z. Ernahrung. 1981, 20, 146–151. [Google Scholar] [CrossRef]
- Redgwell, R.J.; Hansen, C.E. Isolation and characterisation of cell wall polysaccharides from cocoa (Theobroma cacao L.) beans. Planta 1999, 210, 823–830. [Google Scholar] [CrossRef] [PubMed]
- Redgwell, R.; Trovato, V.; Merinat, S.; Curti, D.; Hediger, S.; Manez, A. Dietary fibre in cocoa shell: Characterisation of component polysaccharides. Food Chem. 2003, 81, 103–112. [Google Scholar] [CrossRef]
- Lecumberri, E.; Mateos, R.; Izquierdo-Pulido, M.; Ruperez, P.; Goya, L.; Bravo, L. Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chem. 2007, 104, 948–954. [Google Scholar] [CrossRef]
- Hartati, I. Hydrotropic extraction of Theobromine from cocoa bean shell. Momentum 2010, 6, 17–20. [Google Scholar]
- Hamzat, R.A.; Adeola, O. Chemical evaluation of co-products of cocoa and kola as livestock feeding stuffs. J. Anim. Sci. Adv. 2011, 1, 61–68. [Google Scholar]
- Bruna, C.; Eichholz, I.; Rohn, S.; Kroh, L.W.; Huyskens-Keil, S. Bioactive compounds and antioxidant activity of cocoa hulls (Theobroma cacao L.) from different origins. J. Appl. Bot. Food Qual. 2009, 83, 9–13. [Google Scholar]
- Nsor-Atindana, J.; Zhong, F.; Mothibe, K.J.; Bangoura, M.L.; Lagnika, C. Quantification of total polyphenolic content and antimicrobial activity of cocoa (Theobroma cacao L.) bean shells. Pak. J. Nutr. 2012, 11, 672–677. [Google Scholar] [CrossRef]
- Cvjetko Bubalo, M.; Vidović, S.; Radojčić Redovniković, I.; Jokić, S. Green solvents for green technologies. J. Chem. Technol. Biot. 2015, 90, 1631–1639. [Google Scholar] [CrossRef]
- Akiya, N.; Savage, P.E. Roles of Water for Chemical Reactions in High-Temperature Water. Chem. Rev. 2002, 102, 2725–2750. [Google Scholar] [CrossRef] [PubMed]
- Kubatova, A.; Miller, D.J.; Hawthorne, B.S. Comparison of subcritical water and organic solvents for extracting kava lactones from kava root. J. Chromatogr. A 2001, 923, 187–194. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Remesy, C.; Jimenez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Koffi, E.; Sea, T.; Dodehe, Y.; Soro, S. Effect of solvent type on extraction of polyphenols from twenty three Ivorian plants. J. Anim. Plant Sci. 2010, 5, 550–558. [Google Scholar]
- Nazaruddin, R.; Seng, L.K.; Hassan, O.; Said, M. Effect of pulp pre-conditioning on the content of polyphenols in cocoa beans (Theobroma cacao) during fermentation. Ind. Crop. Prod. 2006, 24, 87–94. [Google Scholar] [CrossRef]
- Azizah, A.H.; Nik Ruslawati, N.M.; Swee Tee, T. Extraction and characterization of antioxidant from cocoa by-products. Food Chem. 1999, 64, 199–202. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Guglielmetti, A.; Zeppa, G. Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silverskin. Food Bioprocess Technol. 2018, 11, 818–835. [Google Scholar] [CrossRef]
- Mazzutti, S.; Rodrigues, L.G.G.; Mezzomo, N.; Venturi, V.; Ferreira, S.R.S. Integrated green-based processes using supercritical CO2 and pressurized ethanol applied to recover antioxidant compouds from cocoa (Theobroma cacao) bean hulls. J. Supercrit. Fluids 2018, 135, 52–59. [Google Scholar] [CrossRef]
