One-Electron Reduction Potentials: Calibration of Theoretical Protocols for Morita–Baylis–Hillman Nitroaromatic Compounds in Aprotic Media
Abstract
:1. Introduction
2. Theoretical Fundamentals
2.1. Determination of Reduction Potentials from Cyclic Voltammetry
2.2. Theoretical Determination of Reduction Potentials
2.2.1. Direct Method
2.2.2. Indirect Method
3. Computational Details
4. Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dodd, M.C.; Stillman, W.B. The in vitro bacteriostatic action of some simple furan derivatives. J. Pharmacol. Exp. Ther. 1944, 82, 11–18. [Google Scholar]
- Hofmann, K.; Chen, C.; Bridgwater, A.; Axelrod, A.E. Furan and Tetrahydrofuran Derivatives. VII. The Synthesis and Biological Activity of a Number of Oxybiotin Homologs1. J. Am. Chem. Soc. 1947, 69, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Ward, W.C.; Dodd, M.C. A Comparative Study of the in Vitro Bacteriostatic Action of Some Simple Derivatives of Furan, Thiophene, and Pyrrole. J. Bacteriol. 1948, 56, 649–652. [Google Scholar] [PubMed]
- Raether, W.; Hänel, H. Nitroheterocyclic drugs with broad spectrum activity. Parasitol. Res. 2003, 90 (Suppl. 1), S19–S39. [Google Scholar] [CrossRef]
- Horrocks, S.M.; Jung, Y.S.; Huwe, J.K.; Harvey, R.B.; Ricke, S.C.; Carstens, G.E.; Callaway, T.R.; Anderson, R.C.; Ramlachan, N.; Nisbet, D.J. Effects of short-chain nitrocompounds against Campylobacter jejuni and Campylobacter coli in vitro. J. Food Sci. 2007, 72, M50–M55. [Google Scholar] [CrossRef] [PubMed]
- Rajan, Y.C.; Kanakam, C.C.; Selvam, S.P.; Murugesan, K. A study on the synthesis and biological and optical properties of methylene-dinaphthyl bis-chromanones: The utility of Baylis–Hillman adducts. Tetrahedron Lett. 2007, 48, 8562–8565. [Google Scholar] [CrossRef]
- Al-Zereini, W.; Schuhmann, I.; Laatsch, H.; Helmke, E.; Anke, H. New Aromatic Nitro Compounds from Salegentibacter sp. T436, an Arctic Sea Ice Bacterium: Taxonomy, Fermentation, Isolation and Biological Activities. J. Antibiot. 2007, 60, 301–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narender, P.; Srinivas, U.; Ravinder, M.; Rao, B.A.; Ramesh, C.; Harakishore, K.; Gangadasu, B.; Murthy, U.S.N.; Rao, V.J. Synthesis of multisubstituted quinolines from Baylis-Hillman adducts obtained from substituted 2-chloronicotinaldehydes and their antimicrobial activity. Bioorg. Med. Chem. 2006, 14, 4600–4609. [Google Scholar] [CrossRef] [PubMed]
- Kohn, L.K.; Pavam, C.H.; Veronese, D.; Coelho, F.; de Carvalho, J.E.; Almeida, W.P. Antiproliferative effect of Baylis-Hillman adducts and a new phthalide derivative on human tumor cell lines. Eur. J. Med. Chem. 2006, 41, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Mohan, R.; Rastogi, N.; Namboothiri, I.N.N.; Mobin, S.M.; Panda, D. Synthesis and evaluation of alpha-hydroxymethylated conjugated nitroalkenes for their anticancer activity: Inhibition of cell proliferation by targeting microtubules. Bioorg. Med. Chem. 2006, 14, 8073–8085. [Google Scholar] [CrossRef] [PubMed]
