Bio-Based Compounds from Grape Seeds: A Biorefinery Approach
Abstract
:1. Introduction
2. The Biorefinery Concept
3. High Value-Added Compounds in Grape Seed
4. Green and Sustainable Procedures: Extraction Techniques, Innovative Technologies, and Chemometrics
5. A Grape Seed Biorefinery: A Picture of Italian Experience
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and FW: Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- Xia, H.; Houghton, J.A.; Clark, J.H.; Matharu, A.S. Potential utilization of unavoidable food supply chain wastes–valorization of pea vine wastes. ACS Sustain. Chem. Eng. 2016, 4, 6002–6009. [Google Scholar] [CrossRef]
- Waste Watcher. V Giornata Nazionale di Prevenzione dello Spreco Alimentare 2018; Waste Watcher: Roma, Italy, 2018. [Google Scholar]
- Segrè, A.; Gaiani, S. Transforming Food Waste into a Resource; RSC Publishing: Cambridge, UK, 2012. [Google Scholar]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Duarte, E. Integrated approach to winery waste: Waste generation and data consolidation. Front. Environ. Sci. Eng. 2014, 10, 168–176. [Google Scholar] [CrossRef]
- Istituto Nazionale di Statistica (ISTAT). Atlante dell’Agricoltura Italiana, 6° Censimento Generale dell’Agricoltura; Istituto Nazionale di Statistica: Rome, Italy, 2013.
- OIV (Organisation Internationale de la Vigne et du Vin). 2017 Global Economic V Data; OIV: Paris, France, 2017; pp. 1–5. [Google Scholar]
- ASSOENOLOGI. Produzione 2016 i Dati Definitivi dell’Associazione Enologi Enotecnici Italiani Milano. 20 November 2016. Available online: http://www.assoenologi.it/main/images/pics/vendemmia_2016_dati_definitivi.pdf (accessed on 27 July 2018).
- Mazza, G.; Miniati, E. Grapes. In Anthocyanins in Fruits, Vegetables and Grains; CRC Press: Boca Raton, FL, USA; Ann Harbor, MI, USA; London, UK; Tokyo, Japan, 1993; pp. 149–199. [Google Scholar]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Petti, L.; Ardente, F.; Bosco, S.; De Camillis, C.; Masotti, P.; Pattara, C.; Raggi, A.; Tasselli, G. Stato dell’arte della Life Cycle Assessment (LCA) nel comparto vitivinicolo. In La Metodologia LCA: Approccio Proattivo per le Tecnologie Ambientali. Casi Studio ed Esperienze Applicative; Cappellaro, F., Scalbi, S., Eds.; Atti Convegno Scientifico della Rete Italiana LCA: Padova, Italy, 22 April 2010; pp. 221–228. ISBN 978-88-8286-226-8. [Google Scholar]
- Novello, V. Filiera vitivinicola: Valorizzare residui e sottoprodotti. Informatore Agrario 2015, 33, 61–63. [Google Scholar]
- Pastrana-Bonilla, E.; Akoh, C.C.; Sellappan, S.; Krewer, G. Phenolic content and antioxidant capacity of muscadine grapes. J. Agric. Food Chem. 2003, 5, 5497–5503. [Google Scholar] [CrossRef] [PubMed]
- Chandra, H.M.; Ramalingam, S. Antioxidant potential of skin, pulp, and seed fractions of commercially important tomato cultivars. Food Sci. Biotechnol. 2011, 20, 15–21. [Google Scholar] [CrossRef]
- Dwyer, K.; Hosseinian, F.; Rod, M. The market potential of grape waste alternatives. J. Food Res. 2014, 3, 91–106. [Google Scholar] [CrossRef]
- ANPA (Agenzia Nazionale per la Protezione dell’Ambiente). I Rifiuti del Comparto Agroalimentare; Rapporti 11/2001; ANPA—Unità Normativa Tecnica: Roma, Italy, 2001. [Google Scholar]
- Accardi, D.S.; Bubbico, R.; Di Palma, L.; Pietrangeli, B. Environmental and Safety Aspects of Integrated BioRefineries (IBR) in Italy. Chem. Eng. Trans. 2013, 32, 169–174. [Google Scholar]
