Production of Stilbenes in Callus Cultures of the Maltese Indigenous Grapevine Variety, Ġellewża
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biomass Determination
2.2. Physicochemical Parameters
2.3. Qualitative Liquid Chromatography–Mass Spectrometry (LC/MS) Analysis of Polyphenolics
2.3.1. Phenolic Acid and Their Derivatives
2.3.2. Coumarins
2.3.3. Stilbenes
2.3.4. Flavonoids
2.4. Quantitative LC/MS Analysis of Polyphenolics
2.5. Principal Component Analysis (PCA)
3. Materials and Methods
3.1. Reagents and Standards
3.2. Collection of Samples
3.3. Forcing
3.4. Transfer of Cuttings to the Laboratory and Surface Sterilization
3.5. PGR-Combination Media
3.6. Extraction of Polyphenols
3.7. Physicochemical Analysis
3.8. LC/MS Method of Polyphenols Analysis
3.9. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thomas, M.R.; Van Heeswijck, R. Classification of grapevines and their interrelationships. In Viticulture-Resources, 2nd ed.; Dry, P.R., Coombe, B.G., Eds.; Winetitles: Adelaide, Australia, 2004; Volume 1, pp. 119–131. [Google Scholar]
- Borg, J. Cultivation and Diseases of Fruit Trees in the Maltese Islands, 1st ed.; Malta Government Printing Office: Valletta, Malta, 1922. [Google Scholar]
- National Statistics Office. Census of Agriculture 2010; National Statistics Office, Government Printing Press: Valletta, Malta, 2012. [Google Scholar]
- Lingua, M.S.; Fabani, M.P.; Wunderlin, D.A.; Baroni, M.V. From grape to wine: Changes in phenolic composition and its influence on antioxidant activity. Food Chem. 2016, 208, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Garrido, J.; Borges, F. Wine and grape polyphenols-A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Pantelić, M.; Dabić Zagorac, D.; Davidović, S.; Todić, S.; Bešlić, Z.; Gašić, U.; Tešić, Ž.; Natić, M. Identification and quantification of phenolic compounds in berry skin, pulp, and seeds in 13 grapevine varieties grown in Serbia. Food Chem. 2016, 211, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Catalgol, B.; Batirel, S.; Taga, Y.; Ozer, N.K. Resveratrol: French paradox revisited. Front. Pharmacol. 2012, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.; Bae, H. An Overview of Stress-Induced Resveratrol Synthesis in Grapes: Perspectives for Resveratrol-Enriched Grape Products. Molecules 2017, 22, 294. [Google Scholar] [CrossRef] [PubMed]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J.; Horník, Š.; Cuřínová, P.; Sýkora, J. Various extraction methods for obtaining stilbenes from grape cane of Vitis vinifera L. Molecules 2015, 20, 6093–6112. [Google Scholar] [CrossRef] [PubMed]
- Giannetto, S.C.; Caruana, R.; La Notte, P.; Costacurta, A.; Crespan, M. A survey of Maltese grapevine germplasm using SSR markers. Am. J. Enol. Vitic. 2010, 61, 419–424. [Google Scholar]
- Ananga, A.; Georgiev, V.; Ochieng, J.; Phills, B.; Tsolova, V. Production of anthocyanins in grape cell cultures: A potential source of raw material for pharmaceutical, food, and cosmetic industries. In The Mediterranean Genetic Code–Grapevine and Olive, 1st ed.; Puljuha, D., Sladonja, B., Eds.; IntechOpen: Rijeka, Croatia, 2013; pp. 247–288. [Google Scholar]
