High-Throughput Identification of Mammalian Secreted Proteins Using Species-Specific Scheme and Application to Human Proteome
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Characteristics of the Calculated Features
2.2. The Performance of the Extracted Features
2.3. The Performance of Feature Selection Scheme
2.4. Comparison of Species-Specific Models with Traditional Universal Ones
2.5. Comparison with Other Predictors on Independent Testing Datasets
2.6. Application to Predict Secreted Proteins from Human Proteome by Using iMSP
3. Materials and Methods
3.1. Datasets Preparation
3.2. Feature Construction
3.2.1. Amino Acid Composition-Based Features
3.2.2. Sequence Motif-Based Features
3.2.3. Physicochemical Properties-Based Features
3.3. Feature Selection Strategy
3.4. Model Construction and Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gilmore, R.; Walter, P.; Blobel, G. Protein translocation across the endoplasmic reticulum. II. Isolation and characterization of the signal recognition particle receptor. J. Cell Biol. 1982, 95, 470–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nickel, W. The mystery of nonclassical protein secretion. Eur. J. Biochem. 2003, 270, 2109–2119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trayhurn, P.; Drevon, C.A.; Eckel, J. Secreted proteins from adipose tissue and skeletal muscle–adipokines, myokines and adipose/muscle cross-talk. Arch. Physiol. Biochem. 2011, 117, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Abraham, C.; Medzhitov, R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 2011, 140, 1729–1737. [Google Scholar] [CrossRef] [PubMed]
- Kulp, A.; Kuehn, M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010, 64, 163–184. [Google Scholar] [CrossRef] [PubMed]
- Schrank, A.; Vainstein, M.H. Metarhizium anisopliae enzymes and toxins. Toxicon 2010, 56, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Mudrak, B.; Kuehn, M.J. Specificity of the type II secretion systems of enterotoxigenic Escherichia coli and Vibrio cholerae for heat-labile enterotoxin and cholera toxin. J. Bacteriol. 2010, 192, 1902–1911. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.S.; Cui, J.; Ni, Z.; Su, Y.; Puett, D.; Li, F.; Xu, Y. A computational method for prediction of excretory proteins and application to identification of gastric cancer markers in urine. PLoS ONE 2011, 6, e16875. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Cui, J.; Yang, Q.; Xu, Y. In-silico prediction of blood-secretory human proteins using a ranking algorithm. BMC Bioinform. 2010, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-H.; Huang, H.-L.; Hsu, K.-T.; Ho, S.-J.; Ho, S.-Y. Prediction of non-classical secreted proteins using informative physicochemical properties. Interdisciplin. Sci. 2010, 2, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Restrepo-Montoya, D.; Pino, C.; Nino, L.F.; Patarroyo, M.E.; Patarroyo, M.A. NClassG+: A classifier for non-classically secreted Gram-positive bacterial proteins. BMC Bioinform. 2011, 12, 21. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Guo, Y.; Li, Y.; Li, G.; Li, M.; Luo, J.; Xiong, W.; Qin, W. SecretP: Identifying bacterial secreted proteins by fusing new features into Chou’s pseudo-amino acid composition. J. Theor. Biol. 2010, 267, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Yu, L.; Guo, Y.; Li, M. Functional classification of secreted proteins by position specific scoring matrix and auto covariance. Chemometr. Intell. Lab. Syst. 2012, 110, 163–167. [Google Scholar] [CrossRef]
