Beckmann Rearrangement of Ketoxime Catalyzed by N-methyl-imidazolium Hydrosulfate
Abstract
:1. Introduction
2. Results
3. Experimental Section
3.1. Synthesis of N-methyl-imidazolium Hydrosulfate ([HMIm]HSO4)
3.2. General Procedures for Synthesis of Oxime Substrates 2a–2o
3.3. General Procedures for the Synthesis of Amides 3a–3o
4. Conclusions
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Conflicts of Interest
References
- Ghiaci, M.; Aghaei, H.; Oroojeni, M.; Aghabarari, B.; Rives, V.; Vicente, M.A.; Sobrados, I.; Sanz, J. Synthesis of paracetamol by liquid phase Beckmann rearrangement of 4-hydroxyacetophenone oxime over H3PO4/Al-MCM-41. Catal. Commun. 2009, 10, 1486–1492. [Google Scholar] [CrossRef]
- Murray, W.V.; Lalan, P.; Gill, A.; Addo, M.F.; Lewis, J.M.; Lee, D.K.H.; Rampulla, R.; Wachter, M.P.; Hsi, J.D.; Underwood, D.C. Substituted piperidin-2-one biphenyltetrazoles as angiotensin II antagonists. Bioorg. Med. Chem. Lett. 1992, 2, 1775–1779. [Google Scholar] [CrossRef]
- Constable, D.J.C.; Dunn, P.J.; Hayler, J.D.; Humphrey, G.R.; Leazer, J.J.L.; Linderman, R.J.; Lorenz, K.; Manley, J.; Pearlman, B.A.; Wells, A.; et al. Key green chemistry research areas-a perspective from pharmaceutical manufacturers. Green Chem. 2007, 9, 411–420. [Google Scholar] [CrossRef]
- Chruma, J.J.; Cullen, D.J.; Bowman, L.; Toy, P.H. Polyunsaturated fatty acid amides from the Zanthoxylum genus—From culinary curiosities to probes for chemical biology. Nat. Prod. Rep. 2018, 35, 54–74. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Liu, Z.-L.; Xiong, L.-X.; Wang, M.-Z.; Li, Y.-Q.; Li, Z.-M. Synthesis and Insecticidal Activities of Novel Anthranilic Diamides Containing Modified N-Pyridylpyrazoles. J. Agric. Food Chem. 2010, 58, 12327–12336. [Google Scholar] [CrossRef] [PubMed]
- Zhenyu, J.; Ziqing, C.; Jianwen, C.; Li, Z.; Fan, Y.; Xianlang, Q.; Haifeng, B. High efficiency toughness of aromatic sulfonamide in polyamide 6. J. Appl. Polym. Sci. 2018, 135, 46527. [Google Scholar]
- Nguyen, T.B.; Sorres, J.; Tran, M.Q.; Ermolenko, L.; Al-Mourabit, A. Boric Acid: A Highly Efficient Catalyst for Transamidation of Carboxamides with Amines. Org. Lett. 2012, 14, 3202–3205. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-P.; Mampuys, P.; Sergeyev, S.; Ballet, S.; Maes, B.U.W. Amine Activation: N-Arylamino Acid Amide Synthesis from Isothioureas and Amino Acids. Adv. Synth. Catal. 2017, 359, 2481–2498. [Google Scholar] [CrossRef]
- Thigulla, Y.; Ranga, S.; Ghosal, S.; Subbalakshmi, J.; Bhattacharya, A. One-Pot Two Step Nazarov-Schmidt Rearrangement for the Synthesis of Fused δ-Lactam Systems. Chemistryselect 2017, 2, 9744–9750. [Google Scholar] [CrossRef]
- Gao, P.; Bai, Z. Carbon Tetrabromide/Triphenylphosphine-Activated Beckmann Rearrangement of Ketoximes for Synthesis of Amides. Chin. J. Chem. 2017, 35, 1673–1677. [Google Scholar] [CrossRef]