- Narender, P.; Srinivas, U.; Gangadasu, B.; Biswas, S.; Rao, V.J. Anti-malarial activity of Baylis-Hillman adducts from substituted 2-chloronicotinaldehydes. Bioorg. Med. Chem. Lett. 2005, 15, 5378–5381. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.O.M.A.; Pereira, V.L.P.; Muzitano, M.F.; Falcão, C.A.B.; Rossi-Bergmann, B.A.; Filho, E.B.; Vasconcellos, M.L.A.A. High selective leishmanicidal activity of 3-hydroxy-2-methylene-3-(4-bromophenyl)propanenitrile and analogous compounds. Eur. J. Med. Chem. 2007, 42, 99–102. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, T.P.; Lima-Júnior, C.G.; Silva, F.P.L.; Lopes, H.M.; Figueiredo, L.R.F.; Sousa, S.C.O.; Batista, G.N.; da Silva, T.G.; Silva, T.M.S.; de Oliveira, M.R.; et al. Improved synthesis of seven aromatic Baylis-Hillman adducts (BHA): Evaluation against Artemia salina Leach. and Leishmania chagasi. Eur. J. Med. Chem. 2009, 44, 1726–1730. [Google Scholar] [CrossRef] [PubMed]
- Sandes, J.M.; Borges, A.R.; Lima-Júnior, C.G.; Silva, F.P.L.; Carvalho, G.A.U.; Rocha, G.B.; Vasconcellos, M.L.A.A.; Figueiredo, R.C.B.Q. 3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile): A new highly active compound against epimastigote and trypomastigote form of Trypanosoma cruzi. Bioorg. Chem. 2010, 38, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Kappus, H. Overview of enzyme systems involved in bio-reduction of drugs and in redox cycling. Biochem. Pharmacol. 1986, 35, 1–6. [Google Scholar] [CrossRef]
- Viodé, C.; Bettache, N.; Cenas, N.; Krauth-Siegel, R.L.; Chauvière, G.; Bakalara, N.; Périé, J. Enzymatic reduction studies of nitroheterocycles. Biochem. Pharmacol. 1999, 57, 549–557. [Google Scholar] [CrossRef]
- Yan, X.-F.; Xiao, H.-M.; Gong, X.-D.; Ju, X.-H. Quantitative structure-activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus). Chemosphere 2005, 59, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Maya, J.D.; Cassels, B.K.; Iturriaga-Vásquez, P.; Ferreira, J.; Faúndez, M.; Galanti, N.; Ferreira, A.; Morello, A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Phys. Part A 2007, 146, 601–620. [Google Scholar] [CrossRef] [PubMed]
- Paula, F.R.; Serrano, S.H.P.; Tavares, L.C. Aspectos Mecanísticos da Bioatividade e Toxicidade de Nitrocompostos. Quim. Nova 2009, 32, 1013–1020. [Google Scholar] [CrossRef]
- Edwards, D.I. Reduction of nitroimidazoles in vitro and DNA damage. Biochem. Pharmacol. 1986, 35, 53–58. [Google Scholar] [CrossRef]
- Tocher, J.H. Reductive activation of nitroheterocyclic compounds. Gen. Pharmacol. 1997, 28, 485–487. [Google Scholar] [CrossRef]
- Maya, J.D.; Repetto, Y.; Agosín, M.; Ojeda, J.M.; Tellez, R.; Gaule, C.; Morello, A. Effects of nifurtimox and benznidazole upon glutathione and trypanothione content in epimastigote, trypomastigote and amastigote forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1997, 86, 101–106. [Google Scholar] [CrossRef]
- Maya, J.D.; Bollo, S.; Nuñez-Vergara, L.J.; Squella, J.A.; Repetto, Y.; Morello, A.; Périé, J.; Chauvière, G. Trypanosoma cruzi: Effect and mode of action of nitroimidazole and nitrofuran derivatives. Biochem. Pharmacol. 2003, 65, 999–1006. [Google Scholar] [CrossRef]
- Rozenski, J.; De Ranter, C.J.; Verplanken, H. Quantitative Structure-Activity Relationships for Antimicrobial Nitroheterocyclic Drugs. Quant. Struct. Act. Relatsh. 1995, 14, 134–141. [Google Scholar] [CrossRef]
- De Paiva, Y.G.; De Souza, A.A.; Lima-Júnior, C.G.; Silva, F.P.L.A.; Filho, E.B.; de Vasconcelos, C.C.; de Abreu, F.C.; Goulart, M.O.F.; Vasconcellos, M.L.A.A. Correlation between electrochemical and theoretical studies on the leishmanicidal activity of twelve Morita-Baylis-Hillman adducts. J. Braz. Chem. Soc. 2012, 23, 894–904. [Google Scholar] [CrossRef] [Green Version]
