Quality and Authenticity Control of Functional Red Yeast Rice—A Review
Abstract
:1. Introduction
1.1. The History and Development of RYR
1.2. Monacolins in RYR
1.2.1. Physical and Chemical Properties of Monacolin K
1.2.2. The Mechanism of Lipid Lowering of Monacolin K
1.2.3. Monacolin Analogs
1.3. The Biosynthetic Pathway and Sources of Monacolin K
2. The Detection Methods of Monacolin K of RYR
3. The Standards of Quality Control for RYR
4. The Authentication Methods of Functional RYR
5. Future Perspectives and Conclusions
5.1. The Spectrum-Effect of TCM
5.2. The TCM Quality Traceability System Based On the Quality Marker
5.3. Improvement of Relevant Policies and Regulations of Functional RYR
Author Contributions
Funding
Conflicts of Interest
References
- Carels, M.; Shepherd, D. The effect of different nitrogen sources on pigment production and sporulation of Monascus species in submerged, shaken culture. Can. J. Microbiol. 1977, 23, 1360–1372. [Google Scholar] [CrossRef] [PubMed]
- Ozlem, T.; Sebile, A. A review on the red yeast rice (Monascus purpureus). Turk. Electron. J. Biotechnol. 2004, 2, 37–49. [Google Scholar]
- Chen, W.; He, Y.; Zhou, Y.; Shao, Y.; Feng, Y.; Li, M.; Chen, F. Edible Filamentous Fungi from the Species Monascus: Early Traditional Fermentations, Modern Molecular Biology, and Future Genomics. Compr. Rev. Food Sci. Food Saf. 2015, 14, 555–567. [Google Scholar] [CrossRef]
- Lin, F. Textual research on Gutian as place where red yeast rice originated. Chin. Tradit. Herb. Drugs 2017, 48, 2793–2800. [Google Scholar]
- Rojsuntornkitti, K.; Jittrepotch, N.; Kongbangkerd, T.; Kraboun, K. Substitution of nitrite by Chinese red broken rice powder in Thaitraditional fermented pork sausage (Nham). Int. Food Res. J. 2010, 17, 153–161. [Google Scholar]
- Kohama, Y.; Matsumoto, S.; Mimura, T.; Tanabe, N.; Inada, A.; Nakanishi, T. Isolation and identification of hypotensive principles in red-mold rice. Chem. Pharm. Bull. 1987, 35, 2484–2489. [Google Scholar] [CrossRef] [PubMed]
- Endo, A. Monacolin K, A new hypocholesterolemic agent produced by a Monascus Species. J. Antibiot. 1979, 32, 852–856. [Google Scholar] [CrossRef]
- Zhu, L.; Han, Q.-B.; Ho, A.; Hsiao, W.-L.; Jiang, Z.-H. Characterization and simultaneous determination of immunosuppressive decalins in red yeast rice by ultra-high-performance liquid chromatography hyphenated with mass spectrometry. J. Chromatogr. A 2013, 1303, 54–61. [Google Scholar] [CrossRef]
- State Bureau of Technical Supervision. The State Standard of the People’s Republic of China: Food Additives Red Yeast Rice GB1886.19-2015; China Light Industry Press: Beijing, China, 2015; p. 3.
- Chen, C.H.; Yang, J.C.; Uang, Y.S.; Lin, C.J. Improved dissolution rate and oral bioavailability of lovastatin in red yeast rice products. Int. J. Pharm. 2013, 444, 18–24. [Google Scholar] [CrossRef]
- Xue, Y.; Tao, L.; Wu, S.; Wang, G.; Qian, L.; Li, J.; Liao, L.; Tang, J.; Ji, K. Red yeast rice induces less muscle fatigue symptom than simvastatin in dyslipidemic patients: A single center randomized pilot trial. BMC Cardiovasc. Disord. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, K.; Shi, Y.; Grimsgaard, S.; Alraek, T.; Fonnebo, V. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: A meta-analysis of randomized controlled trials. Chin. Med. 2006, 1, 4. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Kou, W.; Du, B.; Wu, Y.; Zhao, S.; Brusco, O.A.; Morgan, J.M.; Capuzzi, D.M. Effect of Xuezhikang, an extract from red yeast Chinese rice, on coronary events in a Chinese population with previous myocardial infarction. Am. J. Cardiol. 2008, 101, 1689–1693. [Google Scholar] [CrossRef] [PubMed]
- Moriarty, P.M.; Roth, E.M.; Karns, A.; Ye, P.; Zhao, S.-P.; Liao, Y.; Li, S. Effects of Xuezhikang in patients with dyslipidemia: A multicenter, randomized, placebo-controlled study. J. Clin. Lipidol. 2014, 8, 568–575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Ali, Z.; Shabana, I.; Ikhlas, K.; Khan, A. Cytotoxic monacolins from red yeast rice, a Chinese medicine and food. Food Chem. 2016, 202, 262–268. [Google Scholar] [CrossRef]
- Wu, H.C.; Cheng, M.J.; Wu, M.D.; Chen, J.J.; Chen, Y.L.; Chang, H.S.; Chen, K.P. Secondary metabolites from the fermented rice of the fungus Monascus purpureus and their bioactivities. Nat. Prod. Res. 2018, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Thu, N.; Mitchell, K.; Antonello, S. Red Yeast Rice. Foods 2017, 6, 19. [Google Scholar] [CrossRef]
- Choe, D.; Lee, J.; Woo, S.; Shin, C.S. Evaluation of the amine derivatives of Monascus pigment with anti-obesity activities. Food Chem. 2012, 134, 315–323. [Google Scholar] [CrossRef]
- Liu, S.F.; Wang, Y.R.; Shen, Y.C.; Chen, C.L.; Huang, C.N.; Pan, T.M.; Wang, C.K. A randomized, double-blind clinical study of the effects of Ankascin 568 plus on blood lipid regulation. J. Food Drug Anal. 2018, 26, 393–400. [Google Scholar] [CrossRef]
- Hsu, W.H.; Chen, T.H.; Lee, B.H.; Hsu, Y.W.; Pan, T.M. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem. Toxicol. 2014, 64, 94–103. [Google Scholar] [CrossRef]
- Atar, N.; Eren, T.; Yola, M.L. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chem. 2015, 184, 7–11. [Google Scholar] [CrossRef]
