Characterization of Cultivar Differences of Blueberry Wines Using GC-QTOF-MS and Metabolic Profiling Methods
Abstract
:1. Introduction
2. Material and Methods
2.1. Fruit Harvest and Winemaking
2.2. Chemicals
2.3. Basic Parameter Measurements for Blueberries and Resulting Wines
2.4. Qualitative Analysis of Aroma Compounds
2.4.1. SPE-GC-QTOF-MS
2.4.2. SPME-GC-QTOF-MS
2.4.3. Compound Identification
2.4.4. GC-QTOF-MS Data Pre-Processing
2.4.5. Multivariate Data Analyses and Visualization
3. Results
3.1. Extraction Methods
3.2. Compound Identification
3.3. Principal Component Analysis
3.4. Marker Detection and Annotation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SPE | solid phase extraction |
SPME | solid phase microextraction |
GC-QTOF-MS | gas chromatography-quadrupole time of fight-mass spectrometry |
RI | Kovats retention index |
MS | mass spectrum |
PCA | principal component analysis |
OPLS-DA | orthogonal partial least squares discriminant analysis |
MBW | Misty blueberry wine; OBW, O’Neal blueberry wine |
References
- Zafra-Stone, S.; Yasmin, T.; Bagchi, M.; Chatterjee, A.; Vinson, J.A.; Bagchi, D. Berry anthocyanins as novel antioxidants in human health and disease prevention. Mol. Nutr. Food Res. 2007, 51, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W.; McDonald, J.; Donner, H. Anthocyanins, phenolics, and antioxidant capacity of processed lowbush blueberry products. J. Food Sci. 2000, 65, 390–393. [Google Scholar] [CrossRef]
- Seeram, N.P. Berry fruits: Compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J. Agric. Food Chem. 2008, 56, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Adams, L.S.; Zhang, Y.; Lee, R.; Sand, D.; Scheuller, H.S.; Heber, D. Blackberry, black raspberry, blueberry, cranberry, red raspberry, and strawberry extracts inhibit growth and stimulate apoptosis of human cancer cells in vitro. J. Agric. Food Chem. 2006, 54, 9329–9339. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, T. Dietary anthocyanin-rich plants: Biochemical basis and recent progress in health benefits studies. Mol. Nutr. Food Res. 2012, 56, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, H. The current status and future of the blueberry industry in China. Acta Hortic. 2009, 810, 45–456. [Google Scholar] [CrossRef]
- Johnson, M.H.; Gonzalez de Mejia, E. Comparison of chemical composition and antioxidant capacity of commercially available blueberry and blackberry wines in Illinois. J. Food Sci. 2012, 77, C141–C148. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.H.; Lucius, A.; Meyer, T.; Gonzalez de Mejia, E. Cultivar evaluation and effect of fermentation on antioxidant capacity and in vitro inhibition of α-amylase and α-glucosidase by highbush blueberry (Vaccinium corombosum). J. Agric. Food Chem. 2011, 59, 8923–8930. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Zhang, L.L.; Yue, X.Y.; Liang, J.; Jiang, J.; Gao, X.L.; Yue, P.X. Optimization of ultrasound-assisted extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium ashei) wine pomace. Food Chem. 2016, 204, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.V.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. J. Food Compos. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Gilbert, J.L.; Schwieterman, M.L.; Colquhoun, T.A.; Clark, D.G.; Olmstead, J.W. Potential for increasing southern highbush blueberry flavor acceptance by breeding for major volatile components. Hortscience 2013, 48, 835–843. [Google Scholar]
- Gachons, C.P.D.; Takatoshi Tominaga, A.; Dubourdieu, D. Measuring the aromatic potential of Vitis vinifera L. Cv. Sauvignon Blanc grapes by assaying S-cysteine conjugates, precursors of the volatile thiols responsible for their varietal aroma. J. Agric. Food Chem. 2000, 48, 3387–3391. [Google Scholar] [CrossRef]
