Instrumentation for Vibrational Circular Dichroism Spectroscopy: Method Comparison and Newer Developments
Abstract
:1. Introduction
2. Common Features of VCD Instruments
3. Dispersive VCD Specifics
4. FT-VCD Design
5. Comparison of Methods
6. More Recent Developments
7. Spectral Analyses with Theoretical Modeling
Acknowledgments
Conflicts of Interest
Abbreviations
AAT | atomic axial tensor |
APT | atomic polar tensor |
CD | circular dichroism |
DC | direct current (non-oscillating signal) |
DFT | density functional theory |
FF | force field |
FT | Fourier transform |
IR | infrared |
InSb | indium antimonide |
MCT | mercury cadmium telluride |
MVCD | magnetic vibrational circular dichroism |
ORD | optical rotatory dispersion |
PEM | photo elastic modulator |
PMT | photo multiplier tube |
QCL | quantum cascade laser |
QM | quantum mechanical |
S/N | signal to noise ratio |
UV | ultraviolet |
VCD | vibrational circular dichroism |
References
- Djerassi, C. Optical Rotatory Dispersion Applications to Organic Chemistry; McGraw-Hill Book Co., Inc.: New York, NY, USA, 1960. [Google Scholar]
- Lowry, T.M. Optical Rotatory Power; Dover: New York, NY, USA; Longman Green: Harlow, UK, 1964. [Google Scholar]
- Nafie, L.A. The Emergence and Exploration of Vibrational Optical Activity. Appl. Spectrosc. 1982, 36, 489–495. [Google Scholar] [CrossRef]
- Stephens, P.J.; Lowe, M.A. Vibrational Circular Dichroism. Ann. Rev. Phys. Chem. 1985, 36, 213–241. [Google Scholar] [CrossRef]
- Nafie, L.A. Vibrational Optical Activity: Principles and Applications; John Wiley: New York, NY, USA, 2011. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Cheeseman, J.R. VCD Spectroscopy for Organic Chemists; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2012. [Google Scholar]
- Walnut, T.H.; Nafie, L.A. Infrared Absorption and the Born-Oppenheimer Approximation II. Vibrational Circular Dichroism. J. Chem. Phys. 1977, 67, 1501–1510. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J. Continuum Solvation Models in Chemical Physics: From Theory to Applications; Mennucci, B., Cammi, R., Eds.; John Wiley & Sons: Chichester, UK, 2007; pp. 180–205. [Google Scholar]
- Stephens, P.J. Vibrational Circular Dichroism. J. Phys. Chem. 1985, 89, 748. [Google Scholar] [CrossRef]
- Stephens, P.J.; Ashvar, C.S.; Devlin, F.J.; Cheeseman, J.R.; Frisch, M.J. Ab Initio Calculation of Atomic Axial Tensors and Vibrational Rotational Strengths Using Density Functional Theory. Mol. Phys. 1996, 89, 579–594. [Google Scholar] [CrossRef]
- Nafie, L.A.; Cheng, J.C.; Stephens, P.J. Vibrational circular dichroism of 2,2,2-trifluoro-1-phenylethanol. J. Am. Chem. Soc. 1975, 97, 3842–3843. [Google Scholar] [CrossRef]
- Nafie, L.A.; Keiderling, T.A.; Stephens, P.J. Vibrational Circular Dichroism. J. Am. Chem. Soc. 1976, 98, 2715–2723. [Google Scholar] [CrossRef]
- Chabay, I.; Holzwarth, G. Infrared Circular Dichroism and Linear Dichroism Spectrophotometer. Appl. Opt. 1975, 14, 454–459. [Google Scholar] [CrossRef] [PubMed]
- Holzwarth, G.; Hsu, E.C.; Mosher, H.S.; Faulkner, T.R.; Moscowitz, A. Infrared circular dichroism of carbon-hydrogen and carbon-deuterium stretching modes. Observations. J. Am. Chem. Soc. 1974, 96, 251. [Google Scholar] [CrossRef]
- Osborne, G.A.; Cheng, J.C.; Stephens, P.J. A Near-infrared circular dichroism and magnetic circular dichroism instrument. Rev. Sci. Instrum. 1973, 44, 10–15. [Google Scholar] [CrossRef]
- Johnson, W.C., Jr. Circular Dichroism and the Conformational Analysis of Biomolecules; Fasman, G.D., Ed.; Plenum Press: New York, NY, USA, 1996; pp. 635–652. [Google Scholar]
- Castiglioni, E.; Albertini, P.; Abbate, S. Evaluation of instrumental errors built in circular dichroism spectrometers. Chirality 2010, 22, E142–E148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiderling, T.A. Practical Fourier Transform Infrared Spectroscopy: Industrial and Laboratory Chemical Analysis; Ferraro, J.R., Krishnan, K., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 203–284. [Google Scholar]
- Nafie, L.A.; Diem, M. Optical Activity in Vibrational Transitions: Vibrational Circular Dichroism and Raman Optical Activity. Acc. Chem. Res. 1979, 12, 296–302. [Google Scholar] [CrossRef]
- Keiderling, T.A. Vibrational Circular Dichroism. Appl. Spectrosc. Rev. 1981, 17, 189–226. [Google Scholar] [CrossRef]
- Su, C.N.; Heintz, V.; Keiderling, T.A. Vibrational Circular Dichroism in the Mid-Infrared. Chem. Phys Lett. 1981, 73, 157–159. [Google Scholar] [CrossRef]
