Effect of Beta Cyclodextrin on the Reduction of Cholesterol in Ewe’s Milk Manchego Cheese
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gross Composition
2.2. Lipid Characteristics
2.3. Flavor Characteristics
3. Materials and Methods
3.1. Chemicals
3.2. Manchego Manufacture
3.3. Gross Composition
3.4. Beta Cyclodextrin Analysis
3.5. Lipid Extraction
3.6. Determination of Cholesterol
3.7. Fatty Acids and Triglycerides Analysis
3.8. Phospholipids Analysis
3.9. Analysis of Volatile Compounds
3.10. Short Chain Free Fatty Acids
3.11. Sensory Analysis
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hansel, B.; Nicolle, C.; Lalanne, F.F.; Brucket, E. Effect of low-fat, fermented milk enriched with plant sterols on serum lipid profile and oxidative stress in moderate hypercholesterolemia. Am. J. Clin. Nutr. 2007, 86, 790–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hariharan, K.; Kurien, S.; Rao, S.V. Effect of supplementation of milk fat with peanut oil on blood lipids and lipoproteins in infants. Int. J. Food Sci. Nutr. 1995, 46, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.J.; Lopetcharat, K.; Drake, M.A. Identification of the characteristics that drive consumer liking of butter. J. Dairy Sci. 2007, 90, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Arul, J.; Boudreau, A.; Makhlouf, J.; Tardif, R.; Bellavia, T. Fractionation of anhydrous milk fat by short path destillation. J. Am. Oil Chem. Soc. 1988, 65, 1642–1646. [Google Scholar] [CrossRef]
- Arul, J.; Boudreau, A.; Makhlouf, J.; Tardif, R.; Bellavia, T. Distribution of cholesterol in milk fat fractions. J. Dairy Res. 1988, 55, 361–371. [Google Scholar] [CrossRef] [PubMed]
- Micich, T.J. Behaviours of polymers supported digitonin with cholesterol in the absence and presence of butter oil. J. Agric. Food Chem. 1990, 38, 1839–1843. [Google Scholar] [CrossRef]
- Micich, T.J.; Foglia, T.A.; Holsinger, V.H. In vitro studies on saponin-vitamin complexation. J. Agric. Food Chem. 1992, 40, 1321–1325. [Google Scholar] [CrossRef]
- Gilliland, S.E.; Nelson, C.R.; Maxwell, C. Assimilation of cholesterol by Lactobacillus acidophilus. Appl. Environ. Microbiol. 1985, 49, 377–389. [Google Scholar] [PubMed]
- Walkek, K.W.; Gilliland, S.E. Relationships among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacills acidophilus. J. Dairy Sci. 1993, 76, 956–961. [Google Scholar] [CrossRef]
- Gonzalez-Hierro, M.T.; Ruiz-Sala, P.; Alonso, L.; Santamaria, G. Extraction of ewe’s milk cream with supercritical carbon dioxide. Z. Lebensm. Unters. Forsch. 1995, 200, 297–300. [Google Scholar] [CrossRef] [PubMed]
- Sangbin, L.; Mi-Kyung, J.; Hae-Soo, K. Cholesterol removal from milk fat by supercritical carbon dioxide extraction in coupled with adsorption. Korean J. Food Sci. Technol. 1998, 30, 574–580. [Google Scholar]
- Kwak, H.S.; Ahn, J. Optimization cholesterol removal in cream using β-cyclodextrin and response surface methodology. J. Food Sci. 1999, 64, 629–632. [Google Scholar]