- Loscos, N.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V. Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions. J. Agric. Food Chem. 2007, 55, 6674–6684. [Google Scholar] [CrossRef] [PubMed]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Varietal Aroma; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Du, X.; Rouseff, R. Aroma active volatiles in four southern highbush blueberry cultivars determined by gas chromatography–olfactometry (GC-O) and gas chromatography–mass spectrometry (GC-MS). J. Agric. Food Chem. 2014, 62, 4537–4543. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Plotto, A.; Song, M.; Olmstead, J.; Rouseff, R. Volatile composition of four southern highbush blueberry cultivars and effect of growing location and harvest date. J. Agric. Food Chem. 2011, 59, 8347–8357. [Google Scholar] [CrossRef] [PubMed]
- Horvat, R.J.; Senter, S.D. Comparison of the volatile constituents from rabbiteye blueberries (Vaccinium ashei) during ripening. J. Food Sci 1985, 50, 429–431. [Google Scholar] [CrossRef]
- Sánchezpalomo, E.; Trujillo, M.; García, A.R.; Viñas González, M.A. Aroma profile of malbec red wines from la mancha region: Chemical and sensory characterization. Food Res. Int. 2017, 100, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Amanpour, A.; Sonmezdag, A.S.; Kelebek, H.; Selli, S. Gc-ms-olfactometric characterization of the most aroma-active components in a representative aromatic extract from iranian saffron (Crocus sativus L.). Food Chem. 2015, 182, 251–256. [Google Scholar] [CrossRef] [PubMed]
- López, P.; Batlle, R.; Nerín, C.; Cacho, J.; Ferreira, V. Use of new generation poly (styrene-divinylbenzene) resins for gas-phase trapping-thermal desorption: Application to the retention of seven volatile organic compounds. J. Chromatogr. A 2007, 1139, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Qian, Y.; He, F.; Li, H.; Qian, M. Comparative characterization of aroma compounds in merlot wine by lichrolut-en-based aroma extract dilution analysis and odor activity value. Chemosens. Percept. 2017, 10, 149–160. [Google Scholar] [CrossRef]
- Souza Silveira, C.D.; Martendal, E.; Soldi, V.; Carasek, E. Application of solid-phase microextraction and gas chromatography-mass spectrometry for the determination of chlorophenols in leather. J. Sep. Sci. 2015, 35, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lu, C.; Zhu, F.; Jiang, R.; Ouyang, G. Preparation of c18 composite solid-phase microextraction fiber and its application to the determination of organochlorine pesticides in water samples. Anal. Chim. Acta 2015, 873, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Chmiel, T.; Kupska, M.; Wardencki, W.; Namieśnik, J. Application of response surface methodology to optimize solid-phase microextraction procedure for chromatographic determination of aroma-active monoterpenes in berries. Food Chem. 2017, 221, 1041–1056. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, L.V.; Fraser, P.; Stewart, D. Metabolomics: A second-generation platform for crop and food analysis. Bioanalysis 2011, 3, 1143–1159. [Google Scholar] [CrossRef] [PubMed]
- Davids, W. Metabolomics: Applications to food science and nutrition research. Trends Food Sci. Technol. 2008, 19, 482–493. [Google Scholar]
- Roullier-Gall, C.; Witting, M.; Tziotis, D.; Ruf, A.; Gougeon, R.D.; Schmitt-Kopplin, P. Integrating analytical resolutions in non-targeted wine metabolomics. Tetrahedron 2015, 71, 2983–2990. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Blackman, J.W.; Clark, A.C.; Grantpreece, P. Wine metabolomics: Objective measures of sensory properties of semillon from GC-MS profiles. J. Agric. Food Chem. 2013, 61, 11957–11967. [Google Scholar] [CrossRef] [PubMed]