- Keiderling, T.A. Infrared and Raman Spectroscopy of Biological Materials; Gremlich, H.-U., Yan, B., Eds.; Dekker: New York, NY, USA, 2001; Volume 24, pp. 55–100. [Google Scholar]
- Xie, P.; Diem, M. Measurement of dispersive vibrational CD: Signal optimization and artifact reduction. Appl. Spectrosc. 1996, 50, 675–680. [Google Scholar] [CrossRef]
- Diem, M.; Roberts, G.M.; Lee, O.; Barlow, O. Design and Performance of an Optimized Dispersive Infrared Dichrograph. Appl. Spectrosc. 1988, 42, 20–27. [Google Scholar] [CrossRef]
- Diem, M. Analytical Applications of Circular Dichroism; Purdie, N., Brittain, H.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; Volume 14, pp. 91–130. [Google Scholar]
- Devlin, R.; Stephens, P.J. Vibrational Circular Dichroism Measurement in the Frequency Range of 800 to 650 cm−1. Appl. Spectrosc. 1987, 41, 1142–1144. [Google Scholar] [CrossRef]
- Nafie, L.A.; Citra, M.; Ragunathan, N.; Yu, G.-S.; Che, D. Instrumental methods of infrared and Raman vibrational optical activity. Tech. Instrum. Anal. Chem. 1994, 14, 53–89. [Google Scholar]
- Nafie, L.A.; Dukor, R.K.; Roy, J.R.; Rilling, A.; Cao, X.L.; Buijs, H. Observation of fourier transform near-infrared vibrational circular dichroism to 6150 cm−1. Appl. Spectrosc. 2003, 57, 1245–1249. [Google Scholar] [CrossRef] [PubMed]
- Nafie, L.A.; Buijs, H.; Rilling, A.; Cao, X.; Dukor, R.K. Dual source fourier transform polarization modulation spectroscopy: An improved method for the measurement of circular and linear dichroism. Appl. Spectrosc. 2004, 58, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Freedman, T.B.; Hapanowicz, R.; Nafie, L.A. Comparison of step-scan and rapid-scan approaches to the measurement of mid-infrared Fourier transform vibrational circular dichroism. Appl. Spectrosc. 1997, 51, 504–507. [Google Scholar] [CrossRef]
- Cao, X.; Shah, R.D.; Dukor, R.K.; Guo, C.; Freedman, T.B.; Nafie, L.A. Extension of fourier transform vibrational circular dichroism into the near-infrared region: Continuous spectral coverage from 800 to 10000 cm−1. Appl. Spectrosc. 2004, 58, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Nafie, L.A.; Diem, M.; Vidrine, D.W. Fourier Trasform Infrared Vibrational Circular Dichrosim. J. Am. Chem. Soc. 1979, 101, 496–498. [Google Scholar] [CrossRef]
- Nafie, L.A.; Vidrine, D.W. Double Modulation Fourier Transform Spectroscopy; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Lipp, E.D.; Nafie, L.A. Fourier Transform Vibrational Circular Dichroism: Improvements in Methodology and Mid-Infrared Spectral Results. Appl. Spectrosc. 1984, 38, 20–25. [Google Scholar] [CrossRef]
- Nafie, L.A. Polarization Modulation FTIR Spectroscopy; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Urbanova, M.; Setnicka, V.; Volka, K. Measurements of concentration dependence and enantiomeric purity of terpene solutions as a test of a new commercial VCD spectrometer. Chirality 2000, 12, 199–203. [Google Scholar] [CrossRef]
- Urbanova, M.; Setnicka, V.; Volka, K. Vibrational circular dichroism spectroscopy as a novel tool for structure analysis. Chemicke Listy 2002, 96, 301–304. [Google Scholar]
- Malon, P.; Keiderling, T.A. Spinning quarter-wave plate polarization modulator: Test of feasibility for vibrational circular dichroism measurements. Appl. Spectrosc. 1996, 50, 669–674. [Google Scholar] [CrossRef]
- Malon, P.; Keiderling, T.A. Fourier Transform Infrared Circular Dichroism and the Absorption Artifact Problem. Experimental Observations. Appl. Spectrosc. 1988, 42, 32–38. [Google Scholar] [CrossRef]
- Polavarapu, P.L. Fourier Transform Infrared Spectroscopy; Ferraro, J.R., Basile, L., Eds.; Academic Press: New York, NY, USA, 1985; Volume 4, pp. 61–96. [Google Scholar]
- Borics, A.; Murphy, R.F.; Lovas, S. Fourier transform vibrational circular dichroism as a decisive tool for conformational studies of peptides containing tyrosyl residue. Biopolymers 2002, 72, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Buffeteau, T.; Desbat, B. Polarization modulation FT-IR spectroscopy: A novel optic method for studying molecules orientation and conformation. Actualite Chimique 2003, 1, 18–25. [Google Scholar]
- Keiderling, T.A.; Kubelka, J.; Hilario, J. Vibrational Spectroscopy of Polymers and Biological Systems; Braiman, M., Gregoriou, V., Eds.; Taylor & Francis: Atlanta, GA, USA, 2006; pp. 253–324. [Google Scholar]