- Theuma, M.G.; Gambin, C.; Attard, E. Physicochemical characteristics of the Maltese grapevine varieties. J. Agric. Sci. 2015, 7, 61–67. [Google Scholar]
- Weathers, P.J.; Towler, M.J.; Xu, J. Bench to batch: Advances in plant cell culture for producing useful products. Appl. Microbiol. Biotechnol. 2010, 85, 1339–1351. [Google Scholar] [CrossRef]
- Smetanska, I. Sustainable production of polyphenols and antioxidants by plant in vitro cultures. In Bioprocessing of Plant In Vitro Systems, 1st ed.; Pavlov, A., Bley, T., Eds.; Springer: Cham, Switzerland, 2018; pp. 1–45. [Google Scholar]
- Matkowski, A. Plant in vitro culture for the production of antioxidants—A review. Biotechnol. Adv. 2008, 26, 548–560. [Google Scholar] [CrossRef]
- Murashige, T.S. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Roubelakis-Angelakis, K.A.; Katsirdakis, K.C. In vitro micromultiplication of grapevine: Effect of age, genotype and culture conditions on induction of callus in Vitis spp. leaf segments. In Plant Ageing: Basic and Applied Approaches, 1st ed.; Rodríguez, R., Tamés, R.S., Durzan, D., Eds.; Plenum Press: New York, NY, USA, 1990; pp. 89–95. [Google Scholar]
- Bruno, G.; Sparapano, L.; Graniti, A. Effects on Plants of Metabolites Produced in Culture by Phaeoacremonium chlamydosporum, P. aleophilum and Fomitiporia punctata. Phytopathol. Mediterr. 2006, 39, 169–177. [Google Scholar]
- Glories, Y. La couleur des Vins rouges. 2a partie. Connaiss. Vigne Vin 1984, 18, 253–271. [Google Scholar]
- Sák, M.; Dokupilová, I.; Mihálik, D.; Lakatošová, J.; Gubišová, M.; Kraic, J. Elicitation Phenolic Compounds in Cell Culture of Vitis vinifera L. by Phaeomoniella chlamydospora. Nova Biotechnol. Chim. 2014, 13, 162–171. [Google Scholar] [CrossRef]
- Portu, J.; Santamaria, P.; Lopez-Alfaro, I.; Lopez, R.; Garde-Cerdan, T. Methyl jasmonate foliar application to Tempranillo vineyard improved grape and wine phenolic content. J. Agric. Food Chem. 2015, 63, 2328–2337. [Google Scholar] [CrossRef] [PubMed]
- Cetin, E.S. Induction of secondary metabolite production by UV-C radiation in Vitis vinifera L. Öküzgözü callus cultures. Biol. Res. 2014, 47, 37. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, C.; Yang, C.; Wang, L.; Li, S. Effect of grape genotype and tissue type on callus growth and production of resveratrols and their piceids after UV-C irradiation. Food Chem. 2010, 122, 475–481. [Google Scholar] [CrossRef]
- Jug, T.; Rusjan, D. Advantages and disadvantages of UV-B radiations on Grapevine, (Vitis sp.). Emir. J. Food Agric. 2012, 24, 576–585. [Google Scholar] [CrossRef]
- Mihai, R.; Mitoi, M.; Brezeanu, A.; Coglaniceanu, G. Two-stage system, a possible strategy for the enhancement of anthocyanin biosynthesis in a long-term grape callus culture. Rom. Biotechnol. Lett. 2010, 15, 5025–5033. [Google Scholar]
