From Plant Compounds to Botanicals and Back: A Current Snapshot
Abstract
:1. The Emerging Class of Dietary Supplements: A Mini Overview of Botanicals Features
2. Study Approach about Botanicals and Their Main Plant Compounds: Up-to-Date, Current and Innovative Directions
2.1. Main Plant Compounds and Their Interactions Assessment
2.2. Integrated Research, Emerging Technologies and Chemometrics
2.3. Food Waste as Source of Bioactive Compounds: A New Goal of Circular Bioeconomy and Biorefinery
3. From Metabolic Pathways to Bioactive Compound Databases: Tools towards Health
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tallini, A. Health is state of physical, mental, and social wellbeing. Br. Med. J. 2011, 343, d5358. [Google Scholar] [CrossRef] [PubMed]
- Giammarioli, S. Indagini sui consumi degli integratori alimentari in Italia. In Proceedings of the SANIT—XI Edizione, Integratori Alimentari: Attualità e Prospettive Future, Roma, Italy, 14–17 December 2014. [Google Scholar]
- Bircher, J.; Hahn, E.G. Understanding the nature of health: New perspectives for medicine and public health. Improved wellbeing at lower costs. F1000 Res. 2016, 5, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2013, 4, 177. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.; Graeme, L.; Pierre, D.; Elizabeth, W.; Kelvin, C. Pharmacovigilance of herbal medicine. J. Ethnopharmacol. 2012, 140, 513–518. [Google Scholar] [CrossRef] [PubMed]
- EFSA Scientific Committee. Guidance on safety assessment of botanicals and botanical preparations intended for use as ingredients in food supplements, on request of EFSA. EFSA J. 2009, 7, 1249. [Google Scholar]
- European Food safety Authority. Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. EFSA J. 2012, 10, 2663. [Google Scholar] [Green Version]
- U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Botanical Drug Development Guidance for Industry. December 2016 Pharmaceutical Quality/CMC Revision 1. Available online: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm (accessed on 24 May 2018).
- European Commission. Herbal Medicinal Products. Available online: https://ec.europa.eu/health/human-use/herbal-medicines_en (accessed on 24 May 2018).
- World Health Organization, Programme on Traditional Medicine. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicines; World Health Organization: Geneva, Switzerland, 2000; 71p. [Google Scholar]
- Brown, A.C. An overview of herb and dietary supplement efficacy, safety and government regulations in the United States with suggested improvements. Part 1 of 5 series. Food Chem. Toxicol. 2017, 107, 449–471. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Oketch-Rabah, H.; Kim, N.-C.; Monagas, M.; Bzhelyansky, A.; Sarma, N.; Giancaspro, G. Quality specifications for articles of botanical origin from the United States Pharmacopeia. Phytomedicine 2018, 45, 105–119. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Zou, W.; Wang, T.; Wang, M. European regulation model for herbal medicine: The assessment of the EU monograph and the safety and efficacy evaluation in marketing authorization or registration in Member States. Phytomedicine 2018, 42, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Alamgir, A.N.M. Pharmacopoeia and herbal monograph, the aim and use of WHO’s herbal monograph, WHO’s guide lines for herbal monograph, pharmacognostical research and monographs of organized, unorganized drugs and drugs from animal sources. In Therapeutic Use of Medicinal Plants and Their Extracts; Rainsford, K.D., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 295–353. ISBN 978-3-319-63861-4. [Google Scholar]
- World Health Organization. Essential Medicines and Health Products Information Portal. Available online: http://apps.who.int/medicinedocs/en/ (accessed on 05 June 2018).