- Polavarapu, P.L. Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem. Rec. 2007, 7, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Polavarapu, P.L.; He, J. Chiral analysis using mid-IR vibrational CD spectroscopy. Anal. Chem. 2004, 76, 61A–67A. [Google Scholar] [CrossRef]
- Nafie, L.A. Vibrational circular dichroism: A new tool for the solution-state determination of the structure and absolute configuration of chiral natural product molecules. Nat. Prod. Commun. 2008, 3, 451–466. [Google Scholar] [CrossRef]
- Nafie, L.A. Infrared and Raman Vibrational Optical Activity: Theoretical and Experimental Aspects. Ann. Rev. Phys. Chem. 1997, 48, 357–386. [Google Scholar] [CrossRef] [PubMed]
- Keiderling, T.A.; Pancoska, P. Biomolecular Spectroscopy, Part B; Hester, R.E., Clarke, R.J.H., Eds.; Wiley: Chichester, UK, 1993; Volume 21, pp. 267–315. [Google Scholar]
- Keiderling, T.A.; Lakhani, A. Comprehensive Chiroptical Spectroscopy; Berova, N., Woody, R.W., Polavarapu, P., Nakanishi, K., Eds.; John Wiley Publishers: New York, NY, USA, 2012; Volume 2, pp. 707–758. [Google Scholar]
- Yang, G.; Xu, Y.C. Electronic and Magnetic Properties of Chiral Molecules and Supramolecular Architectures; Topics in Current Chemistry; Naaman, R., Beratan, D., Waldeck, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 298, pp. 189–236. [Google Scholar]
- Lakhani, A.; Malon, P.; Keiderling, T.A. Comparison of Vibrational Circular Dichroism Instruments, Development of a New Dispersive VCD. Appl. Spectrosc. 2009, 63, 775–785. [Google Scholar] [CrossRef] [PubMed]
- Keiderling, T.A.; Lakhani, A. Mini review: Instrumentation for vibrational circular dichroism spectroscopy, still a role for dispersive instruments. Chirality 2018, 30, 238–253. [Google Scholar] [CrossRef] [PubMed]
- Yoo, R.K.; Wang, B.; Croatto, P.V.; Keiderling, T.A. Method for the determination fo the zero path difference position in a Fourier transform infrared spectrometer. Application to magnetic vibrational circular dichroism. Appl. Spectrosc. 1991, 45, 231–236. [Google Scholar] [CrossRef]
- Wang, B.; Keiderling, T.A. Observations on the measurement of vibrational circular dichroism with rapid-scan and step-scan FT-IR techniques. Appl. Spectrosc. 1995, 49, 1347–1355. [Google Scholar] [CrossRef]
- Su, C.N.; Keiderling, T.A. The Conformation of Dimethyl Tartrate in Solution. Vibrational Circular Dichroism Results. J. Am. Chem. Soc. 1980, 102, 511–515. [Google Scholar] [CrossRef]
- Hoffmann, G.G.; Schrader, B.; Snatzke, G. Photoelastic modulator for the mid-IR range down to 33 μm with inexpensive and simple control electronics. Rev. Sci. Instrum. 1987, 58, 1675–1677. [Google Scholar] [CrossRef]
- Diem, M.; Gotkin, P.J.; Kupfer, J.M.; Ñafie, L.A. Vibrational Circular Dichroism in Amino Acids and Peptides, 2. Simple Alanyl Peptides. J. Am. Chem. Soc. 1978, 100, 5644–5650. [Google Scholar] [CrossRef]
- Diem, M.; Khouri, H.; Nafie, L.A. Vibrational Circular Dichroism in Amino Acids and Peptides. 3. Solution and Solid Phase Spectra of Serine and Alanine. J. Am. Chem. Soc. 1979, 101, 6829–6837. [Google Scholar] [CrossRef]
- Diem, M.; Photos, E.; Khouri, H.; Nafie, L.A. Vibrational Circular Dichroism in Amino Acids and Peptides. 3. Solution- and Solid-Phase Spectra of Alanine and Serine. J. Am. Chem.Soc. 1979, 101, 6829–6837. [Google Scholar] [CrossRef]
- Stephens, P.J.; Clark, R. Optical Activity and Chiral Discrimination; NATO Advanced Study Institutes Series (Series C—Mathematical and Physical Sciences); Mason, S.F., Ed.; Springer: Dordrecht, The Netherlands, 1979. [Google Scholar]
- Yoder, G.; Polese, A.; Silva, R.A.G.D.; Formaggio, F.; Crisma, M.; Broxterman, Q.B.; Kamphuis, J.; Toniolo, C.; Keiderling, T.A. Conformational characterization of terminally blocked l-(α-Me)Val homopeptides using vibrational and electronic circular dichroism. 310-helical stabilization by peptide-peptide interaction. J. Am. Chem. Soc. 1997, 119, 10278–10285. [Google Scholar] [CrossRef]
- Keiderling, T.A.; Stephens, P.J. Vibrational circular dichroism of overtone and combination bands. Chem. Phys. Lett. 1976, 41, 46–48. [Google Scholar] [CrossRef]
- Abbate, S.; Longhi, G.; Boiadjiev, S.; Lightner, D.A.; Bertucci, C.; Salvadori, P. Analysis of vibrational circular dichroism data in the near infrared and visible range. Enantiomer 1998, 3, 337–347. [Google Scholar]