- Mazza, A.; Lenti, S.; Schiavon, L.; Di Giacomo, E.; Tomasi, M.; Manunta, R.; Rubello, D. Effect of Monacolin K and COQ10 supplementation in hypertensive and hypercholesterolemic subjects with metabolic syndrome. Biomed. Pharmacother. 2018, 105, 992–996. [Google Scholar] [CrossRef]
- Akira, E. A historical perspective on the discovery of statins. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 484–493. [Google Scholar] [Green Version]
- Musselman, M.E.; Pettit, R.S.; Derenski, K.L. A review and update of red yeast rice. J. Evid. Based Complement. Alternat Med. 2012, 17, 33–39. [Google Scholar] [CrossRef]
- Akira, E. Dugs inhibiting HMG-CoA reductase. Pharmac. Ther. 1985, 31, 257–267. [Google Scholar]
- Seenivasan, A.; Subhagar, S.; Aravindan, R.; Viruthagiri, T. Microbial production and biomedical applications of lovastatin. Indian J. Pharm. Sci. 2008, 70, 701–709. [Google Scholar]
- Alberts, A.W.; Chen, J.; Kuron, G.; Hunt, V.; Huff, J.; Hoffman, C.; Springer, J. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA 1980, 77, 3957–3961. [Google Scholar] [CrossRef]
- Leone, G.; Consumi, M.; Pepi, S.; Lamponi, S.; Bonechi, C.; Tamasi, G.; Magnani, A. New formulations to enhance lovastatin release from red yeast rice (RYR). J. Drug Deliv. Sci. Technol. 2016, 36, 110–119. [Google Scholar] [CrossRef]
- Endo, A.; Hasumi, K.; Nakamura, T.; Kunishima, M.; Masuda, M. Dihydromonacolin L and monacolin X, new metabolites that inhibit cholesterol biosynthesis. J. Antibiot. 1985, 38, 321–327. [Google Scholar] [CrossRef]
- Endo, A.; Hasumi, K.; Negishi, S. Monacolin, J and L, new inhibitors of cholesterol biosynthesis produced by Monascus ruber. J. Antibiot. 1985, 38, 420–422. [Google Scholar] [CrossRef]
- Endo, A.; Komagata, D.; Shimada, H. Monacolin M, A new inhibitor of cholesterol biosynthesis. J. Antibiot. 1986, 39, 1670–1673. [Google Scholar] [CrossRef]
- Li, Y.G.; Zhang, F.; Wang, Z.T.; Hu, Z.B. Identification and chemical profiling of monacolins in red yeast rice using high performance liquid chromatography with photodiode array detector and mass spectrometry. J. Pharm Biomed. Anal. 2004, 35, 1101–1112. [Google Scholar] [CrossRef]
- Dhale, M.A.; Divakar, S.; Kumar, S.U.; Vijayalakshmi, G. Isolation and characterization of dihydromonacolin-MV from Monascus purpureus for antioxidant properties. Appl. Microbiol. Biotechnol. 2006, 73, 1197–1202. [Google Scholar] [CrossRef]
- Liu, M.T.; Li, J.J.; Shang, X.Y.; Li, S.; Li, L.L.; Luan, N.; Jin, Z.L. Structure elucidation and complete NMR spectral assignment of an unusual aromatic monacolin analog from Monascus purpureus-fermented rice. Magn. Reson. Chem. 2011, 49, 129–131. [Google Scholar] [CrossRef]
- Liu, M.T.; Wang, A.L.; Sun, Z.; Li, J.J.; Wu, X.L.; Liu, Y.X.; Shang, X.Y. Cytotoxic monacolin analogs from Monascus purpureus-fermented rice. J. Asian Nat. Prod. Res. 2013, 15, 600–609. [Google Scholar] [CrossRef]
- Zhu, L.; Yau, L.F.; Lu, J.G.; Zhu, G.Y.; Wang, J.R.; Han, Q.B.; Jiang, Z.H. Cytotoxic Dehydromonacolins from Red Yeast Rice. J. Agric. Food Chem. 2012, 60, 934–939. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, T.X.; Wang, A.L.; Li, J.J.; Wang, X.; Luan, N.; Ji, L.L.; Shang, X.Y. Four new monacolin analogs from Monascus purpureus-fermented rice. J. Asian Nat. Prod. Res. 2017, 209–216. [Google Scholar] [CrossRef]
- Li, M.N.; Li, C.R.; Gao, W.; Li, P.; Yang, H. Highly sensitive strategy for identification of trace chemicals in complex matrix: Application to analysis of monacolin analogues in monascus-fermented rice product. Anal. Chim. Acta. 2017, 982, 156–167. [Google Scholar] [CrossRef]
- Chan, J.K.; Moore, R.N.; Nakashima, T.T.; Vederas, J.C. Biosynthesis of mevinolin. Spectral assignment by double-quantum coherence NMR after high carbon-13 incorporation. J. Am. Chem. Soc. 1983, 105, 3334–3336. [Google Scholar] [CrossRef]
- Kimura, K.; Komagata, D.; Murakawa, S.; Endo, A. Biosynthesis of monacolins: Conversion of monacolin J to monacolin K (mevinolin). J. Antibiot. 1990, 43, 1621–1622. [Google Scholar] [CrossRef]
- Akira, E. The origin of the statins. Int. Congr. Ser. 2004, 1262, 3–8. [Google Scholar]
- Barrios-González, J.; Miranda, R.U. Biotechnological production and applications of statins. Appl. Microbiol. Biotechnol. 2010, 85, 869–883. [Google Scholar] [CrossRef]
- Patel, S. Functional food red yeast rice (RYR) for metabolic syndrome amelioration: A review on pros and cons. World J. Microbiol. Biotechnol. 2016, 32. [Google Scholar] [CrossRef]
- Patel, S.; Akhtar, N. Fungus Monascus-Fermented Red Yeast Rice (RYR): Natural Therapeutic Statin Source or Mycotoxin? Fungi. Role Sustain. Dev. Curr. Perspect. 2018, 739–752. [Google Scholar]
- Singgih, M.; Saraswaty, V.; Ratnaningrum, D.; Priatni, S.; Damayanti, S. The Influence of Temperature and Ethanol Concentration in Monacolin K Extraction from Monascus Fermented Rice. Procedia Chem. 2014, 9, 242–247. [Google Scholar] [CrossRef]
- Asthana, S.; Kaur, V.; Chawla, P.; Saraf, S. Rapid and Sensitive HPLC-UV method for Simultaneous Estimation of Nifedipine, Nateglinide and Lovastatin: Quantitative Application to Polypill Based Synthetic Ternary Mixture. Int. J. Pharmtech. Res. 2010, 2, 682–688. [Google Scholar]
- Tsukahara, M.; Shinzato, N.; Tamaki, Y.; Namihira, T.; Matsui, T. Red Yeast Rice Fermentation by Selected Monascus sp. with Deep-Red Color, Lovastatin Production but No Citrinin, and Effect of Temperature-Shift Cultivation on Lovastatin Production. Appl. Biochem. Biotechnol. 2009, 158, 476–482. [Google Scholar] [CrossRef]