- Lee, D.K.; Ahn, J.; Kwak, H.S. Cholesterol removal from homogenized milk with β-cyclodextrin. J. Dairy Sci. 1999, 82, 2327–2330. [Google Scholar] [CrossRef]
- Byung-Sung, P.; Aera, J. Dietary β-cyclodextrin reduces the cholesterol levels in meats and backfat of fibishing pigs. J. Sci. Food Agric. 2008, 88, 813–818. [Google Scholar]
- Alonso, L.; Cuesta, P.; Fontecha, J.; Juárez, M.; Gilliland, S.E. Use of beta cyclodextrin to decrease the level of cholesterol in milk fat. J. Dairy Sci. 2009, 92, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Kang, H.K.; Jang, A. Influence of feeding β-cyclodextrin hens on the egg production and cholesterol content of egg yolk. Asian Australas. J. Anim. Sci. 2005, 18, 835–840. [Google Scholar] [CrossRef]
- Yen, G.C.; Tsui, L.T. Cholesterol removal from a lard water mixture with β-cyclodextrin. J. Food Sci. 1995, 60, 561–564. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Cuesta, P.; Juárez, M.; Gilliland, S.E. Industrial application of beta-cyclodextrin for manufacturing low colesterol butter. Milchwiss.-Milk Sci. Int. 2010, 65, 36–37. [Google Scholar]
- Lee, S.J.; Hwang, J.H.; Lee, S.; Ahn, J.; Kwak, H.S. Property changes and cholesterol lowering effects in evening primose oil-enriched and cholesterol-reduced yoghurt. Int. J. Dairy Technol. 2007, 60, 22–30. [Google Scholar] [CrossRef]
- Seon, K.H.; Ahn, J.; Kwak, H.S. The accelerated ripening of cholesterol-reduced Cheddar cheese by cross-linked β-cyclodextrin. J. Dairy Sci. 2009, 92, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Reineccius, T.A.; Reineccius, G.A.; Peppard, T.L. Potential for β-cyclodextrin as partial fat replacer in low-fat foods. J. Food Sci. 2004, 69, 334–341. [Google Scholar] [CrossRef]
- Szente, L.; Szejtli, J. Cyclodextrin as food ingredients. Trends Foods Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. The nutritional value of sheep milk. Int. J. Anim. Sci. 2001, 16, 253–268. [Google Scholar]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristeics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Soryal, K.A. Effect of using cross linked β-cyclodextrin on physicochemical properties of Domiati goat’s cheese. J. Food Dairy Sci. 2014, 5, 581–600. [Google Scholar]
- Smit, G.; Verheul, A.; van Kranenburg, R.; Ayad, E.; Siezen, R.; Engels, W. Cheese flavor development by enzymatic conversions of peptides and amino acids. Food Res. Int. 2000, 33, 153–160. [Google Scholar] [CrossRef]
- Kwak, H.S.; Jung, C.S.; Seok, J.S.; Ahn, J. Cholesterol removal and flavor development in cheddar cheese. Asian Australas. J. Anim. Sci. 2003, 16, 409–416. [Google Scholar] [CrossRef]
- Kim, H.Y.; Bae, H.Y.; Kwak, H.S. Development of cholesterol-reduced Blue cheese made by crosslinked β-cyclodextrin. Milchwiss 2008, 63, 53–56. [Google Scholar]
- Chen, H.; Schwartz, S.; Spanos, G.A. Fractionation of butter oil by supercrital carbon dioxide. J. Dairy Sci. 1992, 75, 2659–2669. [Google Scholar] [CrossRef]