- Castiglioni, E.; Lebon, F.; Longhi, G.; Abbate, S. Vibrational Circular Dichroism in the Near Infrared: Instrumental Developments and Applications. Enantiomer 2002, 7, 161–173. [Google Scholar] [CrossRef] [PubMed]
- McCoy, C.A.; de Haseth, J.A. Phase Correction of Vibrational Circular Dichronic Features. Appl. Spectrosc. 1988, 42, 336–341. [Google Scholar] [CrossRef]
- Marcott, C.; Dowrey, A.E.; Noda, I. Instrumental Aspects of Dynamic Two-Dimensional Infrared Spectroscopy. Appl. Spectrosc. 1993, 47, 1324–1328. [Google Scholar] [CrossRef]
- Bormett, R.W.; Smith, G.D.; Asher, S.A.; Barrick, D.; Kurz, D.M. Vibrational circular dichroism measurements of ligand vibrations in haem and non-haem metalloenzymes. Faraday Discuss. 1994, 99, 327–339. [Google Scholar] [CrossRef]
- Niemeyer, M.; Hoffmann, G.G.; Schrader, B. New Application of the Step-Scan Lock-in Technique to Vibrational Circular Dichroism. J. Mol. Struct. 1995, 349, 451–454. [Google Scholar] [CrossRef]
- Malon, P.; Keiderling, T.A. Theoretical simulation of a polarization modulator based on mechanically rotating a polarizing element. Appl. Opt. 1997, 36, 6141–6148. [Google Scholar] [CrossRef]
- Hilario, J.; Drapcho, D.; Curbelo, R.; Keiderling, T.A. Polarization modulation Fourier transform infrared spectroscopy with digital signal processing: Comparison of vibrational circular dichroism methods. Appl. Spectrosc. 2001, 55, 1435–1447. [Google Scholar] [CrossRef]
- Nafie, L.A.; Dukor, R.K. The Physical Chemistry of Chirality; ACS Symposium Series; Hicks, J.M., Ed.; Oxford University Press: New York, NY, USA, 2002; Volume 810, pp. 79–88. [Google Scholar]
- Tsankov, D.; Eggimann, T.; Wieser, H. Alternative Design for Improved FT-IR/VCD Capabilities. Appl. Spectrosc. 1995, 49, 132–138. [Google Scholar] [CrossRef]
- Buffeteau, T.; Lagugné-Labarthet, F.; Sourisseau, C. Vibrational Circular Dichroism in General Anisotropic Thin Solid Films: Measurement and Theoretical Approach. Appl. Spectrosc. 2005, 59, 732–745. [Google Scholar] [CrossRef] [PubMed]
- Nafie, L.A.; Diem, M. Theory of High Frequency Differential Interferometry: Application to Infrared Circular and Linear Dichroism via Fourier Transform Spectroscopy. Appl. Spectrosc. 1979, 33, 130–135. [Google Scholar] [CrossRef]
- Polavarapu, P.L.; Zhao, C. Vibrational circular dichroism: A new spectroscopic tool for biomolecular structural determination. J. Anal. Chem. 2000, 366, 727–734. [Google Scholar] [CrossRef]
- Long, F.; Freedman, T.B.; Tague, T.J.; Nafie, L.A. Step-scan Fourier transform vibrational circular dichroism measurements in the vibrational region above 2000 cm−1. Appl. Spectrosc. 1997, 51, 508–511. [Google Scholar] [CrossRef]
- Drapcho, D.L.; Curbelo, R.; Jiang, E.Y.; Crocombe, R.A.; McCarthy, W.J. Digital Signal Processing for Step-Scan Fourier Transform Infrared Photoacoustic Spectroscopy. Appl. Spectrosc. 1997, 51, 453–460. [Google Scholar] [CrossRef]
- Pancoska, P.; Yasui, S.C.; Keiderling, T.A. Enhanced sensitivity to conformation in various proteins. Vibrational circular dichroism results. Biochemistry 1989, 28, 5917–5923. [Google Scholar] [CrossRef] [PubMed]
- Nafie, L.A. Dual Polarization Modulation: A Real-Time, Spectral-Multiplex Separation of Circular Dichroism from Linear Birefringence Spectral Intensities. Appl. Spectrosc. 2000, 54, 1634–1645. [Google Scholar] [CrossRef]
- Baumruk, V.; Pancoska, P.; Keiderling, T.A. Predictions of secondary structure using statistical analyses of electronic and vibrational circular dichroism and Fourier transform infrared spectra of proteins in H2O. J. Mol. Biol. 1996, 259, 774–791. [Google Scholar] [CrossRef] [PubMed]
- Baumruk, V.; Keiderling, T.A. Vibrational circular dichroism of proteins in H2O solution. J. Am. Chem. Soc. 1993, 115, 6939–6942. [Google Scholar] [CrossRef]
- Yoder, G.; Pancoska, P.; Keiderling, T.A. Characterization of alanine-rich peptides, Ac-(AAKAA)n-GY-NH2 (n = 1–4) using vibrational circular dichroism and Fourier transform infrared. Conformational determination and thermal unfolding. Biochemistry 1997, 36, 15123–15133. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Freeman, T.B.; Dukor, R.K.; Nafie, L.A. Near-Infrared and Mid-Infrared Fourier Transform Vibrational Circular Dichroism of Proteins in Aqueous Solution. Appl. Spectrosc. 2010, 64, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Chickos, J.S.; Annamalai, A.; Keiderling, T.A. Thermolysis of (1R,2R)-1,2-Dideuteriocyclobutane. An application of Vibrational Circular Dichroism to Kinetic Analysis. J. Am. Chem. Soc. 1986, 108, 4398–4402. [Google Scholar] [CrossRef]