- Wang, J.; Liang, Y.; Wang, Y.; Cui, J.; Liu, M.; Du, W.; Xu, Y. Computational prediction of human salivary proteins from blood circulation and application to diagnostic biomarker identification. PLoS ONE 2013, 8, e80211. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Luo, J.; Guo, Y.; Li, Y.; Pu, X.; Li, M. In silico identification of Gram-negative bacterial secreted proteins from primary sequence. Comput. Biol. Med. 2013, 43, 1177–1181. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Du, W.; Zhou, C.; Zhou, Y.; Cao, Z.; Tian, Y.; Wang, Y. A Computational Method for Prediction of Saliva-Secretory Proteins and Its Application to Identification of Head and Neck Cancer Biomarkers for Salivary Diagnosis. IEEE Trans. Nanobiosci. 2015, 14, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Kapp, K.; Schrempf, S.; Lemberg, M.K.; Dobberstein, B. Post-Targeting Functions of Signal Peptides. In Madame Curie Bioscience Database; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Käll, L.; Krogh, A.; Sonnhammer, E.L. Advantages of combined transmembrane topology and signal peptide prediction—The Phobius web server. Nucleic Acids Res. 2007, 35 (Suppl. 2), W429–W432. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.M.; Käll, L.; Riffle, M.E.; Bilmes, J.A.; Noble, W.S. Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLoS Comput. Biol. 2008, 4, e1000213. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H. Predicting secretory proteins with SignalP. Protein Funct. Predict. Methods Protoc. 2017, 1611, 59–73. [Google Scholar]
- De Wit, J.; Hong, W.; Luo, L.; Ghosh, A. Role of leucine-rich repeat proteins in the development and function of neural circuits. Annu. Rev. Cell Dev. Biol. 2011, 27, 697–729. [Google Scholar] [CrossRef] [PubMed]
- Kusuzawa, S.; Honda, T.; Fukata, Y.; Fukata, M.; Kanatani, S.; Tanaka, D.H.; Nakajima, K. Leucine-rich glioma inactivated 1 (Lgi1), an epilepsy-related secreted protein, has a nuclear localization signal and localizes to both the cytoplasm and the nucleus of the caudal ganglionic eminence neurons. Eur. J. Neurosci. 2012, 36, 2284–2292. [Google Scholar] [CrossRef] [PubMed]
- Kobe, B.; Kajava, A.V. The leucine-rich repeat as a protein recognition motif. Curr. Opin. Struct. Biol. 2001, 11, 725–732. [Google Scholar] [CrossRef]
- Cheng, Q.; Zhou, H.; Cheng, J. The fisher-markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1217–1233. [Google Scholar] [CrossRef] [PubMed]
- Bendtsen, J.D.; Jensen, L.J.; Blom, N.; Von Heijne, G.; Brunak, S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 2004, 17, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, A.; Raghava, G.P. A machine learning based method for the prediction of secretory proteins using amino acid composition, their order and similarity-search. In Silico Biol. 2008, 8, 129–140. [Google Scholar] [PubMed]
- Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ma, Z.; Kurgan, L. Comprehensive review and empirical analysis of hallmarks of DNA-, RNA-and protein-binding residues in protein chains. Brief. Bioinform. 2017, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kurgan, L. Review and comparative assessment of sequence-based predictors of protein-binding residues. Brief. Bioinform. 2017, bbx022. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.; Zhang, J. Identification of Mammalian Enzymatic Proteins Based on Sequence-Derived Features and Species-Specific Scheme. IEEE Access 2018, 6, 8452–8458. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.-Z.; Wang, X.-F.; Wang, C.; Yan, R.-X.; Zhang, Z. Prediction of ubiquitination sites by using the composition of k-spaced amino acid pairs. PLoS ONE 2011, 6, e22930. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, B.; Chai, H.; Ma, Z.; Yang, G. Identification of DNA-binding proteins using multi-features fusion and binary firefly optimization algorithm. BMC Bioinform. 2016, 17, 323. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-H.; Tu, S.-C. Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase. Biochemistry 2005, 44, 12970–12977. [Google Scholar] [CrossRef] [PubMed]
- Iden, S.; Collard, J.G. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol. 2008, 9, 846–859. [Google Scholar] [CrossRef] [PubMed]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef] [PubMed]
- Randic, M. Novel shape descriptors for molecular graphs. J. Chem. Inf. Comput. Sci. 2001, 41, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Schuler, B.; Lipman, E.A.; Eaton, W.A. Probing the free-energy surface for protein folding with single-molecule fluorescence spectroscopy. Nature 2002, 419, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Wu, G.; Zhang, W. Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: A multiple regression to identify sources of variations. Biochem. Biophys. Res. Commun. 2006, 339, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Samanta, U.; Bahadur, R.P.; Chakrabarti, P. Quantifying the accessible surface area of protein residues in their local environment. Protein Eng. 2002, 15, 659–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skopp, G.; Pötsch, L.; Mauden, M.; Richter, B. Partition coefficient, blood to plasma ratio, protein binding and short-term stability of 11-nor-Δ 9-carboxy tetrahydrocannabinol glucuronide. Forensic Sci. Int. 2002, 126, 17–23. [Google Scholar] [CrossRef]
- Kerwin, B.A. Polysorbates 20 and 80 used in the formulation of protein biotherapeutics: Structure and degradation pathways. J. Pharm. Sci. 2008, 97, 2924–2935. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.S.; Scott, J.D. A-kinase anchoring proteins: Protein kinase A and beyond. Curr. Opin. Cell Biol. 2000, 12, 217–221. [Google Scholar] [CrossRef]
- Chandrashekar, G.; Sahin, F. A survey on feature selection methods. Comput. Electr. Eng. 2014, 40, 16–28. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
SPs-All | SPs-H | SPs-M | SPs-B | SPs-C | SPs-O | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MTF | RDI | MTF | RDI | MTF | RDI | MTF | RDI | MTF | RDI | MTF | RDI |
LLLL | 0.035 | LLLL | 0.039 | LLLL | 0.037 | LLLL | 0.045 | C-CR | 0.053 | G-CP | 0.064 |
LL-LLL | 0.034 | LL-LLL | 0.038 | LL-LLL | 0.035 | G-CP | 0.035 | G-CP | 0.047 | C-VP | 0.057 |
LLL-LL | 0.032 | LLL-LL | 0.036 | C-CP | 0.027 | CP-G | 0.033 | CG-C | 0.047 | GC-P | 0.052 |
CP-G | 0.022 | LAL-L | 0.027 | C-QG | 0.027 | C-PG | 0.032 | C-AG | 0.047 | CS-C | 0.051 |
LAL-L | 0.022 | L-LLA | 0.024 | CP-G | 0.026 | C-CL | 0.032 | KGD | 0.046 | SC-C | 0.051 |