- Lima-Júnior, C.G.; Vasconcellos, M.L.A.A. Morita-Baylis-Hillman adducts: Biological activities and potentialities to the discovery of new cheaper drugs. Bioorg. Med. Chem. 2012, 20, 3954–3971. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.S.; Coelho, F.; Lima-Junior, C.; Vasconcellos, M. The Morita-Baylis-Hillman Reaction: Advances and Contributions from Brazilian Chemistry. Curr. Org. Synth. 2015, 12, 830–852. [Google Scholar] [CrossRef]
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2001; ISBN 0471043729. [Google Scholar]
- Skoog, D.A.; West, D.M.; Holler, F.J.; Crouch, S.R. Fundamentals of Analytical Chemistry, 9th ed.; Cengage Learning: Boston, MA, USA, 2013; ISBN 9780495558286. [Google Scholar]
- Junming, H.; Coote, M.L.; Cramer, C.J.; Truhlar, D.G. Theoretical Calculation of Reduction Potentials. In Organic Electrochemistry; CRC Press: Boca Raton, FL, USA, 2016; pp. 229–259. ISBN 9781420084023. [Google Scholar]
- Tavernelli, I.; Vuilleumier, R.; Sprik, M. Ab Initio Molecular Dynamics for Molecules with Variable Numbers of Electrons. Phys. Rev. Lett. 2002, 88, 213002. [Google Scholar] [CrossRef] [PubMed]
- Namazian, M.; Norouzi, P. Prediction of one-electron electrode potentials of some quinones in dimethylsulfoxide. J. Electroanal. Chem. 2004, 573, 49–53. [Google Scholar] [CrossRef]
- Winget, P.; Cramer, C.J.; Truhlar, D.G. Computation of equilibrium oxidation and reduction potentials for reversible and dissociative electron-transfer reactions in solution. Theor. Chem. Acc. 2004, 112, 217–227. [Google Scholar] [CrossRef]
- Blinco, J.P.; Hodgson, J.L.; Morrow, B.J.; Walker, J.R.; Will, G.D.; Coote, M.L.; Bottle, S.E. Experimental and Theoretical Studies of the Redox Potentials of Cyclic Nitroxides. J. Org. Chem. 2008, 73, 6763–6771. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-L.; Fu, Y. Theoretical study of reduction potentials of substituted flavins. J. Mol. Struct. 2008, 856, 112–118. [Google Scholar] [CrossRef]
- Roy, L.E.; Jakubikova, E.; Guthrie, M.G.; Batista, E.R. Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods? J. Phys. Chem. A 2009, 113, 6745–6750. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Roy, A.; Seidel, R.; Winter, B.; Bradforth, S.; Krylov, A.I. First-Principle Protocol for Calculating Ionization Energies and Redox Potentials of Solvated Molecules and Ions: Theory and Application to Aqueous Phenol and Phenolate. J. Phys. Chem. B 2012, 116, 7269–7280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, J.; Ertem, M.Z. Calculating Free Energy Changes in Continuum Solvation Models. J. Phys. Chem. B 2016, 120, 1319–1329. [Google Scholar] [CrossRef] [PubMed]
- Flores-Leonar, M.M.; Moreno-Esparza, R.; Ugalde-Saldívar, V.M.; Amador-Bedolla, C. Further insights in DFT calculations of redox potential for iron complexes: The ferrocenium/ferrocene system. Comput. Theor. Chem. 2017, 1099, 167–173. [Google Scholar] [CrossRef]
- Phillips, K.L.; Sandler, S.I.; Chiu, P.C. A Method to Calculate the One-Electron Reduction Potentials for Nitroaromatic Compounds Based on Gas-Phase Quantum Mechanics. J. Comput. Chem. 2011, 32, 226–239. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.F.; Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Use of Solution-Phase Vibrational Frequencies in Continuum Models for the Free Energy of Solvation. J. Phys. Chem. B 2011, 115, 14556–14562. [Google Scholar] [CrossRef] [PubMed]