- Zhang, B.B.; Lu, L.P.; Xia, Y.; Wang, Y.L.; Xu, G.R. Use of agar as carrier in solid-state fermentation for Monacolin K production by Monascus: A novel method for direct determination of biomass and accurate comparison with submerged fermentation. Biochem. Eng. J. 2013, 80, 10–13. [Google Scholar] [CrossRef]
- Zhang, B.B.; Xing, H.B.; Jiang, B.J.; Chen, L.; Xu, G.R.; Jiang, Y.; Zhang, D.Y. Using millet as substrate for efficient production of monacolin K by solid-state fermentation of Monascus ruber. J. Biosci. Bioeng. 2018, 125, 333–338. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, X.; Duan, W.; Wang, X.; Du, J. Accelerated solvent extraction of monacolin K from red yeast rice and purification by high-speed counter-current chromatography. J. Chromatog. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 2881–2885. [Google Scholar] [CrossRef]
- Su, Y.C.; Wang, J.J.; Lin, T.T.; Pan, T.M. Production of the secondary metabolites γ-aminobutyric acid and monacolin K by Monascus. J. Ind. Microbiol. Biotechnol. 2003, 30, 41–46. [Google Scholar] [CrossRef]
- Li, Y.G.; Liu, H.; Wang, Z.T. A validated stability-indicating HPLC with photodiode array detector (PDA) method for the stress tests of Monascus purpureus-fermented rice, red yeast rice. J. Pharm. Biomed. Anal. 2005, 39, 82–90. [Google Scholar] [CrossRef]
- Theunis, M.; Naessens, T.; Verhoeven, V.; Hermans, N.; Apers, S. Development and validation of a robust high-performance liquid chromatographic method for the analysis of monacolins in red yeast rice. Food Chem. 2017, 234, 33–37. [Google Scholar] [CrossRef]
- Omm, S. A New HPLC Method for Analysis of Natural Monacolin K in Red Yeast Rice Pharmaceutical Preparations. J. Pharmacogn Nat. Prod. 2016, 1, 1. [Google Scholar] [CrossRef]
- Heber, D.; Lembertas, A.; Lu, Q.Y.; Bowerman, S.; Go, V.L. An analysis of nine proprietary Chinese red yeast rice dietary supplements: Implications of variability in chemical profile and contents. J. Altern. Complement. Med. 2001, 7, 133–139. [Google Scholar] [CrossRef]
- Li, M.; Fan, L.Y.; Zhang, W.; Sun, J.; Cao, C.X. Quantitative analysis of lovastatin in capsule of Chinese medicine Monascus by capillary zone electrophoresis with UV–vis detector. J. Pharm. Biomed. Anal. 2007, 43, 387–392. [Google Scholar] [CrossRef]
- Lucie, N.; Petr, C.; František, Š.; Hana, S. Fully automated method based on on-line molecularly imprinted polymer solid-phase extraction for determination of lovastatin in dietary supplements containing red yeast rice. Anal. Bioanal Chem. 2019, 411, 1219–1228. [Google Scholar]
- Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem. 2015, 185–430. [Google Scholar] [CrossRef]
- Nigović, B.; Završki, M.; Sertić, M.; Mornar, A. Simple and Fast Voltammetric Method for Assaying Monacolin K in Red Yeast Rice Formulated Products. Food Anal. Methods 2015, 8, 180–188. [Google Scholar] [CrossRef]
- Song, F.; El-Demerdash, A.; Lee, S.J.; Smith, R.E. Fast screening of lovastatin in red yeast rice products by flow injection tandem mass spectrometry. J. Pharm. Biomed. Anal. 2012, 57, 76–81. [Google Scholar] [CrossRef]
- Jirasatid, S.; Nopharatana, M.; Kitsubun, P.; Tongta, A. Degradation kinetics of monacolin K in red yeast rice powder using multiresponse modeling approach. J. Food Eng. 2013, 116, 436–443. [Google Scholar] [CrossRef]
- Gum, S.I.; Nguyen, P.A.; Lee, J.R.; Han, Y.H.; Cho, M.K. The physico-chemical alteration of lovastatin and enhanced antioxidant effect of Bacillus subtilis fermented-red yeast rice product. Food Chem. 2017, 232, 203–209. [Google Scholar] [CrossRef]
- Huang, H.N.; Hua, Y.Y.; Bao, G.R.; Xie, L.H. The quantification of monacolin K in some red yeast rice from Fujian province and the comparison of the other product. Chem. Pharm. Bull. 2006, 54, 687–689. [Google Scholar] [CrossRef]
- Chairote, E.; Lumyong, S.; Chairote, G. Study on cholesterol lowering compounds in red yeast rice prepared from Thai glutinous rice. As. J. Food Ag.-Ind. 2010, 3, 217–228. [Google Scholar]
- Ajdari, Z.; Ebrahimpour, A.; Abdul, M.M.; Hamid, M. Assessment of Monacolin in the Fermented Products Using Monascus purpureus FTC5391. J. Biomed. Biotechnol. 2011, 2011, 1–9. [Google Scholar]
- Chen, C.H.; Uang, Y.S.; Wang, S.T.; Yang, J.C.; Lin, C.J. Interaction between Red Yeast Rice and CYP450 Enzymes/P-Glycoprotein and Its Implication for the Clinical Pharmacokinetics of Lovastatin. J. Evid. Based Complementary Altern Med. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, Y.; Li, Y.; Wang, Y. Conversion investigation for lovastatin and its derivatives by HPLC. J. Chromatogr. Sci. 2010, 48, 631–636. [Google Scholar] [CrossRef]
- Donna, L.; Bartella, L.; Napoli, A.; Sindona, G.; Mazzotti, F. Assay of lovastatin containing dietary supplement by LC-MS/MS under MRM condition. J. Mass Spectrom. 2018, 53, 811–816. [Google Scholar] [CrossRef]
- Svoboda, P.; Sander, D.; Plachká, K.; Nováková, L. Development of matrix effect-free MISPE-UHPLC–MS/MS method for determination of lovastatin in Pu-erh tea, oyster mushroom, and red yeast rice. J. Pharm. Biomed. Anal. 2017, 140, 367–376. [Google Scholar] [CrossRef]