- Ismail, A.; Lee, C.Y. Antioxidative effects of extracts of cocoa shell, roselle seeds and a combination of both extracts on the susceptibility of cooked beef to lipid oxidation. J. Food Techol. 2006, 4, 10–15. [Google Scholar]
- Kim, H.; Keeney, P.G. (-)-Epicatechin content in fermented and unfermented cocoa beans. J. Food Sci. 1984, 49, 1090–1092. [Google Scholar] [CrossRef]
- Hammerstone, J.F.; Lazarus, S.A.; Mitchell, A.E.; Rucker, R.; Schmitz, H.H. Identification of procyanidins in cocoa (Theobroma cacao) and chocolate using high-performance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 1999, 47, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, C.; Viera-Alcaide, I.; Sillero, A.M.M.; Fernández-Bolaños, J.; Rodríguez-Gutiérrez, G. Bioactive compounds in Mexican genotypes of cocoa cotyledon and husk. Food Chem. 2018, 240, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of cocoa (Theobroma cacao L.) co-products. Food Res. Int. 2012, 49, 39–45. [Google Scholar] [CrossRef]
- Arlorio, M.; Coïsson, J.D.; Travaglia, F.; Varsaldi, F.; Miglio, G.; Lombardi, G.; Martelli, A. Antioxidant and biological activity of phenolic pigments from Theobroma cacao hulls extracted with supercritical CO2. Food Res. Int. 2005, 38, 1009–1014. [Google Scholar] [CrossRef]
- Maalik, A.; BukharI, S.M.; Zaidi, A.; Shah, K.H.; Khan, F.A. Chlorogenic acid: A pharmacologically potent molecule. Acta Pol. Pharm. 2016, 73, 851–854. [Google Scholar] [PubMed]
- Santos, L.F.S.; Stolfo, A.; Salvador, C.C.M. Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts. J. Arrhythm. 2017, 33, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Aprotosoaie, A.C.; Miron, A.; Trifan, A.; Luca, V.S.; Costache, I.I. The cardiovascular effects of cocoa polyphenols—An overview. Diseases 2016, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Bispo, M.; Cristina, M.; Andrade, J. Simultaneous determination of caffeine, theobromine, and theophylline by High-Performance Liquid Chromatography. J. Chromatogr. Sci. 2002, 40, 46–49. [Google Scholar] [CrossRef]
- Timbie, D.J.; Sechrist, L.; Keeney, P.G. Application of high-pressure liquid chromatography to the study of variables affecting theobromine and caffeine concentrations in cocoa beans. J. Food Sci. 1978, 43, 560–565. [Google Scholar] [CrossRef]
- Carrillo, L.C.; Londoño-Londoño, J.; Gil, A. Comparison of polyphenol, methylxanthines and antioxidant activity in Theobroma cacao beans from different cocoa-growing areas in Colombia. Food Res. Int. 2014, 60, 273–280. [Google Scholar] [CrossRef]
- Gummadi, S.N.; Bhavya, B.; Ashok, N. Physiology, biochemistry and possible applications of microbial caffeine degradation. Appl. Microbiol. Biotechnol. 2012, 93, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Sunil Paul, M.M.; Aravind, U.K.; Pramod, G.; Saha, A.; Aravindakumar, C.T. Hydroxyl radical induced oxidation of theophylline in water: A kinetic and mechanistic study. Org. Biomol. Chem. 2014, 12, 5611–5620. [Google Scholar] [CrossRef] [PubMed]