- Arapitsas, P.; Ugliano, M.; Perenzoni, D.; Angeli, A.; Pangrazzi, P.; Mattivi, F. Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen. J. Chromatogr. A 2016, 1429, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Ku, K.M.; Choi, J.N.; Kim, J.; Kim, J.K.; Yoo, L.G.; Lee, S.J.; Lee, C.H. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J. Agric. Food Chem. 2010, 58, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Masson, J.; Liberto, E.; Beolor, J.C.; Brevard, H.; Bicchi, C.; Rubiolo, P. Oxygenated heterocyclic compounds to differentiate citrus spp. essential oils through metabolomic strategies. Food Chem. 2016, 206, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Álvarezfernández, M.A.; Cerezo, A.B.; Cañeterodríguez, A.M.; Troncoso, A.M.; Garcíaparrilla, M.C. Composition of nonanthocyanin polyphenols in alcoholic-fermented strawberry products using lc–ms (qtrap), high-resolution ms (uhplc-orbitrap-ms), lc-dad, and antioxidant activity. J. Agric. Food Chem. 2015, 63, 2041–2051. [Google Scholar] [CrossRef] [PubMed]
- Gallo, M.; Ferranti, P. The evolution of analytical chemistry methods in foodomics. J. Chromatogr. A 2016, 1428, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Puiggròs, F.; Solà, R.; Bladé, C.; Salvadó, M.J.; Arola, L. Nutritional biomarkers and foodomic methodologies for qualitative and quantitative analysis of bioactive ingredients in dietary intervention studies. J. Chromatogr. A 2011, 1218, 7399–7414. [Google Scholar] [CrossRef] [PubMed]
- Dukes, B.C.; Butzke, C.E. Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/n-acetyl-l-cysteine spectrophotometric assay. Am. J. Enol. Vitic. 1998, 49, 125–134. [Google Scholar]
- Pluskal, T.; Castillo, S.; Villar-Briones, A.; Orešič, M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 2010, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Wishart, D.S. Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis. Curr. Protoc. Bioinform. 2016, 55, 14101–141091. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, S.; Johansson, E.; Sjöström, L.; Mellerowicz, E.J.; Edlund, U.; Shockcor, J.P.; Chem, A. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal. Chem. 2008, 80, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Sáenznavajas, M.P.; Campo, E.; Avizcuri, J.M.; Valentin, D.; Fernándezzurbano, P.; Ferreira, V. Contribution of non-volatile and aroma fractions to in-mouth sensory properties of red wines: Wine reconstitution strategies and sensory sorting task. Anal. Chim. Acta 2012, 732, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Mateo-Vivaracho, L.; Zapata, J.N.; Cacho, J.; Ferreira, V. Analysis, occurrence, and potential sensory significance of five polyfunctional mercaptans in white wines. J. Agric. Food Chem. 2010, 58, 10184–10194. [Google Scholar] [CrossRef] [PubMed]
- Gamero, A.; Wesselink, W.; Jong, C.D. Comparison of the sensitivity of different aroma extraction techniques in combination with gas chromatography–mass spectrometry to detect minor aroma compounds in wine. J. Chromatogr. A 2013, 1272, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Andujar-Ortiz, I.; Moreno-Arribas, M.; Martín-Álvarez, P.; Pozo-Bayón, M. Analytical performance of three commonly used extraction methods for the gas chromatography-mass spectrometry analysis of wine volatile compounds. J. Chromatogr. A 2009, 1216, 7351–7357. [Google Scholar] [CrossRef] [PubMed]