- Mornar, A.; Sertić, M.; Nigović, B. Development of a Rapid LC/DAD/FLD/MSn Method for the Simultaneous Determination of Monacolins and Citrinin in Red Fermented Rice Products. J. Agric. Food Chem. 2013, 61, 1072–1080. [Google Scholar] [CrossRef]
- Avula, B.; Cohen, P.A.; Wang, Y.H.; Sagi, S.; Feng, W.; Wang, M.; Khan, I.A. Chemical profiling and quantification of monacolins and citrinin in red yeast rice commercial raw materials and dietary supplements using liquid chromatography-accurate QToF mass spectrometry: Chemometrics application. J. Pharm. Biomed. Anal. 2014, 100, 243–253. [Google Scholar] [CrossRef]
- Zhou, G.; Fu, L.; Li, X. Optimisation of ultrasound-assisted extraction conditions for maximal recovery of active monacolins and removal of toxic citrinin from red yeast rice by a full factorial design coupled with response surface methodology. Food Chem. 2015, 170, 186–192. [Google Scholar] [CrossRef]
- Venhuis, B.J.; van Hunsel, F.; van de Koppel, S.; Keizers, P.H.J.; Jeurissen, S.M.F.; De Kaste, D. Pharmacologically effective red yeast rice preparations marketed as dietary supplements illustrated by a case report. Drug Test. Anal. 2016, 8, 315–318. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Monakhova, Y.B.; Kuballa, T.; Löbell-Behrends, S.; Maixner, S.; Kohl-Himmelseher, M.; Waldner, A.; Steffen, C. NMR evaluation of total statin content and HMG CoA reductase inhibition in red yeast rice (Monascus spp.) food supplements. Chin. Med. 2012, 7, 8. [Google Scholar] [CrossRef]
- Ma, J.; Li, Y.; Ye, Q.; Li, J.; Hua, Y.; Ju, D.; Zhang, D.; Cooper, R.; Chang, M. Constituents of red yeast rice, a traditional Chinese food and medicine. J. Agric Food Chem. 2000, 48, 5220–5225. [Google Scholar] [CrossRef]
- Nigović, B.; Sertić, M.; Mornar, A. Simultaneous determination of lovastatin and citrinin in red yeast rice supplements by micellar electrokinetic capillary chromatography. Food Chem. 2013, 138, 531–538. [Google Scholar] [CrossRef]
- Bule, M.; Khan, F.; Niaz, K. Red Yeast Rice (Monascus purpureus). In Nonvitamin and Nonmineral Nutritional Supplements, 1st ed.; Nabavi, S.M., Silva, A.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 509–515. [Google Scholar]
- Poli, A.; Barbagallo, C.M.; Cicero, A.F.G.; Corsini, A.; Manzato, E.; Trimarco, B.; Marangoni, F. Nutraceuticals and functional foods for the control of plasma cholesterol levels. An intersociety position paper. Pharmacol. Res. 2018, 134, 51–60. [Google Scholar] [CrossRef]
- The Pharmaceutical Society of Britain. Martindale: The Complete Drug Reference (37th edition); The Pharmaceutical Press: Britain, UK, 2015; p. 2319. [Google Scholar]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China Part. I; People’s Medical Publishing House: Beijing, China, 2015; pp. 859–861. [Google Scholar]
- Light Industry Standardization Commission. People’s Republic of China Light Industry Standard: Functional red yeast rice QB/T 2847-2007; China Light Industry Press: Beijing, China, 2007; p. 8. (In Chinese) [Google Scholar]
- Chinese Medicine Standards Commission of Yunnan Province. The standard of Chinese herbal medicine of Yunnan Province; Yunnan Science and Technology Press: Yunnan, China, 2005; p. 25. (In Chinese) [Google Scholar]
- Chinese Medicine Standards Commission of Fujian Province. The standard of Chinese herbal medicine of Fujian Province; Fujian Science and Technology Press: Fujian, China, 2009; p. 101. (In Chinese) [Google Scholar]
- Chinese Medicine Standards Commission of Henan Province. The standard of Chinese herbal medicine of Henan Province; Henan Science and Technology Press: Henan, China, 1991; p. 41. (In Chinese) [Google Scholar]
- Chinese Medicine Standards Commission of Hubei Province. The standard of Chinese herbal medicine of Hubei Province; Hubei Science and Technology Press: Hubei, China, 2009; p. 60. (In Chinese) [Google Scholar]
- Chinese Medicine Standards Commission of Beijing. The standard of Chinese herbal medicine of Beijing; Beijing Science and Technology Press: Beijing, China, 1998; p. 119. (In Chinese) [Google Scholar]
- Chinese Medicine Standards Commission of Shandong Province. The standard of Chinese herbal medicine of Shandong Province; Shandong Science and Technology Press: Shandong, China, 2012; p. 110. (In Chinese) [Google Scholar]
- Sichuan Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Sichuan Province; Sichuan Science and Technology Press: Chengdu, China, 2016; pp. 175–177. (In Chinese) [Google Scholar]
- Zhejiang Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Zhejiang Province; China Medical Science and Technology Press: Beijing, China, 2015; pp. 127–128. (In Chinese) [Google Scholar]
- Hunan Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Hunan Province; Hunan Science and Technology Press: Changsha, China, 2010; p. 502. (In Chinese) [Google Scholar]
- Heilongjiang Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Heilongjiang Province; Heilongjiang Science and Technology Press: Haerbin, China, 2012; p. 149. (In Chinese) [Google Scholar]
- Hebei Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Hebei Province; Hebei Science and Technology Press: Tianjin, China, 2003; p. 64. (In Chinese) [Google Scholar]
- Beijing Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Beijing Province; China Medical Science and Technology Press: Beijing, China, 2008; p. 234. (In Chinese) [Google Scholar]