- Ardente, F.; Beccali, G.; Cellura, M.; Marvuglia, A. A Case Study of an Italian Wine-Producing. Environ. Manag. 2006, 38, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Bosco, S.; Di Bene, C.; Galli, M.; Remorini, D.; Massai, R.; Bonari, E. Greenhouse gas emissions in the agricultural phase of wine production in the Maremma rural district in Tuscany, Italy. Ital. J. Agron. 2011, 6, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Rowe, I.; Rugani, B.; Benetto, E. Tapping carbon footprint variations in the European wine sector. J. Clean. Prod. 2013, 43, 146–155. [Google Scholar] [CrossRef]
- Neto, B.; Dias, A.C.; Machado, M. Life cycle assessment of the supply chain of a Portuguese wine: From viticulture to distribution. Int. J. Life Cycle Assess. 2013, 18, 590–602. [Google Scholar] [CrossRef]
- Corbo, C.; Lamastra, L.; Capri, E. From Environmental to Sustainability Programs: A Review of Sustainability Initiatives in the Italian Wine Sector. Sustainability 2014, 6, 2133–2159. [Google Scholar] [CrossRef] [Green Version]
- Navarro, A.; Puig, R.; Fullana-I-Palmer, P. Product vs. corporate carbon footprint: Some methodological issue. A case study and review on the wine sector. Sci. Total Environ. 2017, 581–582, 722–723. [Google Scholar] [CrossRef] [PubMed]
- ISO (International Organization for Standardization). ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework; EN ISO 14040; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- International Wine Carbon Calculator, Developed by “Wine Institute of California”. Available online: http://www.wineinstitute.org (accessed on 27 July 2018).
- Bevilacqua, N.; Morassut, M.; Serra, M.C.; Cecchini, F. Determinazione dell’impronta carbonica dei sottoprodotti della vinificazione e loro valenza biologica. Ingegneria dell’Ambiente 2017, 4, 277–285. [Google Scholar] [CrossRef]
- UNFCCC. Kyoto Protocol to the United Nations Framework Convention on Climate Change Adopted at COP3 in Kyoto, Japan, on 11 December 1997. Available online: 20http://unfccc.int/resource/docs/cop3/07a01.pdf (accessed on 27 July 2018).
- Ragauskas, A.J.; Williams, C.K.; Davison, B.H.; Britovsek, G.; Cairney, J.; Eckert, C.A. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Demirbas, A. Biorefineries. For Biomass Upgrading Facilities; Springer: London, UK, 2010. [Google Scholar]
- Ahlgren, S.; Björklund, A.; Ekman, A.; Karlsson, H.; Berlin, J.; Börjesson, P.; Ekvall, T.; Finnveden, G.; Janssen, M.; Strid, I. Review of methodological choices in LCA of biorefinery systems—Key issues and recommendations. Biofuels Bioprod. Bioref. 2015, 9, 606–619. [Google Scholar] [CrossRef]
- ILO (International Labor Office). Working towards Sustainable Development: Opportunities for Decent Work and Social Inclusion in a Green Economy; ILO: Geneva, Switzerland, 2012; pp. 1–18. [Google Scholar]
- Tuck, C.O.; Perez, E.; Horvath, I.T.; Sheldon, R.A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science 2012, 337, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.K.; Koutinas, A.A.; Stamatelatou, K.; Mubofu, E.B.; Matharu, A.S.; Kopsahelis, N.; Pfaltzgraff, L.A.; Clark, J.H.; Papanikolaou, S.; Kwan, T.H.; et al. Current and future trends in food waste valorization for the production of chemicals, materials and fuels: A global perspective. Biofuels Bioprod. Bioref. 2014, 8, 686–715. [Google Scholar] [CrossRef]