- Ravber, M.; Knez, Ž.; Škerget, M. Simultaneous extraction of oil- and watersoluble phase from sunflower seeds with subcritical water. Food Chem. 2015, 166, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Turner, C. Pressurized hot water extraction of bioactives. Trend. Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef]
- Hess, E.H. Process for Manufacturing Flavouring Material from Cocoa Shell-Containing Chocolate Manufacturing by Products. U.S. Patent 3,392,027, 9 July 1968. [Google Scholar]
- Kleinert, J. Process for Producing Dietary Fibre for Improving the Digestive Properties of Foods and Drinks. EP Application Patent EP0068229A1, 11 June 1982. [Google Scholar]
- Déniela, M.; Haarlemmer, G.; Roubaud, A.; Weiss-Hortala, E.; Fages, J. Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction. Renew. Sustain. Energy Rev. 2016, 54, 1632–1652. [Google Scholar] [CrossRef] [Green Version]
- Déniela, M.; Haarlemmer, G.; Roubaud, A.; Weiss-Hortala, E.; Fages, J. Hydrothermal liquefaction of blackcurrant pomace and model molecules: Understanding of reaction mechanisms. Sustain. Energy Fuels 2017, 1, 555–582. [Google Scholar] [CrossRef]
- Bas, D.; Boyacı, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Jokić, S.; Bijuk, M.; Aladić, K.; Bilić, M.; Molnar, M. Optimization of supercritical CO2 extraction of grape seed oil using response surface methodology. Int. J. Food Sci. Technol. 2016, 51, 403–410. [Google Scholar] [CrossRef]
- Jakobek, L.; Šeruga, M.; Novak, I.; Medvidović-Kosanović, M. Flavonols, phenolic acids and antioxidant activity of some red fruits. Deut. Lebensm-Rundsch. 2007, 103, 369–378. [Google Scholar]
Sample Availability: Samples of the compounds not are available from the authors. |
Run | Temperature (°C) | Time (min) | Solvent-Solid Ratio (mL/g) | Extract Yield, % | Theobromine % (w/w) | Caffeine % (w/w) | Theophylline % (w/w) | Gallic Acid % (w/w) | Epicatechin % (w/w) | Catechin % (w/w) | Chlorogenic Acid % (w/w) | TP (mg GAE/g Extract) | % DPPH Scavening |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 170 | 45 | 20 | 39.64 | 4.15 | 0.23 | traces | traces | 1.13 | traces | traces | 95.97 | 62.99 |
2 | 120 | 75 | 20 | 35.12 | 2.94 | 0.13 | - | - | 0.63 | traces | traces | 27.26 | 19.20 |
3 | 170 | 45 | 20 | 40.15 | 4.77 | 0.23 | traces | traces | 0.94 | traces | traces | 94.18 | 52.06 |
4 | 170 | 75 | 30 | 32.79 | 3.45 | 0.24 | traces | - | 0.58 | traces | traces | 57.01 | 48.36 |
5 | 120 | 45 | 30 | 25.39 | 1.63 | 0.07 | - | - | 0.59 | traces | traces | 43.67 | 31.27 |
6 | 170 | 75 | 10 | 32.54 | 4.32 | 0.19 | traces | traces | 0.44 | traces | traces | 91.10 | 64.48 |
7 | 120 | 45 | 10 | 53.16 | 1.31 | 0.04 | - | - | 0.41 | traces | - | 98.28 | 63.83 |
8 | 220 | 45 | 10 | 27.08 | 3.57 | 0.17 | 0.045 | - | 0.23 | 0.37 | 0.01 | 93.41 | 66.33 |
9 | 120 | 15 | 20 | 33.00 | 2.12 | 0.10 | - | - | 0.66 | traces | - | 94.44 | 65.46 |