- Bhashar, A.R.; Rizvi, S.S.H.; Sherbon, J.W. Anhydrous milk fat fractionation with continous countercurrent supercritical carbon dioxide. J. Food Sci. 1993, 56, 748–752. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Cuesta, P. Effect of beta-cyclodextrin on phospholipids and cholesterol of the milk fat globule membrane. J. Adv. Dairy Res. 2015, 3, 3–7. [Google Scholar]
- Jeon, S.S.; Joo, S.; Ganesan, P.; Kwak, H.S. Comparative study of flavor, texture, and sensory in cream cheese and cholesterol removed cream cheese. Food Sci. Biotechnol. 2012, 21, 159–165. [Google Scholar] [CrossRef]
- Smit, G.; Smit, B.A.; Engel, J.M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev. 2005, 29, 591–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.Y.; Park, S.Y.; Ahn, J.; Kwak, H.S. Properties of cholesterol reduced block type process cheese made by crosslinked β-CD-cyclodextrin. Korean J. Food Anim. Resour. 2008, 28, 463–469. [Google Scholar] [CrossRef]
- Fernández García, E.; López Fandiño, R.; Alonso, L. Effect of food grade enzyme preparation from Aspergillus oryzae on free fatty acid realease in Manchego type cheese from ovine and bovine milk. Eur. Food Res. Tecnol. 1994, 199, 262–264. [Google Scholar]
- Fernández-García, E.; López-Fandiño, R.; Alonso, L.; Ramos, M. The use of lipolytic and proteolytic enzymes in the manufacture of Manchego cheese type cheese from ovine and bovine milk. J. Dairy Sci. 1994, 77, 2139–2149. [Google Scholar] [CrossRef]
- Metzge, N.S.; Mistry, V.V. A new approch using homogenization of cream in the manufacture of reduced Cheddar cheese. Manufacture, composition, and yield. J. Dairy Sci. 1994, 77, 3506–3515. [Google Scholar] [CrossRef]
- Alonso, L.; Juárez, M.; Ramos, M.; Martín Alvarez, P.J. Overall composition, nitrogen fraction and fat characteristics of Cabrales cheese during ripening. Eur. Food Res. Technol. 1987, 185, 481–486. [Google Scholar] [CrossRef]
- Alonso, L.; Cuesta, P.; Gilliland, S.G. Development of a HPLC method for determining residual beta-cyclodextrin in milk, cream and butter as a novel prebiotic in dairy foods. Chromatographia 2008, 69, 1089–1092. [Google Scholar]
- ISO-IDF. Milk and Milk Products. Extraction Methods for Lipids and Liposoluble Compounds; ISO 14152; International Dairy Federation Standard: Brussels, Belgium, 2001; p. 172. [Google Scholar]
- Alonso, L.; Lozada, L.; Fontecha, J.; Juarez, M. Determination of cholesterol in milk fat by gas chromatography with direct injection and sample saponification. Chromatographia 1995, 41, 23–25. [Google Scholar] [CrossRef]
- Alonso, L.; Fontecha, J.; Lozada, L.; Fraga, M.J.; Juárez, M. Fatty acid composition of caprine milk: Major, branched-chain and trans fatty acids. J. Dairy Sci. 1999, 82, 878–884. [Google Scholar] [CrossRef]
- Alonso, L. Capillary gas chromatography of some triglycerides in cheese using programmed temperature injection. Chromatographia 1993, 35, 9–12. [Google Scholar] [CrossRef]