- Chongqing Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Chongqing; Chongqing Science and Technology Press: Chongqing, China, 2008; p. 138. (In Chinese) [Google Scholar]
- Shanghai Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Shanghai; Shanghai Science and Technology Press: Shanghai, China, 2008; p. 183. (In Chinese) [Google Scholar]
- Shandong Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Shandong Province; Shandong Science and Technology Press: Shandong, China, 2012; p. 268. (In Chinese) [Google Scholar]
- Henan Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Henan Province; Henan Science and Technology Press: Henan, China, 2005; p. 529. (In Chinese) [Google Scholar]
- Tianjin Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Tianjin; Tianjin Science and Technology Press: Tianjin, China, 2005; p. 377. (In Chinese) [Google Scholar]
- Fujian Food and Drug Administration. Standard for Chinese Herbal Medicine Processing of Fujian Province; Fujian Science and Technology Press: Fujian, China, 2012; p. 89. (In Chinese) [Google Scholar]
- Nannoni, G.; Alì, A.; Di Pierro, F. Development of a new highly standardized and granulated extract from Monascus purpureus with a high content of monacolin K and KA and free of inactive secondary monacolins and citrinin. Nutrafoods 2015, 14, 197–205. [Google Scholar] [CrossRef]
- Perini, M.; Carbone, G.; Camin, F. Stable isotope ratio analysis for authentication of red yeast rice. Talanta 2017, 174, 228–233. [Google Scholar] [CrossRef]
- Suzuki, Y.; Chikaraishi, Y.; Ogawab, N.O.; Ohkouchi, N.; Korenaga, T. Geographical origin of polished rice based on multiple element and stable isotope analyses. Food Chem. 2008, 109, 470–475. [Google Scholar] [CrossRef]
- Peng, W.; Shen, H.; Lin, B.; Han, P.; Li, C.; Zhang, Q.; Ye, B.; Rahman, K.; Xin, H.; Qin, L.; et al. Docking study and antiosteoporosis effects of a dibenzylbutane lignan isola Qin ted from Litsea cubeba targeting Cathepsin K and MEK1. Med. Chem. Res. 2018, 27, 2062–2070. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef]
- Liu, C.; Guo, D.; Liu, L. Quality transitivity and traceability system of herbal medicine products based on quality markers. Phytomedicine 2018, 44, 247–257. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Liu, J.S.; Gao, S.M.; Chen, R.C.; Qi, Y.D.; Zhang, B.G.; Liu, H.T.; Xiao, P.G. Research methods and applications progress on spectrum-effect relationships in study of Traditional Chinese Medicine. Chin. J. Chin. Mater. Med. 2019, 1–12. [Google Scholar] [CrossRef]
- Cai, L.; Zhang, Q.; Yang, F.Q. Applications progress on spectrum-effect relationship in study of Chinese materia medica. Chin. Tradit. Herb. Drugs. 2017, 48, 5005–5011. [Google Scholar]
- Shi, M.J.; Zhang, Y.; Song, M.M.; Sun, Y.; Li, C.Q.; Kang, W.Y. Screening the marker components in Psoralea corylifolia L. with the aids of spectrum-effect relationship and component knock-out by UPLC-MS2. Int. J. Mol. Sci. 2018, 19, 3439. [Google Scholar] [CrossRef]
- Xiao, R.Y.; Wu, L.J.; Hong, X.X.; Tao, L.; Luo, P.; Shen, X.C. Screening of analgesic and anti-inflammatory active component in Fructus Alpiniae zerumbet based on spectrum-effect relationship and GC-MS. Biomed. Chromatogr. 2018, 32, e4112. [Google Scholar] [CrossRef]
- Liu, C.X.; Chen, S.L.; Xiao, X.H.; Zhang, T.J.; Hou, W.B.; Liao, M.L. A new concept on quality marker of Chinese materia medica: Quality control for Chinese medicinal products. Chin. Tradit. Herb. Drugs. 2016, 47, 1443–1457. [Google Scholar]
- Cao, G.Z.; Yuan, Z.H. Innovation System of Chinese Traditional Medicine Materials Traceability Based on Block Chain. Modern Chin. Med. 2018, 20, 1465–1470. [Google Scholar]
- Shi, M.Y.; Hu, L.; Ou, R.T.; Zhao, Y.T.; Wen, C.Q. Research of Quality Traceability System of Traditional Chinese Medicine. Asia-Pacific Tradit. Med. 2018, 14, 75–77. [Google Scholar]
- Liu, C.X.; Cheng, Y.Y.; Guo, D.A.; Zhang, T.J.; Li, Y.Z.; Hou, W.B.; Huang, L.Q.; Xu, H.Y. A new concept on quality marker for quality assessment and process control of Chinese medicines. Chin. Herb. Med. 2017, 9, 3–13. [Google Scholar] [CrossRef]
- Sheng, G.L. Design of Electronic Coding Scheme for Quality Traceability of Radix Paeoniae Alba Decoction Pieces. J. Taiyuan Univ. (Nat. Sci. Ed.) 2019, 37, 83–86. [Google Scholar]
- Zhou, M.; Ma, X.; Ding, G.; Wang, Z.; Liu, D.; Tong, Y.; Zhou, H.; Gao, J.; Hou, Y.; Jiang, M.; et al. Comparison and evaluation of antimuscarinic and anti-inflammatory effects of five Bulbus fritillariae species based on UPLC-Q/TOF integrated dual-luciferase reporter assay, PCA and ANN analysis. J. Chromatogr. B 2017, 1041–1042, 60–69. [Google Scholar] [CrossRef]
Name | Type | Structure | Formula | MW | Activity | Ref. | |
---|---|---|---|---|---|---|---|
Monacolin | K | C24H36O5 | 404 | Lipid lowering | [32] | ||
J | OH | C19H28O4 | 320 | Lipid lowering | |||
L | H | C19H28O3 | 304 | Lipid lowering | |||
X | C24H34O6 | 418 | Lipid lowering | ||||
M | C23H34O6 | 406 | Lipid lowering | ||||
K acid form | C24H38O6 | 422 | Lipid lowering | ||||
J acid form | OH | C19H30O5 | 338 | Lipid lowering | |||
L acid form | H | C19H30O4 | 322 | Lipid lowering | |||
X acid form | C24H36O7 | 436 | Lipid lowering | ||||