- Lin, C.S.K.; Luque, R. Renewable Resources and Biorefineries; Royal Society of Chemistry: Cambridge, UK, 2014. [Google Scholar]
- Zuin, V.G.; Ramin, L.Z. Green and Sustainable Separation of Natural Products from Agro-Industrial Waste: Challenges, Potentialities, and Perspectives on Emerging Approach. Top. Curr. Chem. 2018, 376, 3. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Y.; Zhang, Y.; Jun, W.; Lu, J. Extraction, distribution and characterisation of phenolic compounds and oil in grapeseeds. Food Chem. 2010, 122, 688–694. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Montefusco, A.; Marrese, P.P.; Soccio, M.; Pastore, D.; Piro, G.; Mita, G.; Lenucci, M.S. Seeds of pomegranate, tomato and grapes: An underestimated source of natural bioactive molecules and antioxidants from agri-food by-products. J. Agric. Food Chem. 2017, 63, 65–72. [Google Scholar] [CrossRef]
- Shinagawa, F.B.; de Santana, F.C.; Araujo, E.; Purgatto, E.; Mancini-Filho, J. Chemical composition of cold pressed Brazilian grape seed oil. Food Sci. Technol. 2017, 38, 164–171. [Google Scholar] [CrossRef] [Green Version]
- Giannini, B.; Mulinacci, N.; Pasqua, G.; Innocenti, M.; Valletta, A.; Cecchini, F. Phenolics and antioxidant activity in different cultivars/clones of Vitis vinifera L. seeds over two years. J. Plant Biosyst. 2016, 150, 1408–1416. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Turchetti, B.; Mulinacci, N.; Vincieri, F.F.; Buzzini, P. Analysis of condensed and hydrolyzable tannins from commercial plant extracts. J. Pharm. Biomed. Anal. 2006, 41, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Sano, A.; Uchida, R.; Saito, M.; Shioya, N.; Komori, Y.; Tho, Y.; Hashizume, N. Beneficial effects of grape seed extract on malondialdehyde-Modified LDL. J. Nutr. Sci. Vitaminol. 2007, 53, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Kar, P.; Laight, D.; Rooprai, H.K.; Shaw, K.M.; Cummings, M. Effects of grapeseed extract in type 2 diabetic subjects: A double blind randomised placebo controlled trial looking at the effects upon inflammatory and metabolic markers. Diabetic Med. 2009, 26, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Castrillejo, V.M.; Romero, M.M.; Esteve, M.; Ardévol, A.; Blay, M.; Bladé, C.; Arola, L.; Salvadó, M.J. Antioxidant effects of a grapeseed procyanidin extract and oleoyl-estrone in obese Zucker rats. Nutrition 2011, 27, 1172–1176. [Google Scholar] [CrossRef] [PubMed]
- Montagut, G.; Bladé, C.; Blay, M.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, M.J.; Arola, L.; Pinent, M.; Ardévol, A. Effects of a grapeseed procyanidin extract (GSPE) on insulin resistance. J. Nutr. Biochem. 2010, 21, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Brito de Souza, V.; Fujita, A.; Thomazini, M.; da Silva, E.R.; Lucon, J.F., Jr.; Genovese, M.I.; Favaro-Trindade, C.S. Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Food Chem. 2014, 164, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Erdemli, M.E.; Akgul, H.; Ege, B.; Aksungur, Z.; Bag, H.G.; Selamoglu, Z. The effects of grapeseed extract and low level laser therapy administration on the liver in experimentally fractured mandible. J. Turgut Ozal Med. Cent. 2017, 24, 127–133. [Google Scholar] [CrossRef]