- Ferri, M.; Righetti, L.; Tassoni, A. Increasing sucrose concentrations promote phenylpropanoid biosynthesis in grapevine cell cultures. J. Plant Physiol. 2011, 168, 189–195. [Google Scholar] [CrossRef]
- Lazar, A.; Petolescu, C. Experimental results concerning the effect of sucrose concentration on cell biomass and synthesized anthocyanin amount in the callus culture. J. Hortic. For. 2012, 16, 91–99. [Google Scholar]
- Karaaslana, M.O. Phenolic fortification of yogurt using grape and callus extracts. LWT Food Sci. Technol. 2011, 44, 1065–1072. [Google Scholar] [CrossRef]
- Moss, R.; Mao, Q.; Taylor, D.; Saucier, C. Investigation of monomeric and oligomeric wine stilbenoids in red wines by ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1815–1827. [Google Scholar] [CrossRef]
- Hashim, S.N.N.S.; Schwarz, L.J.; Danylec, B.; Potdar, M.K.; Boysen, R.I.; Hearn, M.T.W. Selectivity mapping of the binding sites of (E)-resveratrol imprinted polymers using structurally diverse polyphenolic compounds present in Pinot noir grape skins. Talanta 2016, 161, 425–436. [Google Scholar] [CrossRef]
- Chen, J.J.; He, S.; Mao, H.; Sun, C.R.; Pan, Y.J. Characterization of polyphenol compounds from the roots and stems of Parthenocissus laetevirens by high-performance liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 737–744. [Google Scholar] [CrossRef]
- Pawlus, A.D.; Waffo-Téguo, P.; Saver, J.; Mérillon, J.M. Stilbenoid chemistry from wine and the genus Vitis, a review. J. Int. Sci. Vigne Vin 2012, 46, 57–111. [Google Scholar] [CrossRef]
- Chen, Q.; Diao, L.; Song, H.; Zhu, X. Vitis amurensis Rupr: A review of chemistry and pharmacology. Phytomedicine 2018, 49, 111–122. [Google Scholar] [CrossRef]
- Keller, M.; Steel, C.C.; Creasy, G.L. Stilbene accumulation in grapevine tissues: Developmental and environmental effects. Acta Hortic. 2000, 514, 275–286. [Google Scholar] [CrossRef]
- Keskin, N.; Kunter, B.; Yaşı, Ü.K.; Işını, U.; İnkübasyon, U. The effects of callus age, UV irradiation and incubation time on trans-resveratrol production in grapevine callus culture. Tarim Bilim. Derg. 2009, 15, 9–13. [Google Scholar] [Green Version]
- Ravagnan, G.; De Filippis, A.; Cartenì, M.; De Maria, S.; Cozza, V.; Petrazzuolo, M.; Tufano, M.A.; Donnarumma, G. Polydatin, a natural precursor of resveratrol, induces β-defensin production and reduces inflammatory response. Inflammation 2013, 36, 26–34. [Google Scholar] [CrossRef]
- Attard, E. A rapid microtitre plate Folin–Ciocalteu method for the assessment of polyphenols. Open Life Sci. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Mudrić, S.; Gašić, U.; Dramićanin, A.; Ćirić, I.; Milojković-Opsenica, D.; Popović-Đorđević, J.; Momirović, N.; Tešić, Ž. The polyphenolics and carbohydrates as indicators of botanical and geographical origin of Serbian autochthonous clones of red spice paprika. Food Chem. 2017, 217, 705–715. [Google Scholar] [CrossRef]
- Attard, E.; Scicluna-Spiteri, A. Ecballium elaterium: An in vitro Source of Cucurbitacins. Fitoterapia 2001, 72, 46–53. [Google Scholar] [CrossRef]