10 | 170 | 15 | 10 | 28.89 | 3.83 | 0.29 | - | traces | 1.23 | traces | traces | 96.49 | 70.51 |
11 | 170 | 45 | 20 | 42.74 | 4.26 | 0.21 | traces | traces | 0.85 | traces | traces | 101.35 | 74.47 |
12 | 170 | 45 | 20 | 39.01 | 3.30 | 0.20 | traces | traces | 0.55 | traces | traces | 85.72 | 80.60 |
13 | 170 | 15 | 30 | 42.71 | 2.95 | 0.25 | traces | - | 3.29 | traces | traces | 33.41 | 20.24 |
14 | 170 | 45 | 20 | 39.72 | 3.57 | 0.24 | traces | traces | 0.47 | traces | traces | 113.41 | 71.89 |
15 | 220 | 45 | 30 | 33.42 | 3.27 | 0.16 | 0.04 | - | 0.19 | 0.29 | 0.01 | 117.51 | 83.62 |
16 | 220 | 15 | 20 | 35.76 | 3.27 | 0.14 | 0.07 | - | 0.38 | 0.07 | 0.01 | 44.95 | 33.67 |
17 | 220 | 75 | 20 | 30.10 | 3.65 | 0.18 | 0.17 | - | 0.25 | 0.45 | 0.03 | 130.33 | 91.69 |
Term | Coefficients | Standard Error | F-Value | p-Value |
---|---|---|---|---|
Theobromine | ||||
Intercept | 4.21 | 0.22 | ||
X1 | 0.72 | 0.17 | 17.53 | 0.0041 * |
X2 | 0.27 | 0.17 | 2.55 | 0.1540 |
X3 | −0.22 | 0.17 | 1.60 | 0.2459 |
X12 | −1.20 | 0.24 | 25.84 | 0.0014 * |
X22 | −0.011 | 0.24 | 0.002 | 0.9647 |
X32 | −0.56 | 0.24 | 5.59 | 0.0501 |
X1X2 | −1.20 | 0.24 | 0.20 | 0.6645 |
X1X3 | −0.011 | 0.24 | 0.40 | 0.5464 |
X2X3 | −0.56 | 0.24 | 0.000 | 0.9976 |
Caffeine | ||||
Intercept | 0.22 | 0.014 | ||
X1 | 0.039 | 0.011 | 12.98 | 0.0087 * |
X2 | −0.0057 | 0.011 | 0.29 | 0.6085 |
X3 | 0.0036 | 0.011 | 0.12 | 0.7436 |
X12 | −0.11 | 0.015 | 51.39 | 0.0002 * |
X22 | 0.026 | 0.015 | 3.16 | 0.1185 |
X32 | −0.003 | 0.015 | 0.041 | 0.8450 |
X1X2 | 0.000 | 0.015 | 0.000 | 1.0000 |
X1X3 | −0.0088 | 0.015 | 0.34 | 0.5800 |
X2X3 | 0.023 | 0.015 | 2.40 | 0.1653 |
Total phenols | ||||
Intercept | 98.13 | 5.35 | ||
X1 | 15.32 | 4.23 | 13.10 | 0.0085 * |
X2 | 4.55 | 4.23 | 1.16 | 0.3178 |
X3 | −15.96 | 4.23 | 14.22 | 0.0070 * |
X12 | −2.58 | 5.83 | 0.20 | 0.6711 |
X22 | −21.30 | 5.83 | 13.33 | 0.0082 |
X32 | −7.33 | 5.83 | 1.58 | 0.2495 |
X1X2 | 38.14 | 5.99 | 40.60 | 0.0004 * |
X1X3 | 19.68 | 5.99 | 10.81 | 0.0133 * |
X2X3 | 7.25 | 5.99 | 1.47 | 0.2653 |
DPPH | ||||
Intercept | 68.40 | 4.95 | ||
X1 | 11.94 | 3.92 | 9.30 | 0.0186 * |
X2 | 4.23 | 3.92 | 1.17 | 0.3156 |
X3 | −10.21 | 3.92 | 6.80 | 0.0351 * |
X12 | −2.76 | 5.40 | 0.26 | 0.6244 |
X22 | −13.13 | 5.40 | 5.91 | 0.0453 * |
X32 | −4.37 | 5.40 | 0.66 | 0.4449 |
X1X2 | 26.07 | 5.54 | 22.16 | 0.0022 * |
X1X3 | 12.46 | 5.54 | 5.06 | 0.0592 |
X2X3 | 8.54 | 5.54 | 2.38 | 0.1671 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Theobromine | |||||
The recovery | |||||
Model | 13.06 | 9 | 1.45 | 6.14 | 0.0129 |
Residual | 1.65 | 7 | 0.24 | ||
Lack of fit | 0.92 | 3 | 0.31 | 1.66 | 0.3117 |
Pure error | 0.74 | 4 | 0.18 | ||
Total | 14.72 | 16 | |||
R2 = 0.887 | |||||
Caffeine | |||||
The recovery | |||||
Model | 0.064 | 9 | 0.007 | 7.75 | 0.0066 |
Residual | 0.006 | 7 | 0.0009 | ||
Lack of fit | 0.005 | 3 | 0.002 | 9.24 | 0.0585 |
Pure error | 0.0008 | 4 | 0.0002 | ||
Total | 0.071 | 16 | |||
R2 = 0.909 | |||||
Total phenols | |||||
The recovery | |||||
Model | 13,944.84 | 9 | 1549.43 | 10.81 | 0.0024 |
