Synergistic Effect of Bioactive Anticarcinogens from Soybean on Anti-Proliferative Activity in MDA-MB-231 and MCF-7 Human Breast Cancer Cells In Vitro
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anti-Proliferative Effects of 12 Treatment Solutions on Human Breast Cancer Cells by Single Treatment and Combination Treatment
2.2. Cytotocicity of Bioactive Anticarcinogens by Single or Two-Way Combination Treatment
2.3. Inhibition of Cell Invasion and Migration
2.4. Modulations of Protein Expression and Signaling Pathways
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Treatment Solution
3.3. Cell Culture
3.4. Cell Proliferation Assay
3.5. Combination Study
3.6. Cytotoxicity Assay
3.7. Wound Healing Assay
3.8. Transwell Chamber Assay
3.9. Intracellular Signaling Array
3.10. Western Blot Assay
3.11. Data Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Messina, M.J.; Persky, V.; Setchell, K.D.; Barnes, S. Soy intake and cancer risk: A review of the in vitro and in vivo data. Nutr. Cancer 1994, 21, 113–131. [Google Scholar] [CrossRef] [PubMed]
- Clubbs, E.A.; Bomser, J.A. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells. J. Nutr. Biochem. 2007, 18, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Magee, P.J.; Raschke, M.; Steiner, C.; Duffin, J.G.; Pool-Zobel, B.L.; Jokela, T.; Rowland, I.R. Equol: A comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion, and DNA integrity of breast and prostate cells in vitro. Nutr. Cancer 2006, 54, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Awad, A.B.; Roy, R.; Fink, C.S. β-sitosterol, a plant sterol, induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells. Oncol. Rep. 2003, 10, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Yu, R.; Kim, J.S.; Kim, Y.K.; Sung, M.K. Antiproliferative crude soy saponin extract modulates the expression of IκBα, protein kinase C, and cyclooxygenase-2 in human colon cancer cells. Cancer Lett. 2004, 210, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gladysheva, I.P.; Moroz, N.A.; Karmakova, T.A.; Nemtsova, E.R.; Yakubovskaya, R.I.; Larionova, N.I. Immunoconjugates of soybean Bowman-Birk protease inhibitor as targeted antitumor polymeric agents. J. Drug Target. 2001, 9, 303–316. [Google Scholar] [CrossRef] [PubMed]
- Prashanta Kumar, P.; Subhadip, M.; Birendra, B.; Chandra Sekhar, B.; Sandeep, D.; Durgesh Nandini, D. Antitumor effect of soybean lectin mediated through reactive oxygen species-dependent pathway. Life Sci. 2014, 111, 27–35. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Martínez-Villaluenga, C.; de Lumen, B.O.; Hernández-Ledesma, B. Updating the research on the chemopreventive and therapeutic role of peptide lunasin. J. Sci. Food Agric. 2018, 98, 2070–2079. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA-Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, R.H. Synergistic effect of apple extracts and quercetin 3-β-d-glucoside combination on antiproliferative activity in MCF-7 human breast cancer cells in vitro. J. Agric. Food Chem. 2009, 57, 8581–8586. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.W.; Wong, L.S.; Yue, G.G.L.; Tsang, J.Y.S.; Lin, Z.X.; Tse, G.M.K.; Lau, C.B.S. Differential proliferative responses of estrogenic Chinese herbal medicines in breast cancer cells of different molecular subtypes. Planta Med. 2016, 82, P808. [Google Scholar] [CrossRef]
- Kaushik, S.; Shyam, H.; Sharma, R.; Balapure, A.K. Genistein synergizes centchroman action in human breast cancer cells. Indian J. Pharmacol. 2016, 48, 637. [Google Scholar] [CrossRef] [PubMed]
- Henning, S.M.; Wang, P.; Heber, D. Chemopreventive effects of tea in prostate cancer: Green tea versus black tea. Mol. Nutr. Food Res. 2011, 55, 905–920. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Phan, T.; Gordon, D.; Chung, S.; Henning, S.M.; Vadgama, J.V. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells. Mol. Nutr. Food Res. 2015, 59, 250–261. [Google Scholar] [CrossRef] [PubMed]
- Szliszka, E.; Krol, W. Soy isoflavones augment the effect of trail-mediated apoptotic death in prostate cancer cells. Oncol. Rep. 2011, 26, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13, 4429–4434. [Google Scholar] [CrossRef] [PubMed]
- Hedlund, T.E.; Maroni, P.D.; Ferucci, P.G.; Dayton, R.; Barnes, S.; Jones, K.; Gray, K.J. Long-term dietary habits affect soy isoflavone metabolism and accumulation in prostatic fluid in caucasian men. J. Nutr. 2005, 135, 1400–1406. [Google Scholar] [CrossRef] [PubMed]