M acid form | C23H36O7 | 424 | Lipid lowering | ||||
T | -CH3 | C21H36O5 | 368 | Anti-tumor | [37] | ||
U | -CH2CH3 | C22H38O5 | 382 | Anti-tumor | |||
Monacolin | O | C25H40O8 | 468 | Anti-tumor | [35] | ||
P | C26H44O8 | 484 | Anti-tumor | ||||
Q | C19H22O2 | 282 | Anti-tumor | [15] | |||
S | C24H38O7 | 438 | Anti-tumor | ||||
R | C19H28O3 | 304 | Anti-tumor | ||||
Dehydro-monacolin | K | C24H34O4 | 386 | Lipid-lowering Anti-tumor | [32] | ||
N | C21H38O4 | 344 | Anti-tumor | [36] | |||
L | H | C19H26O2 | 286 | Anti-tumor | |||
J | OH | C19H26O3 | 302 | Anti-tumor | |||
Dihydro-monacolin | K | C24H38O5 | 406 | Lipid-lowering Anti-tumor | [36] | ||
L | H | C19H30O3 | 306 | Lipid-lowering | [32] | ||
α,β-dehydrodihydro-monacolin | K | C19H28O2 | 288 | Anti-tumor | [36] | ||
L | H | C24H36O4 | 388 | Anti-tumor | |||
the ethyl ester of monacolin K | -CH2CH3 | C26H42O6 | 450 | [36] | |||
the methyl ester of the hydroxyl acid form of monacolin K | -CH3 | C25H40O6 | 436 | ||||
6a-O-ethyl-4,6-dihydro-monacolin L | -CH2CH3 | C21H34O4 | 350 | Anti-tumor | [37] | ||
6a-O-methyl-4,6-dihydro-monacolin L | -CH3 | C20H32O4 | 336 | Anti-tumor | |||
3α-hydroxy-3,5-dihydro-monacolin L | C19H30O4 | 322 | Lipid-lowering | [15] | |||
3β-hydroxy-3,5-dihydro-monacolin L | Lipid-lowering | ||||||
α,β-dehydro-monacolin S | C24H36O6 | 420 | inhibition of cancer cell proliferation | [15] | |||
α,β-dehydro-monacolin Q | C19H24O3 | 300 | inhibition of cancer cell proliferation | ||||
Compactin | C23H34O5 | 390 | Lipid-lowering | [32] | |||
Monacophenyl | C19H26O3 | 302 | [34] | ||||
Dihydro-monacolin MV | C24H38O5 | 406 | 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity | [33] | |||
(1S,2S,4aR,6S,8-S,8aS,3′S,5′R,2″S)-methyl-1,2,4a,5,6,7,8,8a-octahydro-3′,5′-dihydroxy-2,6-dimethyl-8-[(2-methyl-1-oxobutyl)oxy]-1-naphthale-neheptanoate | C25H42O6 | 438 | [36] |
Detection Methods | Detection Conditions | Detection Index | Ref. | ||
---|---|---|---|---|---|
Mobile Phase | Column | Detector | |||
HPLC | Acetonitrile:Water (45:55, v/v, pH was adjusted to 2.5 with H3PO4); 1 mL/min | Nucleosil C-18 | UV detector; 238 nm | Monacolin K (lactone) | [45] |
HPLC (Shimadzu) | Acetonitrile:10 mM Phosphate buffer solution (60:40, v/v, pH was adjusted to 3.5 with 10% H3PO4); 1 mL/min | Millennium Sil C-18 (125 × 4.6 mm, 5 μm) | UV-visible detector; 236 nm | Monacolin K (lactone) | [46] |
HPLC (Shimadzu 10A) | Methanol:0.1% Phosphate (72:28, v/v, isocratic elution for 25 min, linear elution with 100% methanol until 30 min); 0.5 mL/min; 40 °C | Wakosil-II 5C18 (250 × 4.6 mm, 5 μm) | UV detector; 238 nm | Monacolin K (lactone) and citrinin | [47] |
HPLC (Agilent 1200) | Acetonitrile:Water (55:45, v/v, pH was adjusted to 2.5 with H3PO4); 1 mL/min | AZORBAX SB C-18 (250 × 4.6 mm, 5 μm) | UV detector; 238 nm | Monacolin K (lactone) | [48] |
HPLC (Waters 1525) | Acetonitrile:Water (55:45, v/v, pH was adjusted to 2.5 with H3PO4); 1 mL/min | ZORBAX SB C-18 (250 × 4.6 mm, 5 μm) | UV detector; 238 nm | Monacolin K (lactone) | [49] |
HPLC (Waters) | Acetonitrile:0.1% H3PO4 (70:30, v/v); 1 mL/min; 25 °C | Reverse-phase (RP)-18 (250 × 4.6 mm, 5 μm) | diode-array and UV detector; 237 nm | Monacolin K (lactone) | [50] |
HPLC (Varian) | Acetonitrile:Water:Methanol (5:3:1, v/v); 1 mL/min | Varian C18 (250 × 4.6 mm, 5 μm) | UV detector; 230 nm | Monacolin K (lactone) | [28] |
HPLC | Acetonitrile:Water(72:28, v/v); 0.5 mL/min | Beckman Ultrasphere ODS column (150 × 4.6 mm) | UV detector; 238 nm | Monacolin K (lactone) | [51] |
HPLC (Waters 2690 Alliance) | Acetonitrile (A): 0.1% Trifluoroacetic acid (B); A was from 35 to 75% in 20 min and keeping 75% from 20 to 28 min; 1 mL/min; 30 °C | Waters Symmetry C18 (150 × 3.9 mm, 5 μm) | 996 PDA detector; 237 nm | Monacolin K, J and L (their lactone and acid) | [52] |
HPLC (Agilent 1260) | 0.1% Trifluoroacetic acid (A):Acetonitrile (B); in 20 min from 40% B to 75% B, 10 min 75% B, from 75 to 100% B in 5 min, 3 min at 100% B, from 100 to 40% B in 2 min and 5 min 40% B; 1 mL/min; 20 °C | RP-C18 (250 × 4.6 mm, 5 μm) | DAD detector; 237 nm | Monacolin K (acid and lactone) | [53] |
HPLC (Dionex ultimate 3000) | Acetonitrile:50 mM KH2PO4 pH 3.5 (60:35, v/v); 1.5 mL/min; 40 °C | Dionex octadecyl silyl silica gel column (250 × 4.6 mm, 5 μm) | PAD (Ultimate 3000) detector; 237 nm | Monacolin K (acid and lactone) | [54] |
Statin Window HPLC | Methanol (A):0.1% Phosphorus acid (B); Linear gradient elution from 60 to 90% of solvent A in 32 min and kept at 90% of solvent A for 3 min; 1 mL/min | - | UV detector; 237 nm | Monacolin K and L | [55] |
HPCE (ACS 2000) | 30–80 mM Gly-NaOH buffer (pH 10.5) containing 16% (v/v) ethanol; 16 kV; 22 °C | fused-silica capillary (51 cm × 75 μm) | UV–vis detector; 238 nm | Monacolin K (acid) | [56] |
MISPE-SIA-UV | Ammonium acetate buffer (pH 4.0):Acetonitrile (90:10, v/v) | miniaturized column (5.0 × 2.5 mm) | UV detector; 240 nm | Monacolin K (lactone) | [57] |
QCM nanosensor | Trichloroacetic acid (diluted with glycine–sodium hydroxide buffer at PH 10); 1 mL/min | - | QCM chip with lovastatin imprinted polymer | Monacolin K (lactone) | [58] |
Voltammetric (Metrohm) | Frequency, 200 Hz; potential step, 2 mV; amplitude, 25 mV by applying a negative-going potential scan from −0.6 to −1.6 V; 22 °C | - | Auto-lab potentiostat | Monacolin K (lactone) | [59] |