- Agarwal, C.; Veluri, R.; Kaur, M.; Chou, S.-C.; Thompson, J.A.; Agarwal, R. Fractionation of high molecular weight tannins in grape seed extract and identification of procyanidins B2-3,3′-diO-gallate as a major active constituent causing growth inhibition and apoptotic death of DU145 Human prostate carcinoma cells. Carcinogenesis 2007, 28, 1478–1484. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.-C.; Kaur, M.; Thompson, J.A.; Agatwal, R.; Agarwal, C. Influence of gallate esterification on the activity of procyanidin B2 in Androgen-dependent prostate carcinoma LNCaP cells. Pharm. Res. 2010, 27, 619–627. [Google Scholar] [CrossRef] [PubMed]
- Engelbrecht, A.M.; Mattheyse, M.; Ellis, B.; Loos, B.; Thomas, M.; Smith, R.; Peters, S.; Smith, C.; Myburgh, K. Proanthocyanidin from grape seeds inactivates the PI3kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Lett. 2007, 258, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Mandair, R.; Agarwal, R.; Agarwal, C. Grape Seed Extract Induces Cell Cycle Arrest and Apoptosis in Human Colon Carcinoma Cells. Nutr. Cancer 2008, 60, 2–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keser, S.; Celik, S.; Turkoglu, S. Total phenolic contents and free-radical scavenging activities of grape (Vitis vinifera L.) and grape products. Int. J. Food Sci. Nutr. 2013, 64, 210–216. [Google Scholar] [CrossRef] [PubMed]
- García-Lomillo, J.; González-SanJosé, M.L.; Del Pino-García, R.; Rivero-Pérez, M.D.; Muñiz-Rodríguez, P. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. J. Agric. Food Chem. 2014, 62, 12595–12602. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, C.; Foglia, P.; Marini, F.; Samperi, R.; Antonacci, D.; Laganà, A. The interactive effects of irrigation, nitrogen fertilisation rate, delayed harvest and storage on the polyphenol content in red grape (Vitis vinifera) berries: A factorial experimental design. Food Chem. 2010, 122, 1176–1184. [Google Scholar] [CrossRef]
- Bordiga, M.; Travaglia, F.; Locatelli, M.; Cosson, J.D.; Arlorio, M. Characterisation of polymeric skin and seed proanthocyanidins during ripening in six Vitis vinifera L. cv. Food Chem. 2011, 127, 180–187. [Google Scholar] [CrossRef]
- Cecchini, F. Factors affecting antioxidant activity of grape tissues. In Grapes; Camara, J.S., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2014; ISBN 978-1-63321-402-6. [Google Scholar]
- Özcan, M.M.; Juhaimi, F.A.; Gülcü, M.; Uslu, N.; Geçgel, Ü.; Ghafoor, K.; Dursun, N. Effect of harvest time on physico-chemical properties and bioactive compounds of pulp and seeds of grape varieties. J. Food Sci. Technol. 2017, 54, 2230–2240. [Google Scholar] [CrossRef] [PubMed]
- De Sá, M.; Justino, V.; Spranger, M.I.; Zhao, Y.Q.; Han, L.; Sun, B.S. Extraction yields and anti-oxidant activity of proanthocyanidins from different parts of grapepomace: Effect of mechanical treatments. Phytochem. Anal. 2014, 25, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.L. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R.T. Oxygen radical absorbance capacities of grape/wine industry byproducts and effect of solvent type on extraction of grape seed polyphenols. J. Food Compos. Anal. 2006, 19, 41–48. [Google Scholar] [CrossRef]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidanty activity. J. Eng. 2007, 81, 200–208. [Google Scholar]
- Viganó, J.; da Fonseca Machado, A.P.; Martínez, J. Sub- and supercritical fluid technology applied to food waste processing. J. Supercrit. Fluids 2015, 96, 272–286. [Google Scholar] [CrossRef]