- Annamalai, A.; Keiderling, T.A.; Chickos, J.S. Vibrational Circular Dichroism of Trans-1,2-dideuterio cyclobutane. Experimental and Calculational Results in the Mid Infrared. J. Am. Chem. Soc. 1985, 107, 2285–2291. [Google Scholar] [CrossRef]
- Polavarapu, P.L. Rotational—Vibrational circular dichroism. Chem. Phys. Lett. 1989, 161, 485–490. [Google Scholar] [CrossRef]
- Polavarapu, P.L. Rotational optical activity. J. Chem. Phys. 1987, 86, 1136–1139. [Google Scholar] [CrossRef]
- Cameron, R.P.; Götte, J.B.; Barnett, S.M. Chiral rotational spectroscopy. Phys. Rev. A 2016, 94, 032505. [Google Scholar] [CrossRef]
- Sen, A.C.; Keiderling, T.A. Vibrational Circular Dichroism of Polypeptides. III. Film Studies of Several alpha-Helical and beta-Sheet Polypeptides. Biopolymers 1984, 23, 1533–1545. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, U.; Keiderling, T.A.; Bonora, G.M.; Toniolo, C. Vibrational circular dichroism of polypeptides. Film and solution studies of beta-sheet forming homooligopeptides. J. Am. Chem. Soc. 1986, 108, 2431–2437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Polavarapu, P.L. Vibrational circular dichroism of matrix-assisted amino acid films in the mid-infrared region. Appl. Spectrosc. 2006, 60, 378–385. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, G.; Polavarapu, P.L. Structural transition during thermal denaturation of collagen in the solution and film states. Chirality 2009, 21, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Gautier, C.; Bürgi, T. Vibrational Circular Dichroism of Adsorbed Molecules: BINAS on Gold Nanoparticles. J. Phys. Chem. C 2010, 114, 15897–15902. [Google Scholar] [CrossRef]
- Dolamic, I.; Varnholt, B.; Bürgi, T. Chirality transfer from gold nanocluster to adsorbate evidenced by vibrational circular dichroism. Nat. Commun. 2015, 6, 7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Cao, X.; Mak, M.; Sadik, A.; Walkner, C.; Freedman, T.B.; Lednev, I.K.; Dukor, R.; Nafie, L.A. Vibrational circular dichroism shows unusual sensitivity to protein fibril formation and development in solution. J. Am. Chem. Soc. 2007, 129, 12364–12365. [Google Scholar] [CrossRef] [PubMed]
- Kurouski, D.; Dukor, R.K.; Lu, X.; Nafie, L.A.; Lednev, I.K. Normal and Reversed Supramolecular Chirality of Insulin Fibrils Probed by Vibrational Circular Dichrosim at the Protofilament Level of Fibril Structure. Biophys. J. 2012, 103, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Kurouski, D.; Lombardi, R.A.; Dukor, R.K.; Lednev, I.K.; Nafie, L.A. Direct observation and pH control of reversed supramolecular chirality in insulin fibrils by vibrational circular dichroism. Chem. Commun. 2010, 46, 7154–7156. [Google Scholar] [CrossRef] [PubMed]
- Tobias, F.; Keiderling, T.A. Role of Side Chains in Beta-Sheet Self-Assembly into Peptide Fibrils. IR and VCD Spectroscopic Studies of Glutamic Acid-Containing Peptides. Langmuir 2016, 32, 4653–4661. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Babenko, V.; Dzwolak, W.; Keiderling, T.A. Dimethyl Sulfoxide Induced Destabilization and Disassembly of Various Strctural Variants of Insulin Fibrils Monitored by Vibrational Circular Dichroism. Biochemistry 2015, 54, 7193–7202. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Welch, W.; Kubelka, J.; Keiderling, T.A. Insight into the packing pattern of beta2 fibrils: A model study of glutamic acid rich oligomers with 13C isotopic edited vibraitonal spectroscopy. Biomacromolecules 2013, 14, 3880–3891. [Google Scholar] [CrossRef] [PubMed]
- Kurouski, D.; Dukor, R.K.; Lu, X.; Nafie, L.A.; Lednev, I.K. Spontaneous inter-conversion of insulin fibril chirality. Chem. Commun. 2012, 48, 2837–2839. [Google Scholar] [CrossRef] [PubMed]
- Fulara, A.; Lakhani, A.; Wójcik, S.; Nieznańska, H.; Keiderling, T.A.; Dzwolak, W. Spiral Superstructures of Amyloid-Like Fibrils of Polyglutamic Acid: An Infrared Absorption and Vibrational Circular Dichroism Study. J. Phys. Chem. B 2011, 115, 11010–11016. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Keiderling, T.A. Structural Rearrangement from Oligomer to Fibril Detected with FRET in a Designed Amphiphilic Peptide. ChemBioChem 2017, 18, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Measy, T.J.; Schweitzer-Stenner, R. Vibrational circular dichroism as a probe of fibrillogenesis: The origin of the anomalous intensity enhancement of amyloid-like fibrils. J. Am. Chem. Soc. 2011, 133, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Torii, H.; Sato, H. Intermediate length-scale chirality related to the vibrational circular dichroism intensity enhancement upon fibril formation in a gelation process. Phys. Chem. Chem. Phys. 2018, 20, 14992–14996. [Google Scholar] [CrossRef] [PubMed]