- Attard, E.; Attard, H.; Tanti, A.; Azzopardi, J.; Sciberras, M.; Pace, V.; Buttigieg, N.; Randon, A.M.; Rossi, B.; Parnis, M.J.; et al. The Phytochemical Constitution of Maltese Medicinal Plants-Propagation, Isolation and Pharmacological Testing. In Phytochemicals-Isolation, Characterisation and Role in Human Health, 1st ed.; Rao, A.V., Rao, L.G., Eds.; IntechOpen: Rijeka, Croatia, 2015. [Google Scholar]
- Simões, C.; Albarello, N.; Castro, T.C.; Mansur, E. Production of Anthocyanins by Plant Cell and Tissue Culture Strategies. In Biotechnological Production of Plant Secondary Metabolites, 1st ed.; Orhan, I.E., Ed.; Bentham Science Publishers: Sharjah, UAE, 2012; pp. 67–86. [Google Scholar] [Green Version]
Sample Availability: Samples of the compounds gallic acid, protocatechuic acid, p-hydroxybenzoic acid, caffeic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, catechin, isoquercetin, myricetin, luteolin, and naringenin are available from the authors. |
Weight | CI | Tonality | ANTH | PolyP | |
---|---|---|---|---|---|
g | Au | Ratio | mg/kg | mgGAE/g FW | |
B | 0.41 ± 0.13 | 2.65 ± 0.93 | 3.80 ± 0.40 | 24.09 ± 9.21 | 1.42 ± 0.35 * |
I | 3.04 ± 0.78 | 1.08 ± 0.25 | 1.00 ± 0.29 ** | 17.05 ± 6.12 | 0.57 ± 0.13 |
K | 1.25 ± 0.34 | 1.57 ± 0.19 | 2.97 ± 0.40 | 11.41 ± 0.99 | 0.74 ± 0.06 |
N | 1.97 ± 1.19 | 1.10 ± 0.26 | 1.70 ± 0.17 ** | 10.87 ± 2.90 | 0.43 ± 0.03 |
IB | 3.39 ± 0.32 | 1.23 ± 0.19 | 3.48 ± 0.51 | 8.33 ± 1.53 | 0.97 ± 0.13 * |
IK | 1.97 ± 0.45 | 2.25 ± 0.64 | 3.79 ± 0.77 | 13.75 ± 2.23 | 0.96 ± 0.12 * |
NB | 1.21 ± 0.48 | 3.45 ± 0.68 | 3.74 ± 0.53 | 22.93 ± 5.79 | 1.31 ± 0.07 * |
NK | 1.09 ± 0.60 | 2.06 ± 0.54 | 3.17 ± 0.42 | 19.78 ± 7.33 | 0.95 ± 0.05 * |
MSm | 0.91 ± 0.00 | 0.00 ± 0.00 ** | 2.06 ± 0.00 | 0.00 ± 0.00 | 0.62 ± 0.00 |
No | Compound Name | tR, min | Molecular Formula, [M − H]– | Calculated Mass, [M − H]– | Exact Mass, [M − H]– | Δ mDa | MS2 Fragments, (% Base Peak) | MS3 Fragments, (% Base Peak) | MS4 Fragments, (% Base Peak) |
---|---|---|---|---|---|---|---|---|---|
Phenolic acid and their derivatives | |||||||||
1 | Dihydroxybenzoic acid hexoside | 3.03 | C13H15O9– | 315.07216 | 315.06992 | 2.24 | 1532(100), 152(50), 109(15), 108(10) | 109(100) | 123(25), 109(10), 85(10), 81(100) |
2 | Hydroxybenzoic acid hexoside isomer 1 | 4.10 | C13H15O8– | 299.07724 | 299.07623 | 1.01 | 239(70), 209(20), 179(80), 137(100) | 93(100) | − |
3 | Protocatechuic acid 1 | 4.41 | C7H5O4– | 153.01933 | 153.01825 | 1.08 | 109(100), 95(75), 79(20), 59(10) | 81(100), 68(25), 65(15) | − |
4 | Hydroxybenzoic acid hexoside isomer 2 | 4.71 | C13H15O8– | 299.07724 | 299.07644 | 0.80 | 137(100) | 93(100) | − |
5 | Gentisic acid 1 | 5.07 | C7H5O4– | 153.01933 | 153.01825 | 1.08 | 109(100), 107(5) | 95(10), 81(100), 65(70) | − |
6 | p-Hydroxybenzoic acid 1 | 5.40 | C7H5O3– | 137.02442 | 137.02364 | 0.78 | 109(10), 93(100) | 93(10) | − |
7 | p-Hydroxyphenylacetic acid 1 | 5.65 | C8H7O3– | 151.04007 | 151.03912 | 0.95 | 136(100), 95(5) | 108(25), 92(100) | 108(100) |