Residual | 1003.19 | 7 | 143.31 | ||
Lack of fit | 584.97 | 3 | 194.99 | 1.86 | 0.2763 |
Pure error | 418.22 | 4 | 104.55 | ||
Total | 14,948.03 | 16 | |||
R2 = 0.933 | |||||
DPPH | |||||
The recovery | |||||
Model | 6643.02 | 9 | 738.11 | 6.02 | 0.0137 |
Residual | 858.97 | 7 | 122.71 | ||
Lack of fit | 364.94 | 3 | 121.65 | 0.98 | 0.4842 |
Pure error | 494.03 | 4 | 123.51 | ||
Total | 7502.00 | 16 | |||
R2 = 0.886 |
Run | Temperature (°C) | Time (min) | Solvent-Solid Ratio (mL/g) | Glucose | Rhamnose | Arabinose | Mannose | Xylose | Fucose | Levulinic Acid | Lactic Acid | Formic Acid | 5-HMF | Furfural |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 170 | 45 | 20 | 0.89 | 1.82 | 5.85 | - | 2.93 | 1.70 | - | - | - | Traces | Traces |
2 | 120 | 75 | 20 | - | - | - | 1.17 | - | - | - | - | - | - | - |
3 | 170 | 45 | 20 | 2.76 | 1.71 | 3.27 | - | 3.61 | 1.46 | - | - | - | Traces | Traces |
4 | 170 | 75 | 30 | 3.21 | 2.84 | 4.57 | - | 3.94 | 2.04 | - | - | - | Traces | Traces |
5 | 120 | 45 | 30 | - | - | - | 0.91 | - | - | - | - | - | - | - |
6 | 170 | 75 | 10 | 2.84 | 2.35 | 3.92 | - | 3.66 | 1.88 | - | - | - | Traces | Traces |
7 | 120 | 45 | 10 | - | - | - | 0.68 | - | - | - | - | - | - | - |
8 | 220 | 45 | 10 | 2.67 | 5.74 | 5.71 | - | 5.18 | 5.20 | 10.95 | 6.69 | 1.96 | Traces | Traces |
9 | 120 | 15 | 20 | - | - | - | 0.27 | - | - | - | - | - | - | - |
10 | 170 | 15 | 10 | 1.02 | 1.09 | 1.13 | - | 2.97 | 1.05 | - | - | - | Traces | Traces |
11 | 170 | 45 | 20 | 1.19 | 1.53 | 3.48 | - | 3.56 | 1.32 | - | - | - | Traces | Traces |
12 | 170 | 45 | 20 | 1.34 | - | 3.78 | - | 3.25 | 1.23 | - | - | - | Traces | Traces |
13 | 170 | 15 | 30 | 1.32 | 1.47 | 2.88 | - | 3.22 | 0.98 | - | - | - | Traces | Traces |
14 | 170 | 45 | 20 | 1.53 | 1.94 | 3.09 | - | 2.90 | 1.66 | - | - | - | Traces | Traces |
15 | 220 | 45 | 30 | 4.61 | 5.93 | 6.48 | - | 4.22 | 4.70 | 11.83 | 7.07 | 2.37 | 0.35 | 0.69 |
16 | 220 | 15 | 20 | 2.36 | 4.20 | 4.59 | - | 4.60 | 4.26 | 6.37 | 6.38 | 0.36 | 0.96 | 2.62 |
17 | 220 | 75 | 20 | 4.22 | 6.00 | 6.57 | - | 5.84 | 5.65 | 7.44 | 4.18 | 3.25 | 0.030 | 0.41 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jokić, S.; Gagić, T.; Knez, Ž.; Šubarić, D.; Škerget, M. Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction. Molecules 2018, 23, 1408. https://doi.org/10.3390/molecules23061408
Jokić S, Gagić T, Knez Ž, Šubarić D, Škerget M. Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction. Molecules. 2018; 23(6):1408. https://doi.org/10.3390/molecules23061408
Chicago/Turabian StyleJokić, Stela, Tanja Gagić, Željko Knez, Drago Šubarić, and Mojca Škerget. 2018. "Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction" Molecules 23, no. 6: 1408. https://doi.org/10.3390/molecules23061408
APA StyleJokić, S., Gagić, T., Knez, Ž., Šubarić, D., & Škerget, M. (2018). Separation of Active Compounds from Food by-Product (Cocoa Shell) Using Subcritical Water Extraction. Molecules, 23(6), 1408. https://doi.org/10.3390/molecules23061408