A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves
Abstract
:1. Introduction
2. Results and Discussion
2.1. NO Scavenging Activity and Total Phenolic Content of an Aqueous Extract from A. triphylla Leaves
2.2. Separating Constituents from ATAE by HPLC
2.3. SNP Spiking HPLC Analysis for Screening of Main Scavengers in ATAE
2.4. Characterization and Identification of the Main Constituents of ATAE
2.5. NO Radical Scavenging Activity of Isolated Components
3. Materials and Methods
3.1. Plant Material and Reagents
3.2. Preparation of Aqueous Extract from A. triphylla Leaves
3.3. Colorimetric NO Scavenging Assay and Total Phenolic Content Evaluation
3.4. HPLC Analysis of ATAE
3.5. Pre-Column SNP–HPLC Analysis for Screening of Main NO Scavengers in ATAE
3.6. Isolation and Identification of Compounds 1 and 4
3.7. Statistical Analyses
4. Conclusions
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Conflicts of Interest
References
- Knott, A.B.; Bossy-Wetzel, E. Nitric Oxide in Health and Disease of the Nervous System. Antioxid. Redox Signal. 2009, 11, 541–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kone, B.C. Nitric oxide in renal health and disease. Am. J. Kidney Dis. 1997, 30, 311–333. [Google Scholar] [CrossRef]
- Rastaldo, R.; Pagliaro, P.; Cappello, S.; Penna, C.; Mancardi, D.; Westerhof, N.; Losano, G. Nitric oxide and cardiac function. Life Sci. 2007, 81, 779–793. [Google Scholar] [CrossRef] [PubMed]
- Blantz, R.C.; Munger, K. Role of Nitric Oxide in Inflammatory Conditions. Nephron 2002, 90, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Mehrotra, S.; Narayan, P.; Pandey, C.M.; Agarwal, S.S. Modulation of autoimmune diseases by nitric oxide. Immunol. Res. 2000, 22, 1–19. [Google Scholar] [CrossRef]
- Jagetia, G.C.; Baliga, M.S. The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: A preliminary study. J. Med. Food 2004, 7, 343–348. [Google Scholar] [CrossRef] [PubMed]
- Yokozawa, T.; Chen, C.P.; Tanaka, T. Direct scavenging of nitric oxide by traditional crude drugs. Phytomedicine 2000, 6, 453–463. [Google Scholar] [CrossRef]
- Dirsch, V.M.; Stuppner, H.; Vollmar, A.M. The Griess assay: Suitable for a bio-guided fractionation of anti-inflammatory plant extracts? Planta Med. 1998, 64, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Chen, J.; Li, Y.; Li, Q.; Zheng, Y.-F.; Fu, Y.; Li, P. Screening and characterization of natural antioxidants in four Glycyrrhiza species by liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 8181–8191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-P.; Shi, S.-Y.; Xiong, X.; Chen, X.-Q.; Peng, M.-J. Comparative evaluation of three methods based on high-performance liquid chromatography analysis combined with a 2,2′-diphenyl-1-picrylhydrazyl assay for the rapid screening of antioxidants from Pueraria lobata flowers. Anal. Bioanal. Chem. 2012, 402, 2965–2976. [Google Scholar] [CrossRef] [PubMed]
- Meda, N.R.; Fraisse, D.; Gnoula, C.; Vivier, M.; Felgines, C.; Senejoux, F. Characterization of antioxidants from Detarium microcarpum Guill. et Perr. leaves using HPLC-DAD coupled with pre-column DPPH assay. Eur. Food Res. Technol. 2017, 243, 1659–1666. [Google Scholar] [CrossRef]
- Shui, G.; Peng, L.L. An improved method for the analysis of major antioxidants of Hibiscus esculentus Linn. J. Chromatogr. A 2004, 1048, 17–24. [Google Scholar] [CrossRef]
- Könczöl, Á.; Kéry, Á.; Keserű, G.M.; Balogh, G.T. LC Determination of Peroxynitrite Scavenging Activity of Phenols from Salvia spp. Chromatographia 2010, 71, 51–59. [Google Scholar] [CrossRef]
- Abderrahim, F.; Estrella, S.; Susín, C.; Arribas, S.M.; González, M.C.; Condezo-Hoyos, L. The antioxidant activity and thermal stability of lemon verbena (Aloysia triphylla) infusion. J. Med. Food 2011, 14, 517–527. [Google Scholar] [CrossRef] [PubMed]