LC–MS/MS (Agilent 6460) | A:4 mM of ammonium formate plus 0.05% formic acid in water B:4 mM of ammonium formate plus 0.05% formic acid in methanol Gradient elution started with 50% of B, increased to 90% of B within 5 min and held for 8 min, then changed to 50% of B within 2 min.; 0.4 mL/min | Intersil ODS-3 (150 × 2.1 mm, 3.5 μm) | ESI | Monacolin K (lactone) | [60] |
LC–MS (Agilent Model 1100 and MSD Esquire 3000+) | Acetonitrile (A):0.1% phosphoric acid (B); 35% to 75% of A for 30 min and kept at 75% of A for 5 min; 0.5 mL/min | Hypersil gold column (150 × 4.6 mm, 5 μm) | UV detection; 237 nm | Monacolin K and Dehydromonacolin K (their lactone and acid) | [61] |
GC–MS (Agilent 6890) | Ultrapure helium; 1 mL/min; an initial temperature of 70 °C for 4 min, and increased by 2 °C/min 70 to 100 °C (held 2 min), Then, the temperature was varied from 100 to 200 °C at 5 °C/min (held 20 min) and increased to 280 °C (held 5 min) at 10 °C/min. | fused silica capillary column HP-5MS (30 m × 025 mm) | 5975 GC/MSD mass selective detector | Monacolin K (acid and lactone) | [62] |
HPLC-MS(Waters 2695 Alliance, Thermo Finnigan) | 75% Methanol; 30 °C | Merck LiChroCART RP-18 (250 × 4.6 mm, 5 μm) | 2996 PDA detector; 238.6 nm | Monacolin K (lactone) | [63] |
HPLC-MS (Agilent HP 1100 and MSD VL model) | Acetonitrile (A): 0.1% trifluoroacetic acid (B); Linear gradient elution from 35 to 75% of solvent A in 30 min and kept at 75% of solvent A for 5 min; 1 mL/min; 35 °C | Hypersil ODS (250 × 4 mm, 5 μm) | PDA detector; 237 nm | Monacolin K (lactone and acid) and M, etc. | [64] |
HPLC-MS (Waters 2695 Alliance) | Acetonitrile (A): 0.1% Trifluoroacetic acid (B); A was from 5 to 75% in 15 min, kept at 75% for 5 min, increased to 95%, then reduced to 5% in another 10 min | Waters Symmetry C18 (150 × 3.9 mm, 5 μm) and arrow-bore reversed-phase Zorbax SB-C18 (100 × 2.1 mm, 5 μm) | ESI; 2996 PDA detector; UV spectrum; 232, 239, 248 nm | Monacolin K (lactone and acid) | [65] |
HPLC-MS (Hitachi, Japan) | Acetonitrile:0.2% Formic acid (70:30, v/v); 1 mL/min | Biosil ODS column (150 × 4.6 mm, 5 μm) | ESI MRM mode; 238 nm | Monacolin K (lactone and acid) | [66] |
HPLC-MS (Waters 510) | Acetonitrile:Water (77:23, v/v, pH 3.0); 0.8 mL/min; room temperature | Waters Symmetry C18 (250 × 4.6 mm, 5 μm) | UV200 detector | Monacolin K (lactone, acid and its methyl ester) | [67] |
HPLC-MS/MS (Thermo Fisher Scientific) | 0.1% HCOOH (A):CHCN (B); 80% A form 0 to 1.0 min, 10% A from 1 to 6.0 min, 10% A from 6 to 7.5 min, 80% A from 7.5 to 8 min; 0.25 mL/min | RP- C18 (20 × 2.1 mm, 3 μm) | ESI detector | Monacolin K (lactone and acid) | [68] |
MISPE-UHPLC–MS/MS (Waters) | 0.5 mM Ammonium acetate (A, PH 4.0):Acetonitrile (B); B was from 30 to 70% over 3.7 min and decreasing 30% in 4.0 min; 0.35 mL/min; 40 °C | analytical column BEH C18 (50 × 2.1 mm, 1.7 μm) | ESI detector | Monacolin K (acid and lactone) | [69] |
LC/DAD/FLD/MSn (Agilent Series 1100) | Acetonitrile:water:formic acid (10:90:0.1, A):Acetonitrile:water:formic acid (90:10:0.05, B); 40−70% B (0−7 min) and 70−90% B (7−10 min); 1 mL/min; 25.0 ± 0.1 °C | Zorbax SB-C18 (250 × 4.6 mm, 5 μm) | ESI, UV (237nm) fluorimetric (331, 500 nm) | Monacolin K M, L, and citrinin, etc. | [70] |
UHPLC–DAD–QToF-MS | 0.1% Formic acid (A): Acetonitrile with 0.1% formic acid (B); 65% A–35% A in 15 min and in next 3 min to 100% B; 0.35 mL/min; 35 °C | Agilent Zorbax SB-C18 RRHD (150 × 2.1 mm, 1.8 μm) | UV, 237 nm; ESI + ve mode | Monacolin K, J, and citrinin, etc. | [71] |
HPLC-Chip-QTOF-MS (Agilent 1260 capillary C, Agilent 6520) | 0.1% (v/v) Formic acid (A): Acetonitrile containing 0.1% (v/v) Formic acid (B) 0–2 min, 20% B; 2–10 min, 20–25% B; 10–22 min, 25–30% B; 22–30 min, 30–35% B; 30–36 min, 35–45% B; 36–53 min, 45–60% B; 53–60 min, 60–70% B; 60–85 min, 70–90% B; 85–90 min, 90% B; 1 mL/min; 25 °C | Zorbax 80SB-C18 bonded stationary phase (150 × 4.6 mm, 5 μm) | MS/MS detection (the collision energy 120 was set at 25 eV.) | Monacolin K (acid and lactone), O, Q, and M, etc. | [38] |
UHPLC-DAD–Q/TOF-MS(Agilent) | 0.1% Formic acid/water solution (1/1000, A): Formic acid/acetonitrile solution (1/1000, B); 0–3 min, 53% B; 3–5 min, 53–70% B; and 5–6 min, 70% B; 0.7 mL/min; 30 °C | Agilent Zorbax SB C18 (150 × 2.1 mm, 1.8 μm) | DAD-Q/TOF-MS detector; 237 nm | Total monacolins | [72] |
UPLC-QTOF-MS/MS | - | HSS C18 column (150 × 2.1 mm, 1.8 μm) | ESI | Monacolin K (lactone and acid) | [73] |
400 MHz 1H-NMR | 370 μL of distilled water and 60 μL of pH 7.4 NMR buffer (1.5 M KH2PO4 in D2O, 0.1% 3-(trimethylsilyl)-propionate acid-d4 (TSP), 3 mM NaN3) | 5-mm SEI probe an Automatic Sample Changer B-ACS 120 | Ultrashield spectrometer (300.0 K.) | Total monacolins | [74] |
Standard | Type | Detection Methods | Indicator Component | Regulation | Ref. |
---|---|---|---|---|---|
Martindale Pharmacopoeia | Hongqu | No request | No request | No request | [79] |
Chinese Pharmacopoeia 2015 | Chinese Herbal Medicine (Hongqu) | HPLC (Cosmosil 5C18-MS-II, 26 cm × 4.6 mm, 5 μm, Methanol:Water (75:25, v/v), UV detector 237 nm) | Monacolin K (lactone) | ≥0.22% | [80] |
Chinese patent medicine (Xuezhikang) | HPLC (Cosmosil 5C18-MS- II, 26cm × 4.6 mm, 5 μm, Methanol:Water (75:25, v/v), UV detector 237 nm) | Monacolin K (lactone) | Not less than 2.5 mg per capsule | ||