- Liptak, M.D.; Shields, G.C. Accurate pKa Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-n Models Combined with CPCM Continuum Solvation Methods. J. Am. Chem. Soc. 2001, 123, 7314–7319. [Google Scholar] [CrossRef] [PubMed]
- Toth, A.M.; Liptak, M.D.; Phillips, D.L.; Shields, G.C. Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods. J. Chem. Phys. 2001, 114, 4595–4606. [Google Scholar] [CrossRef]
- Dutton, A.S.; Fukuto, J.M.; Houk, K.N. Theoretical reduction potentials for nitrogen oxides from CBS-QB3 energetics and (C)PCM solvation calculations. Inorg. Chem. 2005, 44, 4024–4028. [Google Scholar] [CrossRef] [PubMed]
- Zare, H.R.; Eslami, M.; Namazian, M.; Coote, M.L. Experimental and Theoretical Studies of Redox Reactions of o-Chloranil in Aqueous Solution. J. Phys. Chem. B 2009, 113, 8080–8085. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Coote, M.L.; Franco-Pérez, M.; Gómez-Baldaras, R. First-Principles Prediction of the pKas of Anti-inflammatory Oxicams. J. Phys. Chem. A 2010, 114, 11992–12003. [Google Scholar] [CrossRef] [PubMed]
- Guerard, J.J.; Tentscher, P.R.; Seijo, M.; Samuel Arey, J. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: Gas phase, linear solvent response, and non-linear response contributions. Phys. Chem. Chem. Phys. 2015, 17, 14811–14826. [Google Scholar] [CrossRef] [PubMed]
- Boesch, S.E.; Grafton, A.K.; Wheeler, R.A. Electron Affinities of Substituted p-Benzoquinones from Hybrid Hartree-Fock/Density-Functional Calculations. J. Phys. Chem. 1996, 100, 10083–10087. [Google Scholar] [CrossRef]
- Baik, M.-H.; Friesner, R.A. Computing Redox Potentials in Solution: Density Functional Theory as A Tool for Rational Design of Redox Agents. J. Phys. Chem. A 2002, 106, 7407–7412. [Google Scholar] [CrossRef]
- Namazian, M.; Kalantary-fotooh, F.; Noorbala, M.R.; Searles, D.J.; Coote, M.L. Møller-Plesset perturbation theory calculations of the pKa values for a range of carboxylic acids. J. Mol. Struct. 2006, 758, 275–278. [Google Scholar] [CrossRef]
- Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton. J. Phys. Chem. B 2006, 110, 16066–16081. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.; Klamt, A.; Coote, M.L. Comment on the Correct Use of Continuum Solvent Models. J. Phys. Chem. A 2010, 114, 13442–13444. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Liu, L.; Yu, H.-Z.; Wang, Y.-M.; Guo, Q.-X. Quantum-chemical predictions of absolute standard redox potentials of diverse organic molecules and free radicals in acetonitrile. J. Am. Chem. Soc. 2005, 127, 7227–7234. [Google Scholar] [CrossRef] [PubMed]
- Reiss, H.; Heller, A. The Absolute Potential of the Standard Hydrogen Electrode: A New Estimate. J. Phys. Chem. 1985, 89, 4207–4213. [Google Scholar] [CrossRef]
- Trasatti, S. The Absolute Electrode Potential: An Explanatory Note (Recommendations 1986). Int. Union Pure Appl. Chem. 1986, 58, 955–966. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Cramer, C.J.; Lewis, A.; Bumpus, J.A. Molecular Modeling of Environmentally Important Processes: Reduction Potentials. J. Chem. Educ. 2004, 84, 596–604. [Google Scholar] [CrossRef]