- Ducki, S.; Miralles-Garcia, J.; Zumbé, A.; Tornero, A.; Storey, D.M. Evaluation of solid-phase micro-extraction coupled to gas chromatography–mass spectrometry for the headspace analysis of volatile compounds in cocoa products. Talanta 2008, 74, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Egea, M.B.; Pereiranetto, A.B.; Cacho, J.; Ferreira, V.; Lopez, R. Comparative analysis of aroma compounds and sensorial features of strawberry and lemon guavas (psidium cattleianum sabine). Food Chem. 2014, 164, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Marais, J. Effect of grape temperature and yeast strain on sauvignon blanc wine aroma composition and quality. S. Afr. J. Enol. Vitic. 2001, 22, 47–51. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, J.; Niu, Y.; Liu, Q.; Liu, J. Verification of key odorants in rose oil by gas chromatography-olfactometry/aroma extract dilution analysis, odour activity value and aroma recombination. Nat. Prod. Res. 2017, 31, 2294–2302. [Google Scholar] [CrossRef] [PubMed]
- González-Robles, I.W.; Cook, D.J. The impact of maturation on concentrations of key odour active compounds which determine the aroma of tequila. J. Inst. Brew. 2016, 122, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Rapp, A.; Mandery, H. Wine aroma. Experientia 1986, 42, 873–884. [Google Scholar] [CrossRef]
- Carrau, F.; Medina, K.; Farina, L.; Boido, E.; Henschke, P.; Dellacassa, E. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 2008, 8, 1196–1207. [Google Scholar] [CrossRef] [PubMed]
- Smid, E.J.; Kleerebezem, M. Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci. Technol. 2014, 5, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Suomalainen, H.; Lehtonen, M. The production of aroma compounds by yeast. J. Inst. Brew. 2013, 85, 149–156. [Google Scholar] [CrossRef]
- Hirvi, T.; Honkanen, E. The aroma of blueberries. J. Sci. Food Agric. 1983, 34, 992–996. [Google Scholar] [CrossRef]
- Southwell, I.A.; Russell, M.F.; Davies, N.W. Detecting traces of methyl eugenol in essential oils: Tea tree oil, a case study. Flavour. Frag. J. 2011, 26, 336–340. [Google Scholar]
- Tan, K.H.; Nishida, R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. J. Insect Sci. 2012, 12, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Koeduka, T.; Fridman, E.; Gang, D.R.; Vassão, D.G.; Jackson, B.L.; Kish, C.M.; Noel, J.P. Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. USA 2006, 103, 10128–10133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gang, D.R.; Lavid, N.; Zubieta, C.; Chen, F.; Beuerle, T.; Lewinsohn, E.; Pichersky, E. Characterization of phenylpropene O-methyltransferases from sweet basil facile change of substrate specificity and convergent evolution within a plant O-methyltransferase family. Plant Cell 2002, 14, 505–519. [Google Scholar] [CrossRef] [PubMed]
- Dellacassa, E.; Trenchs, O.; Fariña, L.; Debernardis, F.; Perez, G.; Boido, E.; Carrau, F. Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora. Int. J. Food Microbiol. 2016, 241, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Maggioa, A.; Rossellia, S.; Bruno, M. Essential oils and pure volatile compounds as potential drugs in Alzheimer’s disease therapy: An updated review of the literature. Curr. Pharm. Des. 2016, 22, 4011–4027. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, G.; Qian, S.; Yang, Z.; Chen, X.; Chen, J.; Guo, J. Cerebrovascular protection of β-asarone in Alzheimer’s disease rats: A behavioral, cerebral blood flow, biochemical and genic study. J. Ethnopharmacol. 2012, 144, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Baumes, R.; Wirth, J.; Bureau, S.; Gunata, Y.; Razungles, A. Biogeneration of C13-norisoprenoid compounds: Experiments supportive for an apo-carotenoid pathway in grapevines. Anal. Chim. Acta 2002, 458, 3–14. [Google Scholar] [CrossRef]