8 | Caffeic acid 1 | 5.83 | C9H7O4− | 179.03498 | 179.03366 | 1.32 | 135(100), 117(10), 91(20), 59(15) | 107(100), 59(50) | − |
9 | Vanillic acid 1 | 5.90 | C8H7O4– | 167.03498 | 167.03384 | 1.14 | 153(10), 152(80), 124(10), 123(100), 108(20) | 108(100) | 79(100) |
10 | Syringic acid 1 | 6.03 | C9H9O5− | 197.04555 | 197.04439 | 1.16 | 182(100), 153(50), 138(10) | 167(100), 138(10), 123(5) | 123(100) |
11 | p-Coumaric acid 1 | 6.75 | C9H7O3– | 163.04007 | 163.03917 | 0.90 | 119(100) | 119(60), 101(20), 93(25), 91(100), 72(10) | − |
12 | Ferulic acid 1 | 7.12 | C10H9O4– | 193.05063 | 193.04951 | 1.12 | 178(70), 149(100), 134(50) | 134(100) | 106(100) |
Coumarins | |||||||||
13 | Aesculin (Aesculetin 6-O-glucoside) 1 | 4.94 | C15H15O9– | 339.07216 | 339.07004 | 2.12 | 177(100) | 177(5), 149(10), 133(100), 105(10), 89(5) | 89(100) |
14 | Aesculetin 1 | 5.82 | C9H5O4– | 177.01933 | 177.01828 | 1.05 | 147(10), 135(100), 133(60), 131(40), 105(10) | 107(40), 91(100) | − |
Stilbenes | |||||||||
15 | Resveratrol hexoside isomer 1 | 5.92 | C20H21O8− | 389.12419 | 389.12232 | 1.87 | 227(100), 211(15) | 185(100), 183(40), 159(35), 157(30), 143(20) | − |
16 | Resveratrol 3,5-O-dihexoside | 6.01 | C26H31O13− | 551.17701 | 551.17462 | 2.39 | 389(100), 227(15) | 227(100) | 185(100), 183(40), 159(35), 157(30), 143(20) |
17 | Polydatin (Resveratrol 3-O-glucoside) 1 | 6.45 | C20H21O8− | 389.12419 | 389.12253 | 1.66 | 227(100) | 185(100), 183(40), 159(35), 157(30), 143(20) | 167(5), 157(10), 143(100), 117(5) |
18 | Resveratrol hexoside isomer 2 | 7.11 | C20H21O8− | 389.12419 | 389.12220 | 1.99 | 227(100) | 185(100), 183(40), 159(35), 157(30), 143(20) | − |
19 | Resveratrol dimer hexoside isomer 1 | 7.83 | C34H31O11− | 615.18719 | 615.18396 | 3.23 | 453(100) | 435(20), 411(10), 369(10), 359(100), 347(40) | 341(40), 331(50), 317(100), 315(80), 291(80) |
20 | trans-Resveratrol 1 | 8.01 | C14H11O3− | 227.07137 | 227.06966 | 1.71 | 185(100), 159(30), 143(20) | 157(10), 143(100), 117(5) | 115(100) |
21 | Resveratrol trimer isomer 1 | 8.21 | C42H31O9− | 679.19736 | 679.19421 | 3.15 | 585(100), 491(10) | 491(100), 479(20), 385(10) | 473(40), 447(30), 421(20), 397(25), 385(100) |
22 | Resveratrol dimer hexoside isomer 2 | 8.39 | C34H31O11− | 615.18719 | 615.18329 | 3.90 | 453(100) | 435(100), 411(70), 409(40), 369(80), 359(30) | 435(10), 417(60), 407(40), 393(60), 391(100) |
23 | Resveratrol tetramer | 8.46 | C56H41O12− | 905.26035 | 905.25562 | 4.73 | 811(100), 717(50), 451(15), 359(15) | 717(100), 357(10) | 699(50), 675(100), 623(30), 611(60), 357(80) |
24 | Resveratrol dimer | 8.97 | C28H21O6− | 453.13436 | 453.13235 | 2.01 | 435(10), 369(10), 359(30), 347(100), 333(40) | 329(10), 305(20), 253(100), 240(30), 225(10) | 225(100), 209(10) |
25 | Resveratrol trimer isomer 2 | 9.13 | C42H31O9− | 679.19736 | 679.19434 | 3.02 | 661(70), 637(20), 585(100), 573(90), 451(35) | 567(90), 543(50), 491(70), 479(100), 347(20) | 461(70), 435(75), 385(100), 355(40), 327(30) |