- Pazderková, M.; Pazderka, T.; Shanmugasundaram, M.; Dukor, R.; Lednev, I.; Nafie, L. Origin of enhanced VCD in amyloid fibril spectra: Effect of deuteriation and pH. Chirality 2017, 29, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Schlosser, D.W.; Devlin, F.; Jalkanen, K.; Stephens, P.J. Vibrational Circular Dichroism of Matrix-Isolated Molecules. Chem. Phys. Lett. 1982, 88, 286–291. [Google Scholar] [CrossRef]
- Henderson, D.O.; Polavarapu, P.L. Fourier transform infrared vibrational circular dichroism of matrix-isolated molecules. J. Am. Chem. Soc. 1986, 108, 7110–7111. [Google Scholar] [CrossRef]
- György Tarczay, G.; Gábor Magyarfalvi, G.; Elemér Vass, E. Towards the Determination of the Absolute Configuration of Complex Molecular Systems: Matrix Isolation Vibrational Circular Dichroism Study of (R)-2-Amino-1-propanol. Angew. Chem. Int. Ed. 2006, 45, 1775–1777. [Google Scholar] [CrossRef] [PubMed]
- Merten, C.; Xu, Y. Matrix Isolation Vibrational Circular Dichroism Spectroscopy of 3-Butyn-2-ol and Its Binary Aggregates. ChemPhysChem 2013, 14, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Merten, C.; Xu, Y. Chirality Transfer in a Methyl Lactate−Ammonia Complex Observed by Matrix-Isolation Vibrational Circular Dichroism Spectroscopy. Angew. Chem. Int. Ed. 2013, 52, 2073–2076. [Google Scholar] [CrossRef] [PubMed]
- Pollok, C.H.; Tim Riesebeck, T.; Merten, C. Photoisomerization of a Chiral Imine Molecular Switch Followed by Matrix-Isolation VCD Spectroscopy. Angew. Chem. Int. Ed. 2017, 56, 1925. [Google Scholar] [CrossRef] [PubMed]
- Keiderling, T.A. Observation of Magnetic Vibrational Circular Dichroism. J. Chem. Phys. 1981, 75, 3639–3641. [Google Scholar] [CrossRef]
- Devine, T.R.; Keiderling, T.A. Magnetic Vibrational Circular Dichroism of Methyl Halides in Solution. J. Chem. Phys. 1983, 79, 5796–5801. [Google Scholar] [CrossRef]
- Devine, T.R.; Keiderling, T.A. Magnetic Vibrational Circular Dichroism of Benzene and 1,3,5-trisubstituted Derivatives. J. Phys. Chem. 1984, 88, 390–394. [Google Scholar] [CrossRef]
- Devine, T.R.; Keiderling, T.A. Magnetic Vibrational Circular Dichroism of Metal Hexacarbonyls. J. Chem. Phys. 1985, 83, 3749–3754. [Google Scholar] [CrossRef]
- Croatto, P.V.; Keiderling, T.A. Magnetic Vibrational Circular Dichroism of Tetraphenylporphine and Metallo-tetraphenyl Porphyrins. Chem. Phys. Lett. 1988, 144, 455–560. [Google Scholar] [CrossRef]
- Wang, B.; Yoo, R.K.; Croatto, P.V.; Keiderling, T.A. Rotationally Resolved Magnetic Vibrational Circular Dichroism of Methane. Chem. Phys. Lett. 1991, 180, 339–343. [Google Scholar] [CrossRef]
- Tam, C.N.; Wang, B.; Keiderling, T.A.; Golden, W.G. Magnetic Vibrational Circular Dichroism of C60 in the 1430 and 1183 cm−1 t1u Modes. Chem. Phys. Lett. 1992, 198, 123–127. [Google Scholar] [CrossRef]
- Wang, B.; Croatto, P.V.; Yoo, R.K.; Keiderling, T.A. Magnetic Vibrational Circular Dichroism of Ammonia with Rotational Resolution. J. Phys. Chem. 1992, 96, 2422–2429. [Google Scholar] [CrossRef]
- Wang, B.; Tam, C.N.; Keiderling, T.A. Vibrational Zeeman Effect for the ν4 Mode of Haloforms (HCX3). Determined by Magnetic Vibrational Circular Dichroism. Phys. Rev. Lett. 1993, 71, 979–982. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Keiderling, T.A. Measurements of the Rotational and Vibrational Zeeman Effect of Methane by Magnetic Vibrational Circular Dichroism. J. Phys. Chem. 1994, 98, 3957–3963. [Google Scholar] [CrossRef]
- Wang, B.; Keiderling, T.A. Measurement of the Vibrational Zeeman Effect for HCF3 using Magnetic Vibrational Circular Dichroism. J. Chem. Phys. 1994, 101, 905–911. [Google Scholar] [CrossRef]
- Tam, C.N.; Keiderling, T.A. Direct Measurement of the Rotational g-Value in the Ground State of Acetylene by Magnetic Vibrational Circular Dichroism. Chem. Phys. Lett. 1995, 243, 55–58. [Google Scholar] [CrossRef]