- Shankar, P.R. Essential medicines and health products information portal. J. Pharmacol. Pharmacother. 2014, 5, 74–75. [Google Scholar] [CrossRef] [PubMed]
- Van Breemen, R.B. Development of safe and effective botanical dietary supplements. J. Med. Chem. 2015, 58, 8360–8372. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Matsuda, F. Metabolomics for functional genomics, systems biology, and biotechnology. Annu. Rev. Plant Biol. 2010, 61, 463–489. [Google Scholar] [CrossRef] [PubMed]
- Roessner, U.; Beckles, D.M. Metabolite measurements. In Plant Metabolic Networks; Schwender, J., Ed.; Springer Verlag: New York, NY, USA, 2009; pp. 39–69. ISBN 978-0-387-78745-9. [Google Scholar]
- Durazzo, A. Study approach of antioxidant properties in foods: Update and considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ma, C.; Gao, Y.; McClements, D.J. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review. Compr. Rev. Food Sci. Food Saf. 2017, 16, 76–95. [Google Scholar] [CrossRef]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. D-limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259–264. [Google Scholar] [PubMed]
- Sureda, A.; Sanches Silva, A.; Sánchez-Machado, D.I.; López-Cervantes, J.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Hypotensive effects of genistein: From chemistry to medicine. Chem. Biol. Interact. 2017, 268, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Chatterji, S.; Gupta, S.K.; Watal, G. Preliminary phytochemical screening of six medicinal plants used in traditional medicine. Int. J. Pharm. Pharmaceut. Sci. 2014, 6, 539–542. [Google Scholar]
- Kuete, V. Health effects of alkaloids from African medicinal plants. In Toxicological Survey of African Medicinal Plants; Kuete, V., Ed.; Elsevier: New York, NY, USA, 2014; pp. 611–633. ISBN 9780128000182. [Google Scholar]
- Song, X.; Hu, S. Adjuvant activities of saponins from traditional Chinese medicinal herbs. Vaccine 2009, 27, 4883–4890. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, R.H.; Wang, M.; Xu, G.B.; Liao, S.G. Prodrugs of triterpenoids and their derivatives. Eur J. Med. Chem. 2017, 131, 222–236. [Google Scholar] [CrossRef] [PubMed]
- Du, G.; Sun, L.; Zhao, R.; Du, L.; Song, J.; Zhang, L.; He, G.; Zhang, Y.; Zhang, J. Polyphenols: Potential source of drugs for the treatment of ischaemic heart disease. Pharmacol. Ther. 2016, 162, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Polyphenols and glycemic control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Walter, P.; Weber, P. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ganzera, M.; Sturm, S. Recent advances on HPLC/MS in medicinal plant analysis-An update covering 2011–2016. J. Pharm. Biomed. Anal. 2017, 147, 211–233. [Google Scholar] [CrossRef] [PubMed]
- Ingle, K.P.; Deshmukh, A.G.; Padole, D.A.; Dudhare, M.S.; Moharil, M.P.; Khelurkar, VC. Phytochemicals: Extraction methods, identification and detection of bioactive compounds from plant extracts. J. Pharmacogn. Phytochem. 2017, 6, 32–36. [Google Scholar]
- Pandey, A.; Tripathi, S. Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. J. Pharmacogn. Phytochem. 2014, 2, 115–119. [Google Scholar]
- Bansal, A.; Chhabra, V.; Rawal, R.K.; Sharma, S. Chemometrics: A new scenario in herbal drug standardization. J. Pharm. Anal. 2014, 4, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Mok, D.K.W.; Chau, F.T. Chemical information of Chinese medicines: A challenge to chemist. Chemom. Intell. Lab. Syst. 2006, 82, 210–217. [Google Scholar] [CrossRef]