- Casazza, A.A.; Aliakbarian, B.; Mantegna, S.; Cravotto, G.; Perego, P. Extraction of phenolics from Vitis vinifera wastes using non-conventional techniques. J. Food Eng. 2010, 100, 50–55. [Google Scholar] [CrossRef]
- Chamorro, S.; Viveros, A.; Vega, E.; Brenes, A. Changes in polyphenol and polysaccharide content of grape seed extract and grape pomase after enzymatic treatment. Food Chem. 2012, 133, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Skouroumounis, G.K.; Elsey, G.M.; Taylor, D. Microwave-assistance provides very rapid and efficient extraction of grape seed polyphenols. Food Chem. 2011, 129, 570–576. [Google Scholar] [CrossRef]
- Vilkhu, K.; Mawsoa, R.; Simons, L.; Bates, D. Applications and opportunities for ultrasound assisted extraction in the food industry—A review. Innov. Food Sci. Emerg. Technol. 2008, 9, 161–169. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Choi, Y.H. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds. Plant Foods Hum. Nutr. 2012, 67, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of phenolic antioxidants from wine industry by-products. Bioresour. Technol. 2004, 92, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Martinez, G.A.; Rebecchi, S.; Decorti, D.; Domingos, J.M.; Natolino, A.; Del Rio, D.; Bertin, L.; Da Porto, C.; Fava, F. Towards multi-purpose biorefinery platforms for the valorisation of red grape pomace: Production of polyphenols, volatile fatty acids, polyhydroxyalkanoates and biogas. Green Chem. 2016, 18, 261–270. [Google Scholar] [CrossRef]
- Prado, J.M.; Dalmolin, I.; Carareto, N.D.D.; Basso, R.C.; Meirelles, A.J.A.; Oliveira, J.V.; Batista, E.A.C.; Meireles, M.A.A. Supercritical fluid extraction of grape seed: Process scale-up, extract chemical composition and economic evaluation. J. Food Eng. 2012, 109, 249–257. [Google Scholar] [CrossRef]
- Prado, J.M.; Forster-Carneiro, T.; Rostagno, M.A.; Follegatti-Romero, L.A.; Maugeri Filho, F.; Meireles, M.A.A. Obtaining sugars from coconut husk, defat-ted grape seed, and pressed palm fiber by hydrolysis with subcritical water. J. Supercrit. Fluids 2014, 89, 89–98. [Google Scholar] [CrossRef]
- Boussetta, N.; Lanoisellé, J.L.; Bedel-Cloutour, C.; Vorobiev, E. Extraction of soluble matter from grape pomace by high voltage electrical discharges for polyphenol recovery: Effect of sulphur dioxide and thermal treatments. J. Food Eng. 2009, 95, 192–198. [Google Scholar] [CrossRef]
- Kammerer, D.; Claus, A.; Schieber, A.; Carle, R. A Novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. J. Food Sci. 2005, 70, 157–163. [Google Scholar] [CrossRef]
- Stambuk, P.; Tomaskovic, D.; Tomaz, I.; Maslov, L.; Stupic, D. Application of pectinases for recovery of grape seeds phenolics. 3 Biotech 2016, 6, 224. [Google Scholar] [CrossRef] [PubMed]
- Canbay, H.S.; Bardakçı, B. Determination of fatty acid, C, H, N and trace element composition in grape seed by GC/MS, FTIR, elemental analyzer and ICP/OES. SDU J. Sci. 2011, 6, 140–148. [Google Scholar]