- Wang, B.; Bour, P.; Keiderling, T.A. Rotationally Resolved Magnetic Vibrational Circular Dichroism of the Paramagnetic Molecule NO. Phys. Chem. Chem. Phys. 2012, 14, 9586–9593. [Google Scholar] [CrossRef] [PubMed]
- Keiderling, T.A. Petr Bouř Theory of Molecular Vibrational Zeeman Effects as Measured with Circular Dichroism. Phys. Rev. Lett. 2018, 121, 073201. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Cao, X.; Nafie, L.A.; Freedman, T.B. Ab Initio VCD Calculation of a Transition-Metal Containing Molecule and a New Intensity Enhancement Mechanism for VCD. J. Am. Chem. Soc. 2001, 123, 11320–11321. [Google Scholar] [CrossRef] [PubMed]
- Polavarapu, P.L.; Gang-Chi Chen, G.-C. Polarization-Division Interferometry: Far-Infrared Dichroism. Appl. Spectrosc. 1994, 48, 1410–1418. [Google Scholar] [CrossRef]
- Preda, F.; Peri, A.; Rehault, J.; Dutta, B.; Helbing, J.; Cerullo, G.; Polli, D. Time-domain measurement of optical activity by an ultrastable common-path interferometer. Opt. Lett. 2018, 43, 1882–1885. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.C.; Nafie, L.A.; Stephens, P.J. Polarization scrambling using a photoelastic modulator. Application to circular dichroism measurement. J. Opt. Soc. Am. 1975, 65, 1031–1035. [Google Scholar] [CrossRef]
- Nafie, L.A.; Dukor, R.K. The Physical Chemistry of Chirality; ACS Symposium Series; Hicks, J.M., Ed.; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Hug, W. Virtual Enantiomers as the Solution of Optical Activity’s Deterministic Offset Problem. Appl. Spectrosc. 2003, 57, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Dukor, R.K.; Nafie, L.A. Reduction of linear birefringence in vibrational circular dichroism measurement: Use of a rotating half-wave plate. Theor. Chem. Acc. 2008, 119, 69–79. [Google Scholar] [CrossRef]
- Lüdeke, S.; Pfeifer, M.; Fischer, P. Quantum-Cascade Laser-Based Vibrational Circular Dichroism. J. Am. Chem. Soc. 2011, 133, 5704–5707. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, M.; Lüdeke, S.; Fischer, P. Mid-IR laser-based vibrational optical activity. SPIE Proc. 2012, 8219, 821906. [Google Scholar]
- Rüther, A.; Pfeifer, M.; Lórenz-Fonfría, V.A.; Lüdeke, S. pH Titration Monitored by Quantum Cascade Laser-Based Vibrational Circular Dichroism. J. Phys. Chem. B 2014, 118, 3941–3949. [Google Scholar] [CrossRef] [PubMed]
- Helbing, J.; Bonmarin, M. Time-Resolved Chiral Vibrational Spectroscopy. Chimia 2009, 63, 128–133. [Google Scholar] [CrossRef] [Green Version]
- Bonmarin, M.; Helbing, J. Polarization Control of Ultrashort Mid-IR Laser Pulses for Transient Vibrational Circular Dichroism Measurements. Chirality 2009, 21, E298–E306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helbing, J.; Bonmarin, M. Vibrational circular dichroism signal enhancement using self-heterodyning with elliptically polarized laser pulses. J. Chem. Phys. 2009, 131, 174507. [Google Scholar] [CrossRef] [PubMed]
- Bonmarin, M.; Helbing, J. A picosecond time-resolved vibrational circular dichroism spectrometer. Opt. Lett. 2008, 33, 2086–2088. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.; Cho, J.-H.; Cho, M. Infrared Optical Activity: Electric Field Approaches in Time Domain. Acc. Chem. Res. 2010, 43, 1527–1536. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.; Kim, S.-S.; Cho, M. Multichannel array detection of vibrational optical activity free-induction-decay. J. Anal. Sci. Technol. 2010, 1, 147–151. [Google Scholar] [CrossRef]
- Rhee, H.; June, Y.-G.; Kim, Z.H.; Jeon, S.-J.; Cho, M. Phase sensitive detection of vibrational optical activity free-induction-decay: Vibrational CD and ORD. J. Opt. Soc. Am. B 2009, 26, 1008–1017. [Google Scholar] [CrossRef]
- Rhee, H.; June, Y.-G.; Lee, J.-S.; Lee, K.-K.; Ha, J.-H.; Kim, Z.H.; Jeon, S.J.; Cho, M. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 2009, 458, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Rhee, H.; Kim, S.-S.; Jeon, S.-J.; Cho, M. Femtosecond measurements of vibrational circular dichroism and optical rotatory dispersion spectra. ChemPhysChem 2009, 10, 2209–2211. [Google Scholar] [CrossRef] [PubMed]
- Holzwarth, G.; Chabay, I. Optical Activity of Vibrational Transitions: A Coupled Oscillator Model. J. Chem. Phys. 1972, 57, 1632–1635. [Google Scholar] [CrossRef]
- Narayanan, U.; Keiderling, T.A. Coupled oscillator interpretation of the vibrational circular dichroism of several dicarbonyl-containing steroids. J. Am. Chem. Soc. 1983, 105, 6406–6410. [Google Scholar] [CrossRef]