G-TC | 0.021 | LL-LA | 0.024 | C-NG | 0.024 | L-LLA | 0.032 | CP-Q | 0.043 | C-SC | 0.049 |
C-PG | 0.020 | L-LLG | 0.024 | G-TC | 0.024 | S-SC | 0.032 | CC-P | 0.043 | C-CR | 0.049 |
LLL-A | 0.020 | LL-LG | 0.024 | CQ-G | 0.024 | CS-S | 0.031 | GR-C | 0.042 | SC-P | 0.047 |
LL-LA | 0.020 | LLL-A | 0.023 | C-PG | 0.024 | AC-P | 0.031 | CG-R | 0.041 | C-SG | 0.046 |
L-LLA | 0.020 | LLL-G | 0.023 | GG-C | 0.022 | LL-LA | 0.030 | C-CL | 0.040 | SG-C | 0.046 |
GT-C | 0.019 | C-PG | 0.022 | CA-G | 0.022 | CA-P | 0.030 | SC-C | 0.040 | CG-C | 0.046 |
GS-C | 0.018 | LLA-L | 0.022 | C-SC | 0.022 | LLL-A | 0.030 | CC-R | 0.040 | GC-G | 0.045 |
L-LW | 0.018 | CP-G | 0.022 | C-GG | 0.021 | LCL | 0.029 | CV-P | 0.039 | CC-P | 0.044 |
ALL-L | 0.017 | ALL-L | 0.021 | GE-C | 0.021 | G-SC | 0.029 | CA-G | 0.039 | LLLL | 0.044 |
LLA-L | 0.017 | L-LAL | 0.021 | GK-C | 0.020 | SC-S | 0.029 | PQG | 0.037 | KPG | 0.044 |
LL-AL | 0.017 | LL-AL | 0.020 | GT-C | 0.019 | C-SS | 0.028 | CS-C | 0.037 | C-PT | 0.043 |
G-RC | 0.017 | LA-LL | 0.020 | G-SC | 0.019 | G-CS | 0.028 | C-SC | 0.037 | GDR | 0.043 |
P-CP | 0.017 | AL-LL | 0.020 | C-PR | 0.019 | CG-G | 0.027 | RGP | 0.037 | CS-G | 0.042 |
CP-P | 0.017 | G-TC | 0.020 | WL-L | 0.019 | AC-S | 0.027 | C-PT | 0.036 | C-GC | 0.041 |
CA-P | 0.016 | L-LW | 0.019 | G-RC | 0.019 | A-CL | 0.027 | PGQ | 0.036 | S-SC | 0.039 |
Dataset | Feature | Sensitivity | Specificity | Accuracy | MCC | AUC |
---|---|---|---|---|---|---|
SPs-all | AAC | 0.695 | 0.734 | 0.714 | 0.429 | 0.773 |
MTF | 0.354 | 0.910 | 0.632 | 0.317 | 0.660 | |
PCP | 0.707 | 0.702 | 0.705 | 0.410 | 0.754 | |
SPs-H | AAC | 0.697 | 0.719 | 0.708 | 0.416 | 0.736 |
MTF | 0.469 | 0.846 | 0.657 | 0.340 | 0.677 | |
PCP | 0.670 | 0.755 | 0.712 | 0.426 | 0.746 | |
SPs-M | AAC | 0.685 | 0.734 | 0.709 | 0.419 | 0.754 |
MTF | 0.361 | 0.896 | 0.628 | 0.304 | 0.658 | |
PCP | 0.652 | 0.722 | 0.687 | 0.374 | 0.732 | |
SPs-B | AAC | 0.663 | 0.781 | 0.722 | 0.447 | 0.765 |
MTF | 0.247 | 0.988 | 0.618 | 0.350 | 0.682 | |
PCP | 0.401 | 0.953 | 0.676 | 0.424 | 0.731 | |
SPs-C | AAC | 0.612 | 0.791 | 0.701 | 0.410 | 0.762 |
MTF | 0.418 | 0.925 | 0.672 | 0.398 | 0.667 | |
PCP | 0.463 | 0.900 | 0.682 | 0.404 | 0.759 | |
SPs-O | AAC | 0.677 | 0.797 | 0.737 | 0.477 | 0.744 |
MTF | 0.563 | 0.870 | 0.716 | 0.454 | 0.725 | |
PCP | 0.490 | 0.807 | 0.648 | 0.313 | 0.693 |
Dataset | Sensitivity | Specificity | Accuracy | MCC | AUC |
---|---|---|---|---|---|
SPs-all | 0.705 | 0.783 | 0.744 | 0.490 | 0.806 |
SPs-H | 0.673 | 0.833 | 0.753 | 0.513 | 0.799 |
SPs-M | 0.634 | 0.847 | 0.740 | 0.492 | 0.783 |
SPs-B | 0.728 | 0.825 | 0.777 | 0.556 | 0.815 |
SPs-C | 0.657 | 0.876 | 0.766 | 0.546 | 0.784 |
SPs-O | 0.771 | 0.870 | 0.820 | 0.644 | 0.835 |
Dataset | Model | Sensitivity | Specificity | Accuracy | MCC |
---|---|---|---|---|---|
SPs-H | iMSP-H | 0.673 | 0.833 | 0.753 | 0.513 |
iMSP-U | 0.647 | 0.820 | 0.733 | 0.474 | |
SPs-M | iMSP-M | 0.634 | 0.847 | 0.740 | 0.492 |
iMSP-U | 0.652 | 0.789 | 0.721 | 0.446 | |
SPs-B | iMSP-B | 0.728 | 0.825 | 0.777 | 0.556 |
iMSP-U | 0.695 | 0.811 | 0.753 | 0.509 | |
SPs-C | iMSP-C | 0.657 | 0.876 | 0.766 | 0.546 |
iMSP-U | 0.473 | 0.841 | 0.657 | 0.337 | |
SPs-O | iMSP-O | 0.771 | 0.870 | 0.820 | 0.644 |
iMSP-U | 0.615 | 0.823 | 0.719 | 0.447 |
Dataset | Method | Sensitivity | Specificity | Accuracy | MCC | AUC |
---|---|---|---|---|---|---|
SPs-all | SecretomeP | 0.611 | 0.798 | 0.763 | 0.355 | 0.729 |
SRTpred | 0.652 | 0.824 | 0.792 | 0.419 | 0.781 | |
iMSP-U | 0.590 | 0.865 | 0.814 | 0.427 | 0.802 | |
SPs-H | SecretomeP | 0.632 | 0.787 | 0.762 | 0.340 | 0.764 |
SRTpred | 0.678 | 0.802 | 0.782 | 0.392 | 0.770 | |
iMSP-H | 0.631 | 0.866 | 0.829 | 0.443 | 0.821 | |
iMSP-U | 0.538 | 0.908 | 0.850 | 0.441 | 0.817 | |
SPs-M | SecretomeP | 0.629 | 0.832 | 0.731 | 0.471 | 0.776 |
SRTpred | 0.707 | 0.793 | 0.751 | 0.503 | 0.785 | |
iMSP-M | 0.742 | 0.776 | 0.759 | 0.519 | 0.809 | |
iMSP-U | 0.703 | 0.802 | 0.753 | 0.507 | 0.803 | |
SPs-B | SecretomeP | 0.575 | 0.861 | 0.824 | 0.367 | 0.768 |
SRTpred | 0.670 | 0.857 | 0.833 | 0.431 | 0.787 | |
iMSP-B | 0.547 | 0.901 | 0.856 | 0.411 | 0.795 | |
iMSP-U | 0.679 | 0.766 | 0.755 | 0.327 | 0.763 | |
SPs-C | SecretomeP | 0.549 | 0.921 | 0.865 | 0.470 | 0.779 |
SRTpred | 0.686 | 0.866 | 0.839 | 0.478 | 0.782 | |
iMSP-C | 0.412 | 0.962 | 0.880 | 0.457 | 0.789 | |
iMSP-U | 0.667 | 0.670 | 0.670 | 0.247 | 0.718 | |
SPs-O | SecretomeP | 0.729 | 0.782 | 0.775 | 0.390 | 0.747 |
SRTpred | 0.792 | 0.842 | 0.835 | 0.509 | 0.820 | |
iMSP-O | 0.646 | 0.913 | 0.876 | 0.521 | 0.841 | |
iMSP-U | 0.521 | 0.805 | 0.766 | 0.264 | 0.716 |
Probability | 0–10% | 10–20% | 20–30% | 30–40% | 40–50% |
iMSP-U | 1155 (2.24%) | 5984 (11.63%) | 7803 (15.16%) | 7684 (14.93%) | 7100 (13.79%) |
iMSP-H | 1904 (3.70%) | 6213 (12.07%) | 7333 (14.25%) | 7219 (14.03%) | 6769 (13.15%) |
Probability | 50–60% | 60–70% | 70–80% | 80–90% | 90–100% |
iMSP-U | 5551 (10.79%) | 4745 (9.22%) | 4028 (7.83%) | 3768 (7.32%) | 3651 (7.09%) |
iMSP-H | 5536 (10.76%) | 4848 (9.42%) | 4046 (7.86%) | 3993 (7.76%) | 3608 (7.01%) |
Dataset | Species | All Dataset | Training Dataset | Testing Daset |
---|---|---|---|---|
(numP, numN) * | (numP, numN) * | (numP, numN) * | ||
SPs-all | Mammalia | (2560, 4299) | (2048, 2048) | (512, 2251) |
SPs-H | Homo sapiens | (1986, 3714) | (1588, 1588) | (398, 2126) |
SPs-M | Mus musculus | (1144, 1147) | (915, 915) | (229, 232) |
SPs-B | Bos taurus | (529, 1148) | (423, 423) | (106, 725) |
SPs-C | Canis lupus familiaris | (252, 492) | (201, 201) | (51, 291) |
SPs-O | Oryctolagus cuniculus | (240, 490) | (192, 192) | (48, 298) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Chai, H.; Guo, S.; Guo, H.; Li, Y. High-Throughput Identification of Mammalian Secreted Proteins Using Species-Specific Scheme and Application to Human Proteome. Molecules 2018, 23, 1448. https://doi.org/10.3390/molecules23061448
Zhang J, Chai H, Guo S, Guo H, Li Y. High-Throughput Identification of Mammalian Secreted Proteins Using Species-Specific Scheme and Application to Human Proteome. Molecules. 2018; 23(6):1448. https://doi.org/10.3390/molecules23061448
Chicago/Turabian StyleZhang, Jian, Haiting Chai, Song Guo, Huaping Guo, and Yanling Li. 2018. "High-Throughput Identification of Mammalian Secreted Proteins Using Species-Specific Scheme and Application to Human Proteome" Molecules 23, no. 6: 1448. https://doi.org/10.3390/molecules23061448
APA StyleZhang, J., Chai, H., Guo, S., Guo, H., & Li, Y. (2018). High-Throughput Identification of Mammalian Secreted Proteins Using Species-Specific Scheme and Application to Human Proteome. Molecules, 23(6), 1448. https://doi.org/10.3390/molecules23061448