- Hanganu, A.; Todaşcă, M.C.; Chira, N.A.; Maganu, M.; Roşca, S. The compositional characterisation of Romanian grape seed oils using spectroscopic methods. Food Chem. 2012, 134, 2453–2458. [Google Scholar] [CrossRef] [PubMed]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Rodríguez-Pulido, F.J.; Heredia, F.J.; Hernández-Hierro, J.M. Use of near infrared hyperspectral tools for the screening of extractable polyphenols in red grape skins. Food Chem. 2015, 172, 559–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Hernández-Hierro, J.M.; Heredia, F.J.; Byrne, H.J. Linking ATR-FTIR and Raman features to phenolic extractability and other attributes in grape skin. Talanta 2017, 167, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nogales-Bueno, J.; Baca-Bocanegra, B.; Rooney, A.; Hernández-Hierro, J.M.; Byrne, H.J.; Heredia, F.J. Study of phenolic extractability in grape seeds by means of ATR-FTIR and Raman spectroscopy. Food Chem. 2017, 232, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Gastaminza, G.; Quirce, S.; Torres, M.; Tabar, A.; Echechipía, S.; Munoz, D.; Corres, L.F. Pickled onion-induced asthma: A model of sulfite-sensitive asthma? Clin. Exp. Allergy 1995, 25, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Gruber, J.; St Clair, L. For asthma sufferers—The facts about sulphites in food. Food Aust. 1994, 46, 500. [Google Scholar]
- García-Marino, M.; Rivas-Gonzalo, J.C.; Ibáñez, E.; García-Moreno, C. Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction. Anal. Chim. Acta 2006, 563, 44–50. [Google Scholar] [CrossRef]
- Nawaz, H.; Shi, J.; Mittal, G.S.; Kakuda, Y. Extraction of polyphenols from grape seeds and concentration by ultrafiltration. Sep. Purif. Technol. 2006, 48, 176–181. [Google Scholar] [CrossRef]
- Romani, A.; Pangia, D.; Marchionni, L.; Marchionni, A. Integrated Process for Recovery of a Polyphenol Fraction and Anaerobic Digestion of Olive Mill Wastes. PCT/IT2009000246, 5 June 2009. [Google Scholar]
- Romani, A.; Scardigli, A.; Pinelli, P. An environmentally friendly process for the production of extracts rich in phenolic antioxidants from Olea europaea L. and Cynara scolymus L. matrices. Eur. Food Res. Technol. 2017, 243, 1229–1238. [Google Scholar] [CrossRef]
- Campo, M.; Pinelli, P.; Romani, A. Hydrolyzable Tannins from Sweet Chestnut Fractions Obtained by a Sustainable and Eco-friendly Industrial Process. Nat. Prod. Commun. 2016, 11, 409–415. [Google Scholar] [PubMed]
- Bargiacchi, E.; Miele, S.; Romani, A.; Campo, M. Biostimulant activity of hydrolyzable tannins from sweet chestnut (Castanea sativa Mill.). Acta Horticult. 2013, 1009, 111–116. [Google Scholar] [CrossRef]
- Sorrentino, E.; Succi, M.; Tipaldi, L.; Pannella, G.; Maiuro, L.; Sturchio, M.; Coppola, R.; Tremonte, P. Antimicrobial activity of gallic acid against food-related Pseudomonas strains and its use as biocontrol tool to improve the shelf life of fresh black truffles. Int. J. Food Microbiol. 2018, 266, 183–189. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lucarini, M.; Durazzo, A.; Romani, A.; Campo, M.; Lombardi-Boccia, G.; Cecchini, F. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules 2018, 23, 1888. https://doi.org/10.3390/molecules23081888
Lucarini M, Durazzo A, Romani A, Campo M, Lombardi-Boccia G, Cecchini F. Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules. 2018; 23(8):1888. https://doi.org/10.3390/molecules23081888
Chicago/Turabian StyleLucarini, Massimo, Alessandra Durazzo, Annalisa Romani, Margherita Campo, Ginevra Lombardi-Boccia, and Francesca Cecchini. 2018. "Bio-Based Compounds from Grape Seeds: A Biorefinery Approach" Molecules 23, no. 8: 1888. https://doi.org/10.3390/molecules23081888
APA StyleLucarini, M., Durazzo, A., Romani, A., Campo, M., Lombardi-Boccia, G., & Cecchini, F. (2018). Bio-Based Compounds from Grape Seeds: A Biorefinery Approach. Molecules, 23(8), 1888. https://doi.org/10.3390/molecules23081888