- Gulotta, M.; Goss, D.J.; Diem, M. IR vibrational CD in model deoxyoligonucleotides: Observation of the B→Z phase transition and extended coupled oscillator intensity calculations. Biopolymers 1989, 28, 2047–2058. [Google Scholar] [CrossRef] [PubMed]
- Amos, R.D.; Handy, N.C.; Jalkanen, K.J.; Stephens, P.J. Efficient Calculation of Vibrational Magnetic Dipole Transition Moments and Rotational Strengths. Chem. Phys. Lett. 1987, 133, 21–26. [Google Scholar] [CrossRef]
- Amos, R.D.; Jalkanen, K.J.; Stephens, P.J. Alternative Formalism for the Calculation of Atomic Polar Tensors and Atomic Axial Tensors. J. Phys. Chem. 1988, 92, 5571–5575. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Jalkanen, K.J.; Kawiecki, R.W.; Stephens, P.J.; Amos, R.D. Basis Set and Gauge Dependence of Ab Initio Calculations of Vibrational Rotational Strengths. J. Phys. Chem. 1990, 94, 7040–7055. [Google Scholar] [CrossRef]
- Bak, K.L.; Devlin, F.J.; Ashvar, C.S.; Taylor, P.R.; Frisch, M.J.; Stephens, P.J. Ab Initio Calculation of Vibrational Circular Dichroism Spectra Using Gauge-Invariant Atomic Orbitals. J. Phys. Chem. 1995, 99, 14918–14922. [Google Scholar] [CrossRef]
- Bour, P.; Sopkova, J.; Bednarova, L.; Malon, P.; Keiderling, T.A. Transfer of molecular property tensors in Cartesian coordinates: A new algorithm for simulation of vibrational spectra. J. Comput. Chem. 1997, 18, 646–659. [Google Scholar] [CrossRef]
- Kessler, J.; Andrushchenko, V.; Kapitan, J.; Bour, P. Insight into vibrational circular dichroism of proteins by density functional modeling. Phys. Chem. Chem. Phys. 2018, 20, 4926–4935. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.A.G.D.; Kubelka, J.; Decatur, S.M.; Bour, P.; Keiderling, T.A. Site-Specific Conformational Determination in Thermal Unfolding Studies of Helical Peptides using Vibrational Circular Dichroism with Isotopic Substitution. Proc. Natl. Acad. Sci. USA 2000, 97, 8318–8323. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Kubelka, J.; Barber-Armstrong, W.; Silva, R.A.G.D.; Decatur, S.M.; Keiderling, T.A. Nature of Vibrational Coupling in Helical Peptides: An Isotopic Labeling Study. J. Am. Chem. Soc. 2004, 126, 2346–2354. [Google Scholar] [CrossRef] [PubMed]
- Chi, H.; Lakhani, A.; Roy, A.; Nakaema, M.; Keiderling, T.A. Inter-residue Coupling and Unfolding Thermodynamics of Model PPII Helices Using 13C Isotopic Labeling. J. Phys. Chem. B 2010, 114, 12744–12753. [Google Scholar] [CrossRef] [PubMed]
- Keiderling, T.A. Sensing site-specific structural characteristics and chirality using vibrational circular dichroism of isotope labeled peptides. Chirality 2017, 29, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Lakhani, A.; De Poli, M.; Roy, A.; Nakaema, M.; Formaggio, F.; Toniolo, C.; Keiderling, T.A. Experimental and Theoretical Spectroscopic Study of 310-Helical Peptides Using Isotopic Labeling to Evaluate Vibrational Coupling. J. Phys. Chem. B 2011, 115, 6252–6264. [Google Scholar] [CrossRef] [PubMed]
- Kubelka, J.; Huang, R.; Keiderling, T.A. Solvent Effects on IR and VCD Spectra of Helical Peptides: Insights from Ab Initio Spectral Simulations with Explicit Water. J. Phys. Chem. B 2005, 109, 8231–8243. [Google Scholar] [CrossRef] [PubMed]
- Bour, P.; Keiderling, T.A. Empirical modeling of the peptide amide I band IR intensity in water solution. J. Chem. Phys. 2003, 119, 11253–11262. [Google Scholar] [CrossRef]
- Bour, P. On the influence of the water electrostatic field on the amide group vibrational frequencies. J. Chem. Phys. 2004, 121, 7545–7548. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keiderling, T.A. Instrumentation for Vibrational Circular Dichroism Spectroscopy: Method Comparison and Newer Developments. Molecules 2018, 23, 2404. https://doi.org/10.3390/molecules23092404
Keiderling TA. Instrumentation for Vibrational Circular Dichroism Spectroscopy: Method Comparison and Newer Developments. Molecules. 2018; 23(9):2404. https://doi.org/10.3390/molecules23092404
Chicago/Turabian StyleKeiderling, Timothy A. 2018. "Instrumentation for Vibrational Circular Dichroism Spectroscopy: Method Comparison and Newer Developments" Molecules 23, no. 9: 2404. https://doi.org/10.3390/molecules23092404
APA StyleKeiderling, T. A. (2018). Instrumentation for Vibrational Circular Dichroism Spectroscopy: Method Comparison and Newer Developments. Molecules, 23(9), 2404. https://doi.org/10.3390/molecules23092404