26 | Resveratrol trimer isomer 3 | 9.39 | C42H29O9− | 677.18171 | 677.17877 | 2.94 | 571(100), 529(10), 501(20), 465(30), 437(20) | 529(30), 501(70), 465(100), 437(30), 423(20) | 447(10), 437(30), 423(100), 421(60), 371(40) |
27 | Resveratrol trimer isomer 4 | 9.54 | C42H31O9− | 679.19736 | 679.19391 | 3.45 | 661(70), 637(30), 585(100), 573(80), 451(40) | 567(90), 543(40), 491(70), 479(100), 347(25) | 461(100), 435(65), 385(90), 355(20), 327(20) |
28 | Resveratrol trimer isomer 5 | 9.86 | C42H31O9− | 679.19736 | 679.19409 | 3.27 | 661(70), 637(15), 585(25), 573(40), 359(100) | 341(50), 331(20), 317(100), 315(80), 289(70) | 299(10), 289(40), 275(100), 273(70), 261(25) |
Flavonoids | |||||||||
29 | Catechin 1 | 5.39 | C15H13O6– | 289.07176 | 289.06973 | 2.03 | 271(5), 245(100), 205(40), 179(15), 125(5) | 227(30), 203(100), 187(25), 175(10), 161(20) | 188(70), 185(20), 175(100), 161(40), 157(10) |
30 | Isoquercetin (Quercetin 3-O-glucoside) 1 | 6.80 | C21H19O12– | 463.08820 | 463.08472 | 3.48 | 301(100), 300(30) | 273(25), 257(20), 179(100), 151(75) | 151(100) |
31 | Myricetin 1 | 8.38 | C15H9O8− | 317.03029 | 317.02823 | 2.06 | 299(10), 273(35), 207(100), 163(95) | 179(100), 151(15) | 151(100) |
32 | Luteolin 1 | 8.79 | C15H9O6− | 285.04046 | 285.03799 | 2.47 | 257(40), 241(100), 217(50), 199(70), 175(70) | 255(50), 227(100), 211(75), 197(35), 183(85) | − |
33 | Naringenin 1 | 9.64 | C15H11O5− | 271.06120 | 271.05905 | 2.15 | 177(10), 151(100) | 107(100) | 65(100) |
No | Compound Name (µg/g FW) | B | I | K | N | IB | IK | NB | NK | MSm |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acid and their derivatives | ||||||||||
1 | Dihydroxybenzoic acid hexoside 2 | 0.37 | 0.06 | 0.08 | 0.01 | 1.00 | 0.34 | 0.52 | 0.30 | 0.05 |
2 | Hydroxybenzoic acid hexoside isomer 1 2 | 1.89 | 0.32 | 0.19 | 0.36 | 0.32 | 0.21 | 2.27 | 1.66 | 0.07 |
3 | Protocatechuic acid 1 | 0.25 | 0.19 | 0.85 | 0.09 | 0.13 | 0.20 | 0.19 | 0.27 | 0.75 |
4 | Hydroxybenzoic acid hexoside isomer 2 2 | – | – | 0.01 | – | 0.17 | 0.13 | 0.48 | 0.57 | – |
5 | Gentisic acid 1 | 0.56 | 0.96 | 0.22 | 0.25 | 1.03 | 1.01 | 0.67 | 0.51 | 0.75 |
6 | p-Hydroxybenzoic acid 1 | 0.32 | 0.12 | 0.17 | 0.11 | 0.18 | 0.31 | 0.52 | 0.36 | 0.07 |
7 | p-Hydroxyphenylacetic acid 1 | 0.01 | 0.02 | 0.01 | – | 0.01 | – | 0.01 | – | 0.01 |
8 | Caffeic acid 1 | 0.06 | 0.09 | 0.11 | 0.08 | 0.06 | 0.11 | 0.13 | 0.09 | 0.07 |
9 | Vanillic acid 1 | 0.01 | 0.05 | 0.03 | 0.05 | 0.02 | 0.02 | 0.01 | 0.02 | 0.01 |
10 | Syringic acid 1 | 0.08 | 0.08 | 0.09 | 0.08 | – | 0.08 | 0.09 | 0.08 | – |
11 | p-Coumaric acid 1 | 0.06 | 0.04 | 0.08 | 0.06 | 0.10 | 0.15 | 0.07 | 0.07 | 0.03 |
12 | Ferulic acid 1 | 0.02 | 0.02 | 0.01 | 0.03 | 0.02 | 0.02 | 0.03 | 0.02 | 0.01 |
Coumarins | ||||||||||
13 | Aesculin (Aesculetin 6-O-glucoside) 1 | 0.28 | – | 0.30 | 0.01 | 0.03 | 0.06 | 0.04 | 0.03 | – |
14 | Aesculetin 1 | 0.01 | 0.01 | 0.02 | 0.01 | – | – | – | – | 0.01 |
Stilbenes | ||||||||||
15 | Resveratrol hexoside isomer 1 3 | – | – | