Structural Characterization and Anti-Proliferation Activities Against Tumor Cells of an Arabinogalactan from Juniperus convallium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Homogeneity and the Relative Molecular Weight of JC-PS1
2.2. Chemical Composition Analysis
2.3. FT-IR Spectrum Analysis of JC-PS1
2.4. Methylation Analysis of JC-PS1
2.5. NMR Spectra Analysis of JC-PS1
2.6. Air Force Microscopy (AFM) Analysis of JC-PS1
2.7. Anti-Proliferation Activities of JC-PS1
3. Materials and Methods
3.1. Materials and Reagents
3.2. Extraction, Isolation, and Purification of JC-PS1
3.3. Homogeneity and Relative Molecular Weight Analysis
3.4. Analysis of Chemical Composition
3.5. Determination of Monosaccharide Composition
3.6. Infrared Spectroscopy (IR) Spectrum Analysis
3.7. Methylation Analysis
3.8. NMR Analysis
3.9. AFM Analysis
3.10. Anti-Proliferation Assay of JC-PS1
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leon, G.; Lomonte, B.; Gutierrez, J.M. Anticomplementary activity of equine whole IgG antivenoms: Comparison of three fractionation protocols. Toxicon 2005, 45, 123–128. [Google Scholar] [CrossRef]
- Kun, H.; Can, J.; Huanjun, C.; Peipei, W.; Mei, Y.; Kan, D. Structural characterization and anti-A549 lung cancer cells bioactivity of a polysaccharide from Houttuynia cordata. Int. J. Biol. Macromol. 2018, 120, 288–296. [Google Scholar]
- Ooi, V.E.C.; Liu, F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 2000, 7, 715–729. [Google Scholar] [CrossRef]
- Zhen, D.; Su, L.; Miao, Y.; Zhao, F.; Ren, G.; Mahfuz, S.; Song, H. Purification, partial characterization and inducing tumor cell apoptosis activity of a polysaccharide from Ganoderma applanatum. Int. J. Biol. Macromol. 2018, 115, 10–17. [Google Scholar] [CrossRef]
- Jiao, Y.K.; Wang, X.Q.; Jiang, X.; Kong, F.S.; Wang, S.M.; Yan, C.Y. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J. Ethnopharmacol. 2017, 199, 119–127. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Lv, X.; Huang, W.; Yao, W.; Gao, X. Characterization and hypoglycemic effect of a neutral polysaccharide extracted from the residue of Codonopsis Pilosula. Carbohydr. Polym. 2018, 197, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, X. Hypoglycemic activity in vitro of polysaccharides from Camellia oleifera Abel. seed cake. Int. J. Biol. Macromol. 2018, 115, 811–819. [Google Scholar] [CrossRef]
- Tzianabos, A.O. Polysaccharide immunomodulators as therapeutic agents: Structural aspects and biologic function. Clin. Microbiol. Rev. 2000, 13, 523–533. [Google Scholar] [CrossRef]
- Xu, L.; Cao, J.; Chen, W. Structural characterization of a broccoli polysaccharide and evaluation of anti-cancer cell proliferation effects. Carbohydr. Polym. 2015, 126, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Jiang, X.; Xie, H.; Li, X.; Shi, L. Structural characterization and antitumor activity of a polysaccharide from ramulus mori. Carbohydr. Polym. 2018, 190, S014486171830184X. [Google Scholar] [CrossRef]
- Li, H.; Cao, K.; Cong, P.; Liu, Y.; Cui, H.; Xue, C. Structure characterization and antitumor activity of the extracellular polysaccharide from the marine fungus Hansfordia sinuosae. Carbohydr. Polym. 2018, 190, S0144861718302352. [Google Scholar] [CrossRef] [PubMed]
- Taraphdar, A.K.; Roy, M.; Bhattacharya, R.K. Natural products as inducers of apoptosis: Implication for cancer therapy and prevention. FEMS Microbiol. Lett. 2001, 176, 51–56. [Google Scholar]
- Khalid, E.B.; Ayman, E.K.; Rahman, H.; Abdelkarim, G.; Najda, A. Natural products against cancer angiogenesis. Tumour Biol. 2016, 37, 14513–14536. [Google Scholar] [CrossRef]
- Tavares, W.R.; Seca, A.M.L. The Current Status of the Pharmaceutical Potential of Juniperus L. Metabolites. Medicines 2018, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Groshi, A.A.; Evans, A.R.; Ismail, F.M.; Nahar, L.; Sarker, S.D. Cytotoxicity of Libyan Juniperus phoenicea against Human Cancer Cell Lines A549, EJ138, Hepg2 and MCF7. Pharm. Sci. 2018, 24, 3–7. [Google Scholar] [CrossRef]
- Venditti, A.; Maggi, F.; Quassinti, L.; Bramucci, M.; Bianco, A. Bioactive Constituents of Juniperus turbinata Guss. from La Maddalena Archipelago. Int. J. Biol. Macromol. 2018, 15, e1800148. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Wu, M.; Miao, J.; Duan, H.; Zhang, S.; Chen, M.; Sun, L.; Wang, Y.; Zhang, X.; Zhu, X. Deoxypodophyllotoxin exerts both anti-angiogenic and vascular disrupting effects. Int. J. Biochem. Cell Biol. 2013, 45, 1710–1719. [Google Scholar] [CrossRef]
- Meijuan, W.; Zhenzhou, J.; Huaqin, D.; Lixin, S.; Shuang, Z.; Mi, C.; Yun, W.; Qin, G.; Yuming, S.; Xiong, Z. Deoxypodophyllotoxin triggers necroptosis in human non-small cell lung cancer NCI-H460 cells. Biomed. Pharmacother. 2013, 67, 701–706. [Google Scholar]
- Renouard, S.; Lopez, T.; Hendrawati, O.; Dupre, P.; Doussot, J.; Falguieres, A.; Ferroud, C.; Hagege, D.; Lamblin, F.; Laine, E.; et al. Podophyllotoxin and Deoxypodophyllotoxin in Juniperus bermudiana and 12 Other Juniperus Species: Optimization of Extraction, Method Validation, and Quantification. J. Agric. Food Chem. 2011, 59, 8101–8107. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Gao, W.P.; Song, Z.Y.; Xiong, Q.P.; Xu, Y.T.; Han, Y.; Yuan, J.; Zhang, R.; Cheng, Y.B.; Fang, J.S.; et al. Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549. Int. J. Biol. Macromol. 2018, 106, 464–472. [Google Scholar] [CrossRef]
- Kost’alova, Z.; Hromadkova, Z.; Ebringerova, A. Structural diversity of pectins isolated from the Styrian oil-pumpkin (Cucurbita pepo var. styriaca) fruit (vol 93, pg 163, 2013). Carbohydr. Polym. 2014, 99, 831. [Google Scholar]
- Hu, H.B.; Liang, H.P.; Wu, Y. Isolation, purification and structural characterization of polysaccharide from Acanthopanax brachypus. Carbohydr. Polym. 2015, 127, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Q.; Zhang, M.L.; Zhang, D.W.; Wang, X.L.; Cao, H.J.; Zhang, Q.; Yan, C.Y. Structural elucidation and anti-osteoporosis activities of polysaccharides obtained from Curculigo orchioides. Carbohydr. Polym. 2019, 203, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.X.; Wen, C.T.; Gu, J.Y.; Ji, C.C.; Duan, Y.Q.; Zhang, H.H. Effects of subcritical water extraction microenvironment on the structure and biological activities of polysaccharides from Lentinus edodes. Int. J. Biol. Macromol. 2019, 123, 1002–1011. [Google Scholar] [CrossRef]
- Mandal, S.; Patra, S.; Dey, B.; Bhunia, S.K.; Maity, K.K.; Islam, S.S. Structural analysis of an arabinan isolated from alkaline extract of the endosperm of seeds of Caesalpinia bonduc (Nata Karanja). Carbohydr. Polym. 2011, 84, 471–476. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, R.; Liu, Y.; Xiao, J.; Su, D.; Yi, Y.; Wang, G.; Wei, Z.; Zhang, M. Characterization and mesenteric lymph node cells-mediated immunomodulatory activity of litchi pulp polysaccharide fractions. Carbohydr. Polym. 2016, 152, 496–503. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, T.; Wang, H.J.; Cui, Z.; Cheng, F.; Wang, K.P. Structural characterization and in vitro antitumor activity of an acidic polysaccharide from Angelica sinensis (Oliv.) Diels. Carbohydr. Polym. 2016, 147, 401–408. [Google Scholar] [CrossRef]
- Pu, X.Y.; Ma, X.L.; Liu, L.; Ren, J.; Li, H.B.; Li, X.Y.; Yu, S.; Zhang, W.J.; Fan, W.B. Structural characterization and antioxidant activity in vitro of polysaccharides from angelica and astragalus. Carbohydr. Polym. 2016, 137, 154–164. [Google Scholar] [CrossRef]
- Wang, K.P.; Wang, J.; Li, Q.; Zhang, Q.L.; You, R.X.; Cheng, Y.; Luo, L.; Zhang, Y. Structural differences and conformational characterization of five bioactive polysaccharides from Lentinus Edodes. Food Res. Int. 2014, 62, 223–232. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Xia, Y.; Liang, J.; Yang, B.; Wang, Q.; Kuang, H.-x. A new method for quantitative determination of two uronic acids by CZE with direct UV detection. Biomed. Chromatogr. 2011, 25, 1030–1037. [Google Scholar] [CrossRef]
- Bradford, M.M. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Zhan, R.; Xia, L.; Shao, J.; Wang, C.; Chen, D. Polysaccharide isolated from Chinese jujube fruit (Zizyphus jujuba cv. Junzao) exerts anti-inflammatory effects through MAPK signaling. J. Funct. Foods 2018, 40, 461–470. [Google Scholar]
- Liu, Y.; Chen, D.; You, Y.; Zeng, S.; Hu, Y.; Duan, X.; Liu, A.; Chen, H.; Hu, X.; Chen, S.; et al. Structural characterization and antidiabetic activity of a glucopyranose-rich heteropolysaccharide from Catathelasma ventricosum. Carbohydr. Polym. 2016, 149, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Ji, H.Y.; Liu, A.J. Alcohol-soluble polysaccharide from Astragalus membranaceus: Preparation, characteristics and antitumor activity. Int. J. Biol. Macromol. 2018, 118, 2057–2064. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
No | Methylations Sugars | Linkage | Molar Ratios | MS Fragments |
---|---|---|---|---|
1 | 2,3-Me2-Araf | →5)-Araf-(1→ | 3.9 | 59,71,87,102,118,129,189 |
2 | 2,3,5-Me3-Araf | Araf-(1→ | 1.0 | 59,71,87,102,118,145,161,162 |
3 | 2-Me-Araf | →3,5)-Araf-(1→ | 2.1 | 59,74,85,99,118,127,159,173, 261 |
4 | 2,4,6-Me3-Galp | →3)-Galp-(1→ | 1.5 | 59,74,87,101,118,129,161,234,277 |
5 | 2,4-Me2-Rhap | →3)-Rhap-(1→ | 0.5 | 59,72,89,101,118,131,234,247 |
6 | 2,3,4,6-Me4-Galp | Galp-(1→ | 1.0 | 59,71,87,102,118,129,145,161,205 |
Residues | C1/H1 | C2/H2 | C3/H3 | C4/H4 | C5/H5 | C6/H6 | |
---|---|---|---|---|---|---|---|
A | →5)-α-Araf-(1→ | 106.93 5.02 | 80.47 4.06 | 76.21 3.93 | 81.55 4.14 | 66.41 3.73 | - - |
B | α-Araf-(1→ | 106.51 5.10 | 80.95 4.08 | 76.08 3.89 | 77.99 4.05 | 60.45 3.65 | - - |
C | →3,5)-α-Araf-(1→ | 106.05 5.17 | 80.39 4.24 | 83.33 4.01 | 79.83 4.22 | 65.80 3.87 | - - |
D | →3)-β-Galp-(1→ | 98.96 4.96 | 75.88 3.76 | 78.51 3.59 | 73.55 3.82 | 68.64 3.93 | 60.61 3.65 |
E | →3)-α-Rhap-(1→ | 98.00 5.02 | 80.37 4.21 | 81.21 3.82 | 66.10 3.73 | 66.05 3.70 | 15.96 1.18 |
F | β-GalpA-(1→ | 102.41 4.42 | 68.55 3.29 | 70.73 3.49 | 71.46 3.63 | 74.43 3.48 | 175.04 - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Dong, M.; De, J.; Ye, L.; Chen, D.; Lu, Y. Structural Characterization and Anti-Proliferation Activities Against Tumor Cells of an Arabinogalactan from Juniperus convallium. Molecules 2019, 24, 1850. https://doi.org/10.3390/molecules24101850
Li B, Dong M, De J, Ye L, Chen D, Lu Y. Structural Characterization and Anti-Proliferation Activities Against Tumor Cells of an Arabinogalactan from Juniperus convallium. Molecules. 2019; 24(10):1850. https://doi.org/10.3390/molecules24101850
Chicago/Turabian StyleLi, Beibei, Mengxue Dong, Ji De, Li Ye, Daofeng Chen, and Yan Lu. 2019. "Structural Characterization and Anti-Proliferation Activities Against Tumor Cells of an Arabinogalactan from Juniperus convallium" Molecules 24, no. 10: 1850. https://doi.org/10.3390/molecules24101850
APA StyleLi, B., Dong, M., De, J., Ye, L., Chen, D., & Lu, Y. (2019). Structural Characterization and Anti-Proliferation Activities Against Tumor Cells of an Arabinogalactan from Juniperus convallium. Molecules, 24(10), 1850. https://doi.org/10.3390/molecules24101850