- Zeng, Z.; Chau, F.T.; Chan, H.Y.; Cheung, C.Y.; Lau, T.Y.; Wei, S.; Mok, D.K.; Chan, C.O.; Liang, Y. Recent advances in the compound-oriented and pattern-oriented approaches to the quality control of herbal medicines. Chin. Med. 2008, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harnly, J.; Lu, Y.; Sun, J.; Chen, C. Botanical supplements: Detecting the transition from ingredient to product. J. Food Compos. Anal. 2017, 64, 85–92. [Google Scholar] [CrossRef]
- Yang, Z.; Shao, Q.; Ge, Z.; Ai, N.; Zhao, X.; Fan, X. A bioactive chemical markers based strategy for quality assessment of botanical drugs: Xuesaitong injection as a case study. Sci. Rep. 2017, 7, 2410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, L.-F.; Cai, C.-Y.; Xue, F.-Q.; Xiao, S. An approach for searching bioactive compounds from traditional Chinese plant food and herb medicines by investigating spectrum–effect relationships. Curr. Pharm. Anal. 2017, 13, 417–426. [Google Scholar] [CrossRef]
- Abubakar, B.M.; Salleh, F.M.; Omar, M.S.S.; Wagiran, A. Review: DNA barcoding and chromatography fingerprints for the authentication of botanicals in herbal medicinal products. Evid. Based Complement. Alternat. Med. 2017, 2017, 1352948. [Google Scholar] [CrossRef]
- Sánchez-Vidaña, D.I.; Rajwani, R.; Wong, M.S. The use of omic technologies applied to traditional chinese medicine research. Evid. Based Complement. Alternat. Med. 2017, 2017, 6359730. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, M.W.; Hamid, A.A.; Akhtar, M.T.; Anwar, F.; Rashid, U.; Al-Zuaidy, M.H. An overview of recent developments in metabolomics and proteomics—Phytotherapic research perspectives. Front. Life Sci. 2017, 10, 1–37. [Google Scholar] [CrossRef]
- Galanakis, C.M. Recovery of high added-value components from food wastes: Conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 2012, 6, 68–87. [Google Scholar] [CrossRef]
- Galanakis, C.M.; Cvejic, J.; Verardo, V.; Segura Carretero, A. Food use for social innovation by optimizing food waste recovery strategies. In Innovation Strategies in the Food Industry. Tools for Implementation; Galanakis, C.M., Ed.; Academic Press: London, UK, 2016; pp. 211–236. [Google Scholar]
- Lin, C.S.K.; Koutinas, A.A.; Stamatelatou, K.; Mubofu, E.B.; Matharu, A.S.; Kopsahelis, N.; Pfaltzgraff, L.A.; Clark, J.H.; Papanikolaou, S.; Kwan, T.H.; et al. Current and future trends in food waste valorization for the production of chemicals, materials and fuels: A global perspective. Biofuels Bioprod. Bioref. 2014, 8, 686–715. [Google Scholar] [CrossRef]
- Stahel, W.R. The circular economy. Nature 2016, 531, 435–438. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Yadav, A.N.; Kumar, V.; Vyas, P.; Dhaliwal, H.S. Food waste: A potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour. Bioprocess 2017, 4, 18. [Google Scholar] [CrossRef]
- Banach, M.; Mikhailidis, D.P.; Serban, M.C.; Sahebkar, A. Editorial: Natural products as the integral part of the therapy? Curr. Pharm. Des. 2017, 23, 2411–2413. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.B. From Field to Fork, Food Ethics for Everyone; Oxford University Press: New York, NY, USA, 2015; 346p, ISBN 9780199391684. [Google Scholar]
- Varzakas, T.; Zakynthinos, G.; Verpoort, F. Plant food residues as a source of nutraceuticals and functional foods. Foods 2016, 5, 88. [Google Scholar] [CrossRef] [PubMed]
- Romani, A.; Ciani Scarnicci, M.; Scardigli, A.; Paiano, A. Circular Economy as a New Model for the Exploitation of the Agroindustrial Biomass. In Proceedings of the 20th IGWT Symposium, Commodity Science in a Changing World, Varna, Bulgaria, 12–16 September 2016. [Google Scholar]
- Romani, A.; Pinelli, P.; Ieri, F.; Bernini, R. Sustainability, Innovation and Green Chemistry in the Production and Valorization of Phenolic Extracts from Olea europaea L. Sustainability 2016, 8, 1002. [Google Scholar] [CrossRef]