Functional red yeast rice QB/T 2847-2007 | Functional food | RP-HPLC (C18, 250 mm × 4.6 mm, Methanol:Water: Phosphoric acid (385:115:0.14, v/v), UV detector 238 nm) | Monacolin K (lactone and acid) | The sum of monacolin K lactone and acid ≥0.40% | [81] |
The standard of Chinese herbal medicine of Yunnan province (2005) | Chinese Herbal Medicine (Hongqu) | HPLC (Cosmosil 5C18-MS- II, Acetonitrile-Methanol-0.1% Phosphoric acid (60:5:35, v/v), UV detector 238 nm) | Monacolin K (lactone) | ≥0.40% | [82] |
The standard of Chinese herbal medicine of Fujian province (2009) | Chinese Herbal Medicine (Hongqu) | No request | No request | No request | [83] |
The standard of Chinese herbal medicine of Henan province (1991) | Chinese Herbal Medicine (Hongqu) | No request | No request | No request | [84] |
The standard of Chinese herbal medicine of Hubei province (2009) | Chinese Herbal Medicine (Hongqu) | No request | No request | No request | [85] |
The standard of Chinese herbal medicine of Beijing (1998) | Chinese Herbal Medicine (Hongqu) | No request | No request | No request | [86] |
The standard of Chinese herbal medicine of Shandong Province (2012) | Chinese Medicine Yinpian (Hongqu Mi) | No request | No request | No request | [87] |
Standard for Chinese Medicine Yinpian Processing of Sichuan Province (2015) | Chinese Medicine Yinpian (Hongqu) | HPLC (Cosmosil 5C18-MS- II, Acetonitrile-Methanol-0.1% Phosphoric acid (55:5:40, v/v), UV detector 238 nm) | Monacolin K (lactone) | ≥0.40% | [88] |
Standard for Chinese Medicine Yinpian Processing of Zhejiang Province (2015) | Chinese Medicine Yinpian (Hongqu) | HPLC (Cosmosil 5C18-MS- II, Acetonitrile-Methanol-0.1% Phosphoric acid (55:5:40, v/v), UV detector 238 nm) | Monacolin K (lactone and acid) | Total ≥ 0.30%; The peak area of acid monacolin K is not less than 5% of the lactone monacolin K peak area | [89] |
Standard for Chinese Medicine Yinpian Processing of Hunan Province (2010) | Chinese Medicine Yinpian (Hongqu) | No request | No request | No request | [90] |
Standard for Chinese Medicine Yinpian Processing of Heilongjiang Province (2012) | Chinese Medicine Yinpian (Hongqu) | No request | No request | No request | [91] |
Standard for Chinese Medicine Yinpian Processing of Hebei Province (2003) | Chinese Medicine Yinpian (Hongqu) | No request | No request | No request | [92] |
Standard for Chinese Medicine Yinpian Processing of Beijing (2008) | Chinese Medicine Yinpian (Hongqu) | No request | No request | No request | [93] |
Standard for Chinese Medicine Yinpian Processing of Chongqing (2008) | Chinese Medicine Yinpian (Hongqu) | No request | No request | No request | [94] |
Standard for Chinese Medicine Yinpian Processing of Shanghai Province (2008) | Chinese Medicine Yinpian (Hongqu) | No request | No request | No request | [95] |
Standard for Chinese Medicine Yinpian Processing of Shandong Province (2012) | Chinese Medicine Yinpian (Hongqu Mi) | No request | No request | No request | [96] |
Standard for Chinese Medicine Yinpian Processing of Henan Province (2005) | Chinese Medicine Yinpian (Hongqu Mi) | No request | No request | No request | [97] |
Standard for Chinese Medicine Yinpian Processing of Tianjin (2018) | Chinese Medicine Yinpian (Hongqu Mi) | No request | No request | No request | [98] |
Standard for Chinese Medicine Yinpian Processing of Fujian Province (2012) | Chinese Medicine Yinpian (Hongqu Mi) | No request | No request | No request | [99] |
Detection Methods | Detection Conditions | Detection Index | Ref. |
---|---|---|---|
UHPLC–QQQ-MS, UHPLC-Q-TOF-MS | ACQUITY UHPLC BEH C18 (100 mm × 2.1 mm, 1.7 μm); A:0.1% formic acid in water; B:0.1% formic acid in acetonitrile; 0–12 min, 20–80% B; 12–14 min, 80–100% B; 14–16 min, 100% B; 0.35 mL/min; 40 °C; Q-TOF-MS detector | heptaketide | [8] |
HPLC | Spherisord ODS-2 column (250 × 0.4 mm, 0.5 μm + precolumn Zorbax Reliance Cartridge); A = 0.2% phosphoric acid in water; B = acetonitrile. Gradient: A/B 65/35 to 25/75 in 20 min; A/B 25/75 to 25/75 in 28 min; 1 mL/min; DAD detector, 237 nm | Monacolin K (lactone and acid), other monacolins | [100] |
Stable isotope ratio analysis. (13C-NMR) | The 13C/12C ratio was measured (around 0.5 mg) using an isotope ratio mass spectrometer following total combustion in an elemental analyzer; MS detector | 13C/12C ratio | [101] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Luo, J.; Ma, Z.; Sun, Q.; Wu, C.; Li, X. Quality and Authenticity Control of Functional Red Yeast Rice—A Review. Molecules 2019, 24, 1944. https://doi.org/10.3390/molecules24101944
Song J, Luo J, Ma Z, Sun Q, Wu C, Li X. Quality and Authenticity Control of Functional Red Yeast Rice—A Review. Molecules. 2019; 24(10):1944. https://doi.org/10.3390/molecules24101944
Chicago/Turabian StyleSong, Jiawen, Jia Luo, Zubing Ma, Qiang Sun, Chunjie Wu, and Xiaofang Li. 2019. "Quality and Authenticity Control of Functional Red Yeast Rice—A Review" Molecules 24, no. 10: 1944. https://doi.org/10.3390/molecules24101944
APA StyleSong, J., Luo, J., Ma, Z., Sun, Q., Wu, C., & Li, X. (2019). Quality and Authenticity Control of Functional Red Yeast Rice—A Review. Molecules, 24(10), 1944. https://doi.org/10.3390/molecules24101944