- Chun, J.; Kim, Y.S. Platycodin D inhibits migration, invasion, and growth of MDA-MB-231 human breast cancer cells via suppression of EGFR-mediated Akt and MAPK pathways. Chem.-Biol. Interact. 2013, 205, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Chiang, P.C.; Lin, S.C.; Pan, S.L.; Kuo, C.H.; Tsai, I.L.; Kuo, M.T.; Guh, J.H. Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: A crucial role of AMPK and mTOR pathways. Biochem. Pharmacol. 2010, 79, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Høyer-Hansen, M.; Jäättelä, M. AMP-activated protein kinase: A universal regulator of autophagy? Autophagy 2007, 3, 381–383. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, Y.; Chen, D.; Sheng, X.; Liu, J.; Xiong, H. Cisplatin regulates cell autophagy in endometrial cancer cells via the pi3k/akt/mtor signalling pathway. Oncol. Lett. 2017, 13, 3567–3571. [Google Scholar] [CrossRef] [PubMed]
- Hodge, D.R.; Hurt, E.M.; Farrar, W.L. The role of il-6 and stat3 in inflammation and cancer. Eur. J. Cancer Care 2005, 41, 2502–2512. [Google Scholar] [CrossRef] [PubMed]
- Madhunapantula, S.V.; Sharma, A.; Robertson, G.P. Pras40 deregulates apoptosis in malignant melanoma. Cancer Res. 2007, 67, 3626. [Google Scholar] [CrossRef] [PubMed]
- Luo, J. The role of glycogen synthase kinase 3β (gsk3β) in tumorigenesis and cancer chemotherapy. Cancer Lett. 2009, 273, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 mutations in human cancers. Science 1991, 253, 49–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuenda, A.; Rousseau, S. p38 MAP-kinases pathway regulation, function and role in human diseases. BBA-Mol. Cell Res. 2007, 1773, 1358–1375. [Google Scholar] [CrossRef] [PubMed]
- Felice, D.L.; Sun, J.; Liu, R.H. A modified methylene blue assay for accurate cell counting. J. Funct. Foods 2009, 1, 109–118. [Google Scholar] [CrossRef]
- Kozlova, N.; Samoylenko, A.; Drobot, L.; Kietzmann, T. Urokinase is a negative modulator of Egf-dependent proliferation and motility in the two breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinog. 2016, 55, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Pizarro, A.; Argandoña, F.; Palomino, W.A.; Devoto, L. Human chorionic gonadotropin (hCG) modulation of TIMP1 secretion by human endometrial stromal cells facilitates extravillous trophoblast invasion in vitro. Hum. Reprod. 2013, 28, 2215–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Yao, Y.; Gao, Y.; Hu, Y.; Shi, Z.; Ren, G. Suppressive Effects of Barley β-Glucans with Different Molecular Weight on 3T3-L1 Adipocyte Differentiation. J. Food Sci. 2016, 81, H786–H793. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Combined Treatments | CI Value at Inhibition of 50% | |
---|---|---|
MCF-7 | Genistein + Daidzein | 2.02 ± 0.30 |
Genistein + Glycitein | 1.86 ± 0.22 | |
Genistein + Genistin | 1.53 ± 0.33 | |
Genistein + Daidzin | 1.52 ± 0.18 | |
Daidzein + Glycitein | 1.68 ± 0.44 | |
Daidzein + Genistin | 1.69 ± 0.31 | |
Daidzein + Daidzin | 1.89 ± 0.23 | |
Glycitein + Genistin | 1.92 ± 0.58 | |
Glycitein + Daidzin | 1.01 ± 0.10 | |
Genistin + Daidzin | 0.89 ± 0.12 | |
MBA-MD-231 | Genistein + Glycitein | 1.30 ± 0.08 |
Genistein + Genistin | 0.56 ± 0.13 | |
Genistein + β-Sitosterol | 0.54 ± 0.20 | |
Glycitein + Genistin | 1.05 ± 0.10 | |
Glycitein + β-Sitosterol | 1.29 ± 0.07 | |
β-Sitosterol + Genistin | 0.45 ± 0.12 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Yao, Y.; Shi, Z.; Everaert, N.; Ren, G. Synergistic Effect of Bioactive Anticarcinogens from Soybean on Anti-Proliferative Activity in MDA-MB-231 and MCF-7 Human Breast Cancer Cells In Vitro. Molecules 2018, 23, 1557. https://doi.org/10.3390/molecules23071557
Zhu Y, Yao Y, Shi Z, Everaert N, Ren G. Synergistic Effect of Bioactive Anticarcinogens from Soybean on Anti-Proliferative Activity in MDA-MB-231 and MCF-7 Human Breast Cancer Cells In Vitro. Molecules. 2018; 23(7):1557. https://doi.org/10.3390/molecules23071557
Chicago/Turabian StyleZhu, Yingying, Yang Yao, Zhenxing Shi, Nadia Everaert, and Guixing Ren. 2018. "Synergistic Effect of Bioactive Anticarcinogens from Soybean on Anti-Proliferative Activity in MDA-MB-231 and MCF-7 Human Breast Cancer Cells In Vitro" Molecules 23, no. 7: 1557. https://doi.org/10.3390/molecules23071557
APA StyleZhu, Y., Yao, Y., Shi, Z., Everaert, N., & Ren, G. (2018). Synergistic Effect of Bioactive Anticarcinogens from Soybean on Anti-Proliferative Activity in MDA-MB-231 and MCF-7 Human Breast Cancer Cells In Vitro. Molecules, 23(7), 1557. https://doi.org/10.3390/molecules23071557