- Truhlar, D.G.; Cramer, C.J.; Lewis, A.; Bumpus, J.A. Molecular Modeling of Environmentally Important Processes: Reduction Potentials. J. Chem. Educ. 2007, 84, 934, (Corrections: J. Chem. Educ. 2004, 81, 596–603). [Google Scholar] [CrossRef]
- Fawcett, W.R. The ionic work function and its role in estimating absolute electrode potentials. Langmuir 2008, 24, 9868–9875. [Google Scholar] [CrossRef] [PubMed]
- Donald, W.A.; Leib, R.D.; O’Brien, J.T.; Bush, M.F.; Williams, E.R. Absolute standard hydrogen electrode potential measured by reduction of aqueous nanodrops in the gas phase. J. Am. Chem. Soc. 2008, 130, 3371–3381. [Google Scholar] [CrossRef] [PubMed]
- Bates, R.G.; Macaskill, J.B. Standard Potential of the Silver-Silver Chroride Electrode. Int. Union Pure Appl. Chem. 1978, 50, 1701–1706. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Manual; Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Namazian, M.; Norouzi, P.; Ranjbar, R. Prediction of electrode potentials of some quinone derivatives in acetonitrile. J. Mol. Struct. 2003, 625, 235–241. [Google Scholar] [CrossRef]
- Hill, J.G. Gaussian Basis Sets for Molecular Applications. Int. J. Quant. Chem. 2013, 113, 21–34. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Emel’yanova, N.; Sanina, N.; Krivenko, A.; Manzhos, R.; Bozhenko, K.; Aldoshin, S. Comparison of pure and hybrid DFT functionals for geometry optimization and calculation of redox potentials for iron nitrosyl complexes with “μ-SCN” bridging ligands. Theor. Chem. Acc. 2013, 132, 1316. [Google Scholar] [CrossRef]
- Jinnouchi, R.; Anderson, A.B. Aqueous and Surface Redox Potentials from Self-Consistently Determined Gibbs Energies. J. Phys. Chem. C 2008, 112, 8747–8750. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.A.; Burns, L.A.; Patkowski, K.; Sherrill, C.D. Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. J. Phys. Chem. Lett. 2016, 7, 2197–2203. [Google Scholar] [CrossRef] [PubMed]
- Guerard, J.J.; Arey, J.S. Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds. J. Chem. Theory Comput. 2013, 9, 5046–5058. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Ho, J.; Coote, M.L.; Cramer, C.J.; Truhlar, D.G. Computational electrochemistry: Prediction of liquid-phase reduction potentials. Phys. Chem. Chem. Phys. 2014, 16, 15068–15106. [Google Scholar] [CrossRef] [PubMed]
- Ho, J. Are thermodynamic cycles necessary for continuum solvent calculation of pKas and reduction potentials? Phys. Chem. Chem. Phys. 2015, 17, 2859–2868. [Google Scholar] [CrossRef] [PubMed]
BS1 a | BS2 | BS3 | BS4 | BS5 | BS6 | BS7 | BS8 | BS9 | |
---|---|---|---|---|---|---|---|---|---|
HF/C-PCM | |||||||||
eabs | 433 | 887 | 506 | 38 | 199 | 41 | 39 | 66 | 204 |
σabs | 79 | 36 | 62 | 23 | 36 | 22 | 24 | 29 | 38 |
HF/SMD | |||||||||
eabs | 65 | 478 | 869 | 410 | 186 | 408 | 400 | 431 | 581 |
σabs | 78 | 57 | 93 | 54 | 57 | 63 | 51 | 57 | 55 |
Est. | Theoretical: HF/C-PCM [V] | Experimental [V] | |||
---|---|---|---|---|---|
sBF1 a | sBF2 | sBF3 | Ecp1 | E0ref(SSC) | |
1a | −0.929 | −0.933 | −0.900 | −0.944 | −0.915 |
1b | −1.000 | −1.013 | −1.012 | −1.028 | −0.999 |
1c | −0.993 | −1.015 | −1.014 | −1.029 | −1.000 |
2a | −1.064 | −1.056 | −1.055 | −1.061 | −1.032 |
2b | −1.080 | −1.067 | −1.050 | −1.062 | −1.033 |
2c | −1.090 | −1.084 | −1.082 | −1.084 | −1.055 |