- Gregory, B.J.; Moodie, R.B.; Schofield, K. The Beckrnann Rearrangement of Acetophenone Oxirnes in Sulphuric Acid. Chem. Commun. 1968, 22, 1380–1381. [Google Scholar]
- Maia, A.; Albanese, D.C.M.; Landini, D. Cyanuric chloride catalyzed Beckmann rearrangement of ketoximes in biodegradable ionic liquids. Tetrahedron 2012, 68, 1947–1950. [Google Scholar] [CrossRef]
- De Luca, L.; Giacomelli, G.; Porcheddu, A. Beckmann Rearrangement of Oximes under Very Mild Conditions. J. Org. Chem. 2002, 67, 6272–6274. [Google Scholar] [CrossRef] [PubMed]
- Furuya, Y.; Ishihara, K.; Yamamoto, H. Cyanuric Chloride as a Mild and Active Beckmann Rearrangement Catalyst. J. Am. Chem. Soc. 2005, 127, 11240–11241. [Google Scholar] [CrossRef] [PubMed]
- Blasco, T.; Corma, A.; Iborra, S.; Lezcano-González, I.; Montón, R. In situ multinuclear solid-state NMR spectroscopy study of Beckmann rearrangement of cyclododecanone oxime in ionic liquids: The nature of catalytic sites. J. Catal. 2010, 275, 78–83. [Google Scholar] [CrossRef]
- Wang, B.; Gu, Y.; Luo, C.; Yang, T.; Yang, L.; Suo, J. Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste. Tetrahedron Lett. 2004, 45, 3369–3372. [Google Scholar] [CrossRef]
- Itoh, T. Activation of Lipase-Catalyzed Reactions Using Ionic Liquids for Organic Synthesis. Adv. Biochem. Eng. Biotechnol. 2018. [Google Scholar] [CrossRef]
- Hallett, J.P.; Welton, T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2. Chem. Rev. 2011, 111, 3508–3576. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Xie, C.; Yu, S.; Liu, F. Dimerization of rosin using Brønsted–Lewis acidic ionic liquid as catalyst. Catal. Commun. 2008, 9, 2030–2034. [Google Scholar] [CrossRef]
- Alvarez de Cienfuegos, L.; Robles, R.; Miguel, D.; Justicia, J.; Cuerva, J.M. Reduction Reactions in Green Solvents: Water, Supercritical Carbon Dioxide, and Ionic Liquids. ChemSusChem 2011, 4, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Kaur, S.; Sapehiyia, V.; Singh, J.; Kad, G.L. Microwave accelerated preparation of [bmim][HSO4] ionic liquid: An acid catalyst for improved synthesis of coumarins. Catal. Commun. 2005, 6, 57–60. [Google Scholar] [CrossRef]
- Mo, X.; Morgan, T.D.R.; Ang, H.T.; Hall, D.G. Scope and Mechanism of a True Organocatalytic Beckmann Rearrangement with a Boronic Acid/Perfluoropinacol System under Ambient Conditions. J. Am. Chem. Soc. 2018, 140, 5264–5271. [Google Scholar] [CrossRef] [PubMed]
- Kore, R.; Srivastava, R. A simple, eco-friendly, and recyclable bi-functional acidic ionic liquid catalysts for Beckmann rearrangement. J. Mol. Catal. A Chem. 2013, 376, 90–97. [Google Scholar] [CrossRef]
- Jeong, T.-S.; Kim, M.J.; Yu, H.; Kim, K.S.; Choi, J.-K.; Kim, S.-S.; Lee, W.S. (E)-Phenyl- and -heteroaryl-substituted O-benzoyl-(or acyl)oximes as lipoprotein-associated phospholipase A2 inhibitors. Bioorg. Med. Chem. Lett. 2005, 15, 1525–1527. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.K.; Du, C.; Pang, Y.D.; Lian, X.; Xue, C.T.; Chen, Y.Y.; Wang, X.F.; Cheng, M.S.; Guo, C.; Lin, B.; et al. Lewis acid-assisted N-fluorobenzenesulfonimide-based electrophilic fluorine catalysis in Beckmann rearrangement. Tetrahedron Lett. 2016, 57, 5820–5824. [Google Scholar] [CrossRef]
- Sharma, R.; Vishwakarma, R.A.; Bharate, S.B. Ligand-Free Copper-Manganese Spinel Oxide-Catalyzed Tandem One-Pot C–H Amidation and N-Arylation of Benzylamines: A Facile Access to 2-Arylquinazolin-4(3H)-ones. Adv. Synth. Catal. 2016, 358, 3027–3033. [Google Scholar] [CrossRef]
- Muraca, A.C.A.; Perecim, G.P.; Rodrigues, A.; Raminelli, C. Convergent Total Synthesis of (+/−)-Apomorphine via Benzyne Chemistry: Insights into the Mechanisms Involved in the Key Step. Synthesis 2017, 49, 3546–3557. [Google Scholar]
- Schmidt, E.Y.; Ushakov, I.A.; Zorina, N.V.; Mikhaleva, A.I.; Trofimov, B.A. The reaction of 2-arylazo-1-vinylpyrroles with trifluoroacetic anhydride: Unexpected formation of N-aryl-2,2,2-trifluoroacetamides and conjugated polymers. Mendeleev Commun. 2011, 21, 36–37. [Google Scholar] [CrossRef]
- Xing, S.; Han, Q.; Shi, Z.; Wang, S.; Yang, P.; Wu, Q.; Li, M. A hydrophilic inorganic framework based on a sandwich polyoxometalate: Unusual chemoselectivity for aldehydes/ketones with in situ generated hydroxylamine. Dalton Trans. 2017, 46, 11537–11541. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Entry | Co-Catalyst | Yield (%) |
---|---|---|
1 | a | 45 |
2 | P2O5 | 91 |
3 | FeCl3 | 47 |
4 | AlCl3 | 50 |
5 | ZnCl2 | 53 |
6 | CuCl2·2H2O | 14 b |
Reaction Turn | P2O5/% | Conversion/% | Yield/% |
---|---|---|---|
1 | 8 | 91 | 91 |
2 | 1 | 91 | 90 |
3 | 0.5 | 90 | 88 |
Compd. | R1 | R2 | Yield % |
---|---|---|---|
3a | 91 | ||
3b | 90 | ||
3c | 90 | ||
3d | 89 | ||
3e | 88 | ||
3f | 86 | ||
3g | 91 | ||
3h | 89 | ||
3i | 85 | ||
3j | 84 | ||
3k | 90 | ||
3l(3l’) | 52 | ||
28 | |||
3m | 89 | ||
3n | 82 | ||
3o | Caprolactam | 85 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Cai, X.; Xu, Z.; Yan, X.; Zhao, S. Beckmann Rearrangement of Ketoxime Catalyzed by N-methyl-imidazolium Hydrosulfate. Molecules 2018, 23, 1764. https://doi.org/10.3390/molecules23071764
Hu H, Cai X, Xu Z, Yan X, Zhao S. Beckmann Rearrangement of Ketoxime Catalyzed by N-methyl-imidazolium Hydrosulfate. Molecules. 2018; 23(7):1764. https://doi.org/10.3390/molecules23071764
Chicago/Turabian StyleHu, Hongyu, Xuting Cai, Zhuying Xu, Xiaoyang Yan, and Shengxian Zhao. 2018. "Beckmann Rearrangement of Ketoxime Catalyzed by N-methyl-imidazolium Hydrosulfate" Molecules 23, no. 7: 1764. https://doi.org/10.3390/molecules23071764
APA StyleHu, H., Cai, X., Xu, Z., Yan, X., & Zhao, S. (2018). Beckmann Rearrangement of Ketoxime Catalyzed by N-methyl-imidazolium Hydrosulfate. Molecules, 23(7), 1764. https://doi.org/10.3390/molecules23071764