- Karppinen, K.; Zoratti, L.; Sarala, M.; Carvalho, E.; Hirsimäki, J.; Mentula, H.; Jaakola, L. Carotenoid metabolism during bilberry (Vaccinium myrtillus L.) fruit development under different light conditions is regulated by biosynthesis and degradation. BMC Plant Biol. 2016, 16, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Qian, M.C. Aroma potential in early and late maturity Pinot noir grape evaluated by aroma extract dilution analysis. J. Agric. Food Chem. 2015, 64, 443–450. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are available from the authors. |
Sample | Parameters | O’Neal | Misty |
---|---|---|---|
Berry | TSS | 11.4 ± 0.4 | 11.2 ± 0.3 |
pH | 3.33 ± 0.03 | 3.25 ± 0.06 | |
Berry Water Content (%) | 86 ± 0 | 87 ± 0 | |
Berry Density (g/cm3) | 1.0 ± 0.0 | 1.0 ± 0.0 | |
Yeast Assimilable Nitrogen (mg/L) | 138 ± 2 | 204 ± 5 | |
Wine | Alcohol Content (%) | 10.5 ± 0.2 | 9.8 ± 0.1 |
pH | 3.05 ± 0.02 | 2.94 ± 0.03 |
No. | Compound | Exact Mass (Da) | RI b | LRI c | Identification d | SPE | SPME | ||
---|---|---|---|---|---|---|---|---|---|
Misty | O’Neal | Misty | O’Neal | ||||||
Alcohols | |||||||||
1 | ethanol | 46.042 | 730 | 668 | MS e, RIL f | +++ | +++ | ||
2 | 1-pentanol | 88.089 | 771 | 766 | MS, RIL | +++ | +++ | ||
3 | 2-Methylbutan-1-ol | 88.089 | 773 | 779 | MS, RIL | t i | t | ||
4 | (Z)-3-hexenol | 86.073 | 856 | 858 | S g, MS, RI h | + | + | ||
5 | (E)-2-hexenol | 86.073 | 865 | 853 | S, MS, RIL | t | t | ||
6 | 2-ethyl-1-hexanol | 130.136 | 1025 | 1032 | MS, RIL | + | + | ||
7 | benzyl alcohol | 108.058 | 1029 | 1039 | S, MS, RIL | ++ | + | + | + |
8 | phenylethyl alcohol | 122.073 | 1111 | 1111 | S, MS, RIL | +++ | +++ | +++ | +++ |
9 | benzenepropanol | 136.089 | 1227 | 1231 | MS, RIL | ++ | t | ||
10 | cuminic alcohol | 150.104 | 1286 | 1284 | S, MS, RIL | + | ++ | ||
11 | cinnamyl alcohol | 134.073 | 1301 | 1312 | MS, RIL | ++ | t | t | t |
12 | 3-hydroxy-benzeneethanol | 138.068 | 1422 | - | MS | ++ | +++ | ||
13 | homovanillyl alcohol | 168.079 | 1527 | 1530 | MS, RIL | + | + | ||
Esters | |||||||||
14 | ethyl acetate | 88.052 | 742 | 628 | S, MS, RI | +++ | +++ | ||
15 | methyl butanoate | 102.068 | 768 | 724 | S, MS, RIL | + | + | ||
16 | isobutyl acetate | 116.084 | 794 | 776 | S, MS, RIL | + | + | ||
17 | methyl isovalerate | 116.084 | 795 | 765 | MS, RIL | + | ++ | ||
18 | ethyl butanoate | 116.084 | 811 | 804 | S, MS, RIL | + | + | ||
19 | ethyl 2-methylbutanoate | 130.099 | 851 | 849 | S, MS, RI | + | + | ||
20 | ethyl 3-methylbutanoate | 130.099 | 854 | 853 | MS, RI | + | ++ | ||
21 | isoamyl acetate | 130.099 | 875 | 876 | S, MS, RIL | ++ | ++ | ||
22 | ethyl hexanoate | 144.115 | 998 | 1002 | MS, RIL | + | + | + | + |
23 | methyl benzoate | 136.052 | 1090 | 1103 | S, MS, RIL | ++ | ++ | ||
24 | ethyl benzoate | 150.068 | 1168 | 1185 | S, MS, RIL | + | ++ | ++ | +++ |
25 | phenylethyl formate | 150.068 | 1178 | 1176 | MS, RIL | + | + | ||
26 | diethyl succinate | 174.089 | 1183 | 1167 | S, MS, RIL | ++ | + | +++ | +++ |
27 | methyl salicylate | 152.047 | 1189 | 1198 | S, MS, RIL | + | ++ | ||
28 | ethyl octanoate | 172.146 | 1198 | 1198 | S, MS, RIL | ++ | + | +++ | ++ |
29 | ethyl decanoate | 200.178 | 1395 | 1398 | S, MS, RIL | + | + | ||
30 | methyl vanillate | 182.058 | 1513 | 1525 | S, MS, RIL | ++ | + | ||
31 | ethyl 4-hydroxyphenylacetate | 180.079 | 1550 | 1559 | MS, RIL | + | t | ||
32 | benzoic acid, 3,4,5-trimethoxy-, methyl ester | 226.084 | 1718 | - | MS | + | |||
Ketones | |||||||||
33 | 3-hydroxy-2-butanone | 88.0524 | 742 | 718 | MS, RIL | +++ | +++ | ||
Acids | |||||||||
34 | isovaleric acid | 102.068 | 865 | 877 | MS, RIL | ++ | + | ||
35 | hexanoic acid | 116.084 | 991 | 982 | MS, RIL | + | + | ||
36 | decanoic acid | 172.146 | 1368 | 1373 | S, MS, RIL | + | + | + | + |