3a | −0.939 | −0.925 | −0.926 | −1.014 | −0.985 |
3b | −1.066 | −1.074 | −1.074 | −1.056 | −1.027 |
3c | −1.096 | −1.100 | −1.104 | −1.077 | −1.048 |
4a | −1.066 | −1.066 | −1.067 | −1.009 | −0.980 |
4b | −1.069 | −1.078 | −1.074 | −1.058 | −1.029 |
4c | −1.092 | −1.096 | −1.097 | −1.063 | −1.034 |
eabs | 38 | 41 | 39 | E0max–E0min | 140 |
σabs | 23 | 22 | 24 |
DF1 a | DF1+ | DF2 | DF2+ | DF3 | DF3+ | DF4 | DF4+ | DF5 | DF5+ | |
---|---|---|---|---|---|---|---|---|---|---|
6-31+G(d)/C-PCM | ||||||||||
eabs | 55 | 61 | 23 | 20 | 31 | 27 | 31 | 24 | 24 | 27 |
σabs | 26 | 24 | 20 | 16 | 22 | 21 | 23 | 16 | 14 | 17 |
6-31+G(d,p)/C-PCM | ||||||||||
eabs | 57 | 65 | 23 | 21 | 30 | 27 | 26 | 24 | 23 | 27 |
σabs | 24 | 24 | 18 | 13 | 21 | 19 | 17 | 14 | 14 | 19 |
6-31++G(d,p)/C-PCM | ||||||||||
eabs | 59 | 63 | 22 | 23 | 28 | 26 | 26 | 25 | 24 | 28 |
σabs | 24 | 25 | 17 | 15 | 21 | 18 | 18 | 14 | 14 | 22 |
Gas | B98+D3/6-311++G(3df,2pd)//B98+D3/6-311+G(d,p) | |||
SVT | HF/BF1 a | HF/BF2 | B98+D3/BF1 | B98+D3/BF2 |
eabs | 293 | 303 | 143 | 75 |
σabs | 106 | 116 | 55 | 34 |
Gas | M06-2X/6-311++G(3df,2pd)//M06-2X/6-311+G(d,p) | |||
SVT | HF/BF1 | HF/BF2 | M06-2X/BF1 | M06-2X/BF2 |
eabs | 248 | 221 | 69 | 16 |
σabs | 153 | 84 | 40 | 16 |
Est. | B98/Direct a | B98/Indirect b | M06-2X/Direct c | M06-2X/Indirect d | Exp. |
---|---|---|---|---|---|
1a | −0.931 | −0.990 | −0.922 | −0.974 | −0.915 |
1b | −0.982 | −1.041 | −0.960 | −0.982 | −0.999 |
1c | −0.965 | −1.006 | −1.008 | −1.003 | −1.000 |
2a | −1.014 | −1.087 | −0.991 | −1.026 | −1.032 |
2b | −1.030 | −1.091 | −1.010 | −1.059 | −1.033 |
2c | −1.065 | −1.170 | −1.041 | −1.054 | −1.055 |
3a | −0.984 | −1.051 | −0.969 | −0.988 | −0.985 |
3b | −1.035 | −1.098 | −0.976 | −1.006 | −1.027 |
3c | −1.075 | −1.144 | −1.025 | −1.072 | −1.048 |
4a | −1.025 | −1.086 | −0.950 | −0.995 | −0.980 |
4b | −1.041 | −1.104 | −1.011 | −1.041 | −1.029 |
4c | −1.081 | −1.166 | −1.021 | −1.044 | −1.034 |
eabs | 20 | 75 | 23 | 16 | --- |
σabs | 16 | 34 | 14 | 16 | --- |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francisco da Silva, A.; João da Silva Filho, A.; Vasconcellos, M.L.A.A.; Luís de Santana, O. One-Electron Reduction Potentials: Calibration of Theoretical Protocols for Morita–Baylis–Hillman Nitroaromatic Compounds in Aprotic Media. Molecules 2018, 23, 2129. https://doi.org/10.3390/molecules23092129
Francisco da Silva A, João da Silva Filho A, Vasconcellos MLAA, Luís de Santana O. One-Electron Reduction Potentials: Calibration of Theoretical Protocols for Morita–Baylis–Hillman Nitroaromatic Compounds in Aprotic Media. Molecules. 2018; 23(9):2129. https://doi.org/10.3390/molecules23092129
Chicago/Turabian StyleFrancisco da Silva, Amauri, Antonio João da Silva Filho, Mário L. A. A. Vasconcellos, and Otávio Luís de Santana. 2018. "One-Electron Reduction Potentials: Calibration of Theoretical Protocols for Morita–Baylis–Hillman Nitroaromatic Compounds in Aprotic Media" Molecules 23, no. 9: 2129. https://doi.org/10.3390/molecules23092129
APA StyleFrancisco da Silva, A., João da Silva Filho, A., Vasconcellos, M. L. A. A., & Luís de Santana, O. (2018). One-Electron Reduction Potentials: Calibration of Theoretical Protocols for Morita–Baylis–Hillman Nitroaromatic Compounds in Aprotic Media. Molecules, 23(9), 2129. https://doi.org/10.3390/molecules23092129