- Castro-Gómez, M.; Rodriguez Alcalá, L.M.; Calvo, M.V.; Romero, J.; Mendiola, J.A.; Ibáñez, E.; Fontecha, J. Total milk fat extraction and quantification of polar and neutral lipids of cow, goat, and ewe milk using a pressurized liquid system and chromatographic techniques. J. Dairy Sci. 2014, 97, 6719–6728. [Google Scholar] [CrossRef] [PubMed]
- Alonso, L.; Fontecha, J.; Juárez, M. Development of a headspace gas chromatographic mass spectrometric method for determining methyl-ketones and secondary alcohols in blue cheese. J. Chromatogr. Sci. 1999, 37, 108–112. [Google Scholar] [CrossRef]
- International Organization for Standardization. Sensory Analysis. General Guidance for the Design of Test Rooms; ISO 8589; International Organization for Standardization: Brussels, Belgium, 2007. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Parameter | CC | EC | REE |
---|---|---|---|
Fat (%) | 34.50 ± 1.12 a | 32.51 ± 1.18 a | 5.77 |
Moisture (%) | 36.79 ± 1.65 a | 38.15 ± 1.93 a | 3.70 |
Protein (%) | 25.68 ± 1.04 a | 25.10 ± 1.16 a | 8.77 |
SN (% as protein) | 4.76 ± 0.23 a | 5.79 ± 0.32 b | 2.26 |
NPN (% as protein) | 2.41 ± 0.19 a | 3.95 ± 0.24 b | 6.39 |
pH | 4.87 ± 0.15 a | 4.85 ± 0.25 a | 0.41 |
Cholesterol (mg/100 g fat) | 195.67 ± 6.03 a | 4.72 ± 0.19 b | 99.30 |
Cholesterol removal (% fat) | - | 97.6 ± 4.56 | - |
Remain β-CD (%) | - | 0.31 ± 0.13 | - |
Fatty Acid | CC | EC | REE |
---|---|---|---|
C4:0 | 2.24 ± 0.19 a | 2.14 ± 0.26 a | 4.46 |
C6:0 | 1.74 ± 0.06 a | 1.68 ± 0.05 a | 3.45 |
C8:0 | 1.70 ± 0.05 a | 1.66 ± 0.08 a | 2.35 |
C10:0 | 5.02 ± 0.15 a | 4.95 ± 0.13 a | 1.39 |
C10:1 | 0.28 ± 0.03 a | 0.26 ± 0.07 a | 7.14 |
C12:0 | 3.19 ± 0.11 a | 3.14 ± 0.18 a | 1.57 |
C14.0 | 9.22 ± 0.84 a | 9.21 ± 0.51 a | 0.11 |
C14:1 | 0.90 ± 0.03 a | 0.86 ± 0.06 a | 4.44 |
C15:0 | 0.24 ± 0.02 a | 0.25 ± 0.05 a | 4.17 |
C16:0 | 27.16 ± 1.52 a | 27.41 ± 1.18 a | 0.92 |
C16:1 | 0.73 ± 0.12 a | 0.77 ± 0.17 a | 5.48 |
C17:0 | 0.54 ± 0.07 a | 0.58 ± 0.07 a | 7.41 |
C18:0 | 13.39 ± 0.55 a | 13.59 ± 0.52 a | 1.49 |
C18:1t | 2.62 ± 1.13 a | 2.65 ± 0.23 a | 1.15 |
C18:1c | 23.28 ± 0.35 a | 22.93 ± 1.16 a | 1.50 |
C18:2 | 3.9 ± 0.08 a | 3.66 ± 0.24 a | 6.15 |
C18:3 | 0.39 ± 0.08 a | 0.40 ± 0.05 a | 2.56 |
C18:2 (c9t11) | 0.96 ± 0.06 a | 0.97 ± 0.06 a | 1.04 |
Triglyceride | CC | EC | REE |
---|---|---|---|
C24 | 0.33 ± 0.06 a | 0.32 ± 0.08 a | 3.03 |
C26 | 0.88 ± 0.09 a | 0.80 ± 0.05 a | 9.09 |
C28 | 1.64 ± 0.15 a | 1.54 ± 0.13 a | 6.09 |
C30 | 2.42 ± 0.23 a | 2.47 ± 0.21 a | 2.07 |
C32 | 3.54 ± 0.40 a | 3.25 ± 0.39 b | 8.59 |
C34 | 4.89 ± 0.38 a | 5.04 ± 0.48 a | 3.07 |
C36 | 7.21 ± 0.66 a | 7.04 ± 0.54 a | 2.36 |
C38 | 10.66 ± 1.11 a | 10.65 ± 1.30 a | 0.09 |
C40 | 17.35 ± 1.32 a | 17.89 ± 1.32 a | 3.11 |
C42 | 16.02 ± 1.40 a | 16.17 ± 1.50 a | 0.94 |
C44 | 8.83 ± 0.77 a | 8.13 ± 0.66 a | 8.13 |
C46 | 7.14 ± 0.62 a | 7.04 ± 0.52 a | 1.40 |
C48 | 5.35 ± 0.55 a | 5.71 ± 0.49 a | 6.73 |
C50 | 4.28 ± 0.35 a | 4.39 ± 0.51 a | 2.57 |
C52 | 4.57 ± 0.39 a | 4.31 ± 0.56 a | 5.69 |
C54 | 4.78 ± 0.43 a | 4.58 ± 0.45 a | 4.18 |
Phospholipids | CC | EC | REE |
---|---|---|---|
Total PLs (mg/100 g fat) | 0.12 ± 0.03 a | 0.11 ± 0.03 a | 8.83 |
PE (% of PL) | 42.42 ± 4.05 a | 38.25 ± 1.40 a | 9.83 |
PI (% of PL) | 1.93 ± 1.31 a | 2.46 ± 0.62 a | 0.27 |
PS (% of PL) | 1.75 ± 0.53 a | 3.21 ± 1.94 a | 1.20 |
PC (% of PL) | 27.23 ± 0.74 a | 31.04 ± 2.21 a | 0.14 |
SM (% of PL) | 26.70 ± 5.32 a | 25.20 ± 1.53 a | 0.06 |
Compounds | CC | EC | REE |
---|---|---|---|
Ketones | |||
2-Propanone | 420.38 ± 32.39 a | 381.05 ± 26.89 a | 9.03 |
2-Butanone | 27.65 ± 4.51 a | 25.16 ± 4.21 a | 9.01 |
2,3-Butanedione | 1271.54 ± 48.45 a | 1145.81 ± 56.38 a | 9.89 |
2-Heptanone | 562.30 ± 29.49 a | 512.18 ± 22.78 a | 8.91 |
3-Hydroxy-2-butanone | 186.12 ± 18.66 a | 248.70 ± 20.09 a | 3.34 |
Aldehydes | |||
3-Methylbutanal | 1121.42 ± 48.32 a | 1358. 96 ± 70.32 b | 21.18 |
Hexanal | 14.16 ± 6.50 a | 13.54 ± 4.09 a | 4.38 |
Nonanal | 4.55 ± 1.21 a | 4.95 ± 1.19 a | 8.79 |
Alcohols | |||
2-Propanol | 13.50 ± 3.56 a | 12.64 ± 3.70 a | 6.31 |
Ethanol | 4107.60 ± 62.30 a | 4685.30 ± 95.79 b | 14.07 |
2-Methyl-1-propanol | 49.18 ± 7.11 a | 45.66 ± 7.80 a | 7.16 |
2-Butanol | 29.31 ± 6.85 a | 26.69 ± 5.56 a | 8.94 |
2-Heptanol | 36.18 ± 6.04 a | 39.57 ± 6.12 a | 9.37 |
SCFFA | CC | EC | REE |
---|---|---|---|
Acetic | 92.91 ± 7.19 a | 95.06 ± 6.19 a | 2.31 |
Propionic | 35.28 ± 5.65 a | 38.36 ± 4.96 a | 8.73 |
Butyric | 17.10 ± 3.96 a | 17.32 ± 3.60 a | 1.29 |
Caproic | 13.85 ± 2.52 a | 13.96 ± 3.12 a | 0.79 |
Total | 159.14 ± 5.86 a | 164.70 ± 6.12 a | 3.49 |
Attribute | CC | EC | REE |
---|---|---|---|
Flavor | 3.32 ± 0.44 a | 3.07 ± 0.89 a | 7.53 |
Aroma | 3.59 ± 0.49 a | 3.28 ± 0.83 a | 8.63 |
Color | 3.69 ± 0.68 a | 3.49 ± 0.73 a | 5.42 |
Texture | 3.70 ± 0.57 a | 3.29 ± 0.72 b | 11.12 |
Acceptability | 3.45 ± 0.60 a | 3.22 ± 0.76 a | 6.65 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, L.; Fox, P.F.; Calvo, M.V.; Fontecha, J. Effect of Beta Cyclodextrin on the Reduction of Cholesterol in Ewe’s Milk Manchego Cheese. Molecules 2018, 23, 1789. https://doi.org/10.3390/molecules23071789
Alonso L, Fox PF, Calvo MV, Fontecha J. Effect of Beta Cyclodextrin on the Reduction of Cholesterol in Ewe’s Milk Manchego Cheese. Molecules. 2018; 23(7):1789. https://doi.org/10.3390/molecules23071789
Chicago/Turabian StyleAlonso, Leocadio, Patrick F. Fox, María V. Calvo, and Javier Fontecha. 2018. "Effect of Beta Cyclodextrin on the Reduction of Cholesterol in Ewe’s Milk Manchego Cheese" Molecules 23, no. 7: 1789. https://doi.org/10.3390/molecules23071789
APA StyleAlonso, L., Fox, P. F., Calvo, M. V., & Fontecha, J. (2018). Effect of Beta Cyclodextrin on the Reduction of Cholesterol in Ewe’s Milk Manchego Cheese. Molecules, 23(7), 1789. https://doi.org/10.3390/molecules23071789