37 | homovanillic acid | 182.058 | 1639 | 1633 | MS, RIL | + | + | ||
Aldehyde | |||||||||
38 | benzaldehyde | 106.042 | 953 | 960 | S, MS, RIL | + | +++ | ||
39 | 2,4-dimethyl benzaldehyde | 134.073 | 1208 | 1181 | MS, RIL | + | + | ||
40 | syringaldehyde | 182.058 | 1653 | 1667 | MS, RIL | t | t | ||
Terpenes | |||||||||
41 | eucalyptol | 154.136 | 1024 | 1030 | S, MS, RI | + | t | ||
42 | β-phellandrene | 136.125 | 1068 | 1053 | MS, RIL | + | t | ||
43 | terpinolene | 136.125 | 1098 | 1087 | S, MS, RI | + | + | +++ | ++ |
44 | linalool | 154.136 | 1099 | 1096 | S, MS, RI | ++ | ++ | +++ | ++ |
45 | borneol | 154.136 | 1160 | 1162 | S, MS, RI | + | ++ | ||
46 | α-terpineol | 154.136 | 1187 | 1186 | S, MS, RI | + | ++ | + | ++ |
47 | myrtenol | 152.120 | 1191 | 1194 | S, MS, RI | + | ++ | ||
48 | (E)-carveol | 152.121 | 1216 | 1217 | S, MS, RI | + | + | + | + |
49 | β-citronellol | 156.151 | 1125 | 1233 | S, MS, RI | ++ | + | ||
50 | p-menth-8-en-3-ol | 154.136 | 1336 | - | MS | + | t | t | t |
51 | p-mentha-1(7),8(10)-dien-9-ol | 152.120 | 1340 | - | MS | ++ | + | ||
52 | (E)-sobrerol | 170.131 | 1374 | 1374 | MS, RIL | + | t | ||
Thiols | |||||||||
53 | methionol | 135.230 | 978 | 978 | MS, RIL | ++ | + | ||
54 | dihydro-2-methyl-3(2H)-thiophenone | 116.030 | 985 | 994 | MS, RIL | + | + | + | + |
Phenols and derivatives | |||||||||
55 | p-cresol | 108.058 | 1075 | 1075 | S, MS, RIL | t | ++ | ||
56 | 4-vinylguaiacol | 150.068 | 1309 | 1323 | S,MS, RIL | + | ++ | ||
57 | eugenol | 164.084 | 1354 | 1355 | S, MS, RI | + | + | ++ | +++ |
58 | methyl eugenol | 178.099 | 1402 | 1404 | MS, RIL | ++ | + | ||
59 | (Z)- or (E)-isoeugenol | 164.084 | 1445 | 1438/1454 | MS, RIL | + | + | + | + |
60 | methyl isoeugenol | 178.099 | 1495 | 1492 | MS, RIL | + | + | ||
Norisoprenoids | |||||||||
61 | 4-(2,2,4-trimethylcyclohex-3-enyl)but-3-en-2-one | 192.151 | 1216 | - | MS | + | + | ||
62 | β-ionol | 194.167 | 1426 | 1428 | MS, RIL | + | |||
63 | 4-(2,6,6-trimethyl-1,3-cyclohexadien-1-yl)-2-butanone | 196.183 | 1428 | 1424 | MS, RIL | + | |||
64 | dihydro-β-ionol | 196.183 | 1442 | 1449 | MS, RIL | + | |||
65 | 3-hydroxy-7,8-dihydro-β-ionol | 208.146 | 1686 | 1683 | MS, RIL | + | |||
Miscellaneous | |||||||||
66 | unknown 1 | - | 1227 | - | + | + | ++ | + | |
67 | unknown 2 | - | 1253 | - | + | ++ | |||
68 | unknown 3 | - | 1359 | - | +++ | + | |||
69 | vanillin | 152.047 | 1392 | 1410 | S, MS, RIL | t | t | + | + |
70 | acetovanillone | 166.063 | 1480 | 1490 | MS, RIL | + | + | t | t |
71 | (E)-asarone | 208.110 | 1556 | 1561 | S, MS, RIL | +++ | + | ||
72 | 2,6-dimethoxybenzoquinone | 168.042 | 1561 | - | MS | + | + | ||
73 | (Z)-asarone | 208.110 | 1649 | 1646 | S, MS, RIL | +++ | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, F.; Cheng, K.; Gao, J.; Pan, S. Characterization of Cultivar Differences of Blueberry Wines Using GC-QTOF-MS and Metabolic Profiling Methods. Molecules 2018, 23, 2376. https://doi.org/10.3390/molecules23092376
Yuan F, Cheng K, Gao J, Pan S. Characterization of Cultivar Differences of Blueberry Wines Using GC-QTOF-MS and Metabolic Profiling Methods. Molecules. 2018; 23(9):2376. https://doi.org/10.3390/molecules23092376
Chicago/Turabian StyleYuan, Fang, Ke Cheng, Jihui Gao, and Siyi Pan. 2018. "Characterization of Cultivar Differences of Blueberry Wines Using GC-QTOF-MS and Metabolic Profiling Methods" Molecules 23, no. 9: 2376. https://doi.org/10.3390/molecules23092376
APA StyleYuan, F., Cheng, K., Gao, J., & Pan, S. (2018). Characterization of Cultivar Differences of Blueberry Wines Using GC-QTOF-MS and Metabolic Profiling Methods. Molecules, 23(9), 2376. https://doi.org/10.3390/molecules23092376