- Pfaltzgraff, L.A.; De bruyn, M.; Cooper, E.C.; Budarin, V.; Clark, J.H. Food waste biomass: A resource for high-value Chemicals. Green Chem. 2013, 15, 307–314. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.M.K. Phytochemistry. In Ethnobotany: A Phytochemical Perspective; Schmidt, B.M., Cheng, D.M.K., Eds.; John Wiley & Sons Ltd.: Chichester, UK, 2017; pp. 111–140. [Google Scholar]
- Kanehisa, M. KEGG bioinformatics resource for plant genomics and metabolomics. Methods Mol. Biol. 2016, 1374, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Naithani, S.; Preece, J.; D’Eustachio, P.; Gupta, P.; Amarasinghe, V.; Dharmawardhana, P.D.; Wu, G.; Fabregat, A.; Elser, J.L.; Weiser, J.; et al. Plant Reactome: A resource for plant pathways and comparative analysis. Nucleic Acids Res. 2017, 45, 1029–1039. [Google Scholar] [CrossRef] [PubMed]
- Finglas, P.; Berry, R.; Astley, S. Assessing and improving the quality of food composition databases for nutrition and health applications in Europe: The contribution of EuroFIR. Adv. Nutr. 2014, 5, 608S–614S. [Google Scholar] [CrossRef] [PubMed]
- Finglas, P.; Roe, M.; Pinchen, H.; Astley, S. The contribution of food composition resources to nutrition science methodology. Nutr. Bull. 2017, 42, 198–206. [Google Scholar] [CrossRef]
- Gurinović, M.; Zeković, M.; Milešević, J.; Nikolić, M.; Glibetić, M. Nutritional Assessment. Ref. Module Food Sci. 2017, 1–14. [Google Scholar] [CrossRef]
- LanguaL™—The International Framework for Food Description. Available online: http://www.langual.org/ (accessed on 7 June 2018).
- EuroFIR AISBL. EuroFIR—European Food Information Resource. Available online: http://www.eurofir.org/ (accessed on 7 June 2018).
- FAO. International Network of Food Data Systems (INFOODS). 2017. Available online: www.fao.org/infoods/infoods/en/ (accessed on 10 November 2017).
- USDA Food Composition Databases. Available online: https://ndb.nal.usda.gov/ndb/ (accessed on 7 June 2018).
- Phenol-Explorer—Database on Polyphenol Content in Foods. Available online: http://phenol-explorer.eu/ (accessed on 8 June 2018).
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. J. Biol. Databases Curation 2010, 2010, bap024. [Google Scholar] [CrossRef] [PubMed]
- eBASIS—Bioactive Substances in Food Information System. Available online: http://ebasis.eurofir.org/Default.asp (accessed on 8 June 2018).
- Kiely, M.; Black, L.J.; Plumb, J.; Kroon, P.A.; Hollman, P.C.; Larsen, J.C.; Speijers, G.J.; Kapsokefalou, M.; Sheehan, D.; Gry, J.; et al. EuroFIR eBASIS: Application for health claims submissions and evaluations. Eur. J. Clin. Nutr. 2010, 64, S101–S107. [Google Scholar] [CrossRef] [PubMed]
- Plumb, J.; Pigat, S.; Bompola, F.; Cushen, M.; Pinchen, H.; Nørby, E.; Astley, S.; Lyons, J.; Kiely, M.; Finglas, P. eBASIS (Bioactive Substances in Food Information Systems) and bioactive intakes: Major updates of the bioactive compound composition and beneficial bio effects database and the development of a probabilistic model to assess intakes in Europe. Nutrients 2017, 9, 320. [Google Scholar] [CrossRef] [PubMed]
- Bucchini, L.; Rodarte, A.; Restani, P. The PlantLIBRA project: How we intend to innovate the science of botanicals. Food Funct. 2011, 2, 769–773. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Isoflavone Content of Selected Foods, Release 2.0; U.S. Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory: Beltsville, MD, USA, 2008. Available online: https://data.nal.usda.gov/dataset/usda-database-isoflavone-content-selected-foods-release-20_108 (accessed on 10 November 2017).
- Bhagwat, S.; Haytowitz, D.B.; Holden, J.M. USDA Database for the Flavonoid Content of Selected Foods. Release 3.1; U.S. Department of Agriculture, Agricultural Research Service, Nutrient Data Laboratory: Beltsville, MD, USA, 2014. Available online: https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-31-may-2014_109 (accessed on 10 November 2017).
- Bhagwat, S.; Haytowitz, D. USDA Database for the Proanthocyanidin Content of Selected Foods, Release 2; U.S. Department of Agriculture, Agricultural Service, Nutrient Data Laboratory: Beltsville, MD, USA, 2015. Available online: https://data.nal.usda.gov/dataset/usda-database-proanthocyanidin-content-selected-foods-release-2-2015/resource/df39fc45-5fb2 (accessed on 10 November 2017).
- Rothwell, J.A.; Urpi-Sarda, M.; Boto-Ordonez, M.; Knox, C.; Llorach, R.; Eisner, R.; Cruz, J.; Neveu, V.; Wishart, D.; Manach, C.; et al. Phenol-Explorer 2.0: A major update of the Phenol-Explorer database integrating data on polyphenol metabolism and pharmacokinetics in humans and experimental animals. J. Biol. Databases Curation 2012, 2012, bas031. [Google Scholar] [CrossRef] [PubMed]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. J. Biol. Databases Curation 2013, 2013, bat070. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A. Extractable and non-extractable polyphenols: An overview. In Non-Extractable Polyphenols and Carotenoids: Importance in Human Nutrition and Health. Food Chemistry, Function and Analysis Series n. 5; Saura-Calixto, F., Pérez-Jiménez, J., Eds.; Royal Society of Chemistry: London, UK, 2018; ISBN 2398-0656. [Google Scholar]
- Durazzo, A.; Plumb, J.; Lucarini, M.; Fernandez-Lopez, G.; Camilli, E.; Turrini, A.; Finglas, P.; Marletta, L. Extractable and Non-Extractable Antioxidants at the Interface of eBASIS Structure: Database Development and Expansion; EuroFIR Food Forum: Brussels, Belgium, 2018. [Google Scholar]
- Plumb, J.; Lyons, J.; Nørby, K.; Thomas, M.; Nørby, E.; Poms, R.; Bucchini, L.; Restani, P.; Kiely, M.; Finglas, P.; et al. PlantLIBRA Consortia. ePlantLIBRA: A composition and biological activity database for bioactive compounds in plant food supplements. Food Chem. 2016, 193, 121–127. [Google Scholar] [CrossRef] [PubMed]
- National Institutes of Health. DSLD—Dietary Supplement Label Database. Available online: https://ods.od.nih.gov/Research/Dietary_Supplement_Label_Database.aspx (accessed on 8 June 2018).
- DSLD—Dietary Supplement Label Database. Available online: https://dsld.nlm.nih.gov/dsld/ (accessed on 8 June 2018).
- Dwyer, J.T.; Saldanha, L.G.; Bailen, R.A.; Bailey, R.L.; Costello, R.B.; Betz, J.M.; Chang, F.F.; Goshorn, J.; Andrews, K.W.; Pehrsson, P.R.; et al. A free new dietary supplement label database for registered dietitian nutritionists. J. Acad. Nutr. Diet. 2014, 114, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- Potischman, N.; Salazar, S.; Susser, J.; Saldanha, L.S.J.; Dwyer, J.; Kuzak, A.; Betz, J.; Bailen, R. Testing usability of the Dietary Supplement Label Database (DSLD): A resource for consumers, professionals, and researchers. J. Nutr. Educ. Behav. 2017, 49, S99. [Google Scholar] [CrossRef]
- PD_Manager Project. Available online: www.parkinson-manager.eu (accessed on 8 June 2018).
- Durazzo, A.; Camilli, E.; Sette, S.; D’Addezio, L.; Marletta, L.; Turrini, A. Dietary Supplement Label Database Development: Approach Description and Preliminary Results; EuroFIR Food Forum: Bruxelles, Belgium, 2016. [Google Scholar]
- European Food Safety Authority. Classification and description system FoodEx2 (revision 2). EFSA J. 2015, EN-804, 1–90.
- Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Marletta, L.; Turrini, A.; Sette, S. Feedbacks and Proposal for FoodEx2 revision 2 implementation: Focus on Dietary supplements. In Proceedings of the EuroFIR Food Forum, Brussels, Belgium, 10–12 April 2018. [Google Scholar]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Piccinelli, R.; Lisciani, S.; Marletta, L.; Turrini, A.; Sette, S. Una finestra sugli integratori alimentari in Italia: Sviluppo di un database dedicato. In Proceedings of the XXVIII Congresso Nazionale di Scienze Merceologiche, Firenze, Italy, 21–23 February 2018; pp. 408–411. [Google Scholar]
- Manach, C.; Milenkovic, D.; van de Wiele, T.; Rodriguez-Mateos, A.; de Roos, B.; Garcia-Conesa, M.T.; Landberg, R.; Gibney, E.R.; Heinonen, M.; Tomás-Barberán, F.; et al. Addressing the inter-individual variation in response to consumption of plant food bioactives: Towards a better understanding of their role in healthy aging and cardiometabolic risk reduction. Mol. Nutr. Food Res. 2017, 61, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dragsted, L.O.; Gao, Q.; Praticò, G.; Manach, C.; Wishart, D.S.; Scalbert, A.; Feskens, E.J.M. Dietary and health biomarkers—Time for an update. Genes Nutr. 2017, 12, 24. [Google Scholar] [CrossRef] [PubMed]
- HMDB—Human Metabolome Database. Available online: www. hmdb.ca (accessed on 8 June 2018).
- Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vázquez-Fresno, R.; Sajed, T.; Johnson, D.; Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2017, 46, D608–D617. [Google Scholar] [CrossRef] [PubMed]
- PhytoHub Database. Available online: www.phytohub.eu (accessed on 8 June 2018).
- Bento da Silva, A.; Giacomoni, F.; Pavot, B.; Fillâtre, Y.; Rothwell, J.A.; Sualdea, B.B.; Veyrat, C.; Garcia-Villalba, R.; Gladine, C.; Kopec, R.; et al. PhytoHub V1.4: A new release for the online database dedicated to food phytochemicals and their human metabolites. In Proceedings of the 1st International Conference on Food Bioactivities & Health, Norwich, UK, 13–15 September 2016. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durazzo, A.; D’Addezio, L.; Camilli, E.; Piccinelli, R.; Turrini, A.; Marletta, L.; Marconi, S.; Lucarini, M.; Lisciani, S.; Gabrielli, P.; et al. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules 2018, 23, 1844. https://doi.org/10.3390/molecules23081844
Durazzo A, D’Addezio L, Camilli E, Piccinelli R, Turrini A, Marletta L, Marconi S, Lucarini M, Lisciani S, Gabrielli P, et al. From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules. 2018; 23(8):1844. https://doi.org/10.3390/molecules23081844
Chicago/Turabian StyleDurazzo, Alessandra, Laura D’Addezio, Emanuela Camilli, Raffaela Piccinelli, Aida Turrini, Luisa Marletta, Stefania Marconi, Massimo Lucarini, Silvia Lisciani, Paolo Gabrielli, and et al. 2018. "From Plant Compounds to Botanicals and Back: A Current Snapshot" Molecules 23, no. 8: 1844. https://doi.org/10.3390/molecules23081844
APA StyleDurazzo, A., D’Addezio, L., Camilli, E., Piccinelli, R., Turrini, A., Marletta, L., Marconi, S., Lucarini, M., Lisciani, S., Gabrielli, P., Gambelli, L., Aguzzi, A., & Sette, S. (2018). From Plant Compounds to Botanicals and Back: A Current Snapshot. Molecules, 23(8), 1844. https://doi.org/10.3390/molecules23081844