- Lenoir, L.; Joubert-Zakeyh, J.; Texier, O.; Lamaison, J.-L.; Vasson, M.-P.; Felgines, C. Aloysia triphylla infusion protects rats against dextran sulfate sodium-induced colonic damage. J. Sci. Food Agric. 2012, 92, 1570–1572. [Google Scholar] [CrossRef] [PubMed]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009, 113, 1226–1233. [Google Scholar] [CrossRef]
- Matsumoto, T. Phytochemistry Research Progress; Nova Science Publishers: New York, NY, USA, 2008; ISBN 978-1-60456-232-3. [Google Scholar]
- Mabry, T.J.; Markham, K.R.; Thomas, M.B. The Systematic Identification of Flavonoids; Springer: Berlin, Germany, 1970; ISBN 978-3-64288-460-3. [Google Scholar]
- Felgines, C.; Fraisse, D.; Besson, C.; Vasson, M.-P.; Texier, O. Bioavailability of lemon verbena (Aloysia triphylla) polyphenols in rats: Impact of colonic inflammation. Br. J. Nutr. 2014, 111, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Carnat, A.; Carnat, A.P.; Chavignon, O.; Heitz, A.; Wylde, R.; Lamaison, J.L. Luteolin 7-diglucuronide, the major flavonoid compound from Aloysia triphylla and Verbena officinalis. Planta Med. 1995, 61, 490. [Google Scholar] [CrossRef] [PubMed]
- Murata, T.; Miyase, T.; Yoshizaki, F. Cyclic spermidine alkaloids and flavone glycosides from Meehania fargesii. Chem. Pharm. Bull. 2010, 58, 696–702. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Pedulli, G.F.; Cabrini, L.; Zambonin, L.; Landi, L. Solvent and pH Effects on the Antioxidant Activity of Caffeic and Other Phenolic Acids. J. Agric. Food Chem. 2006, 54, 2932–2937. [Google Scholar] [CrossRef] [PubMed]
- Silva, I.K.; Soysa, P. Evaluation of phytochemical composition and antioxidant capacity of a decoction containing Adenanthera pavonina L. and Thespesia populnea L. Pharmacogn. Mag. 2011, 7, 193–199. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Peak Number | Compound | Retention Time (min) | UV, λmax (nm) |
---|---|---|---|
1 | Luteolin-7-O-diglucuronide | 14.3 | 255, 347 |
2 | Apigenin-7-O-diglucuronide | 19.3 | 265, 333 |
3 | Verbascoside | 21.6 | 217, 330 |
4 | Diosmetin-7-O-diglucuronide | 22.9 | 253, 346 |
5 | Isoverbascoside | 26.8 | 217, 326 |
6 | Apigenin-7-O-glucoside | 41.4 | 266, 332 |
Compound | Nitric oxide Scavenging Activity (IC50, µg/mL) |
---|---|
Luteolin-7-O-diglucuronide | 69 ± 5 b |
Verbascoside | 56 ± 4 a |
Diosmetin-7-O-diglucuronide | >200 c,* |
Isoverbascoside | 51 ± 3 a |
Apigenin-7-O-glucoside | >200 c,* |
Ascorbic acid (positive control) | 71 ± 2 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraisse, D.; Degerine-Roussel, A.; Bred, A.; Ndoye, S.F.; Vivier, M.; Felgines, C.; Senejoux, F. A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves. Molecules 2018, 23, 1574. https://doi.org/10.3390/molecules23071574
Fraisse D, Degerine-Roussel A, Bred A, Ndoye SF, Vivier M, Felgines C, Senejoux F. A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves. Molecules. 2018; 23(7):1574. https://doi.org/10.3390/molecules23071574
Chicago/Turabian StyleFraisse, Didier, Alexandra Degerine-Roussel, Alexis Bred, Samba Fama Ndoye, Magali Vivier, Catherine Felgines, and François Senejoux. 2018. "A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves" Molecules 23, no. 7: 1574. https://doi.org/10.3390/molecules23071574
APA StyleFraisse, D., Degerine-Roussel, A., Bred, A., Ndoye, S. F., Vivier, M., Felgines, C., & Senejoux, F. (2018). A Novel HPLC Method for Direct Detection of Nitric Oxide Scavengers from Complex Plant Matrices and Its Application to Aloysia triphylla Leaves. Molecules, 23(7), 1574. https://doi.org/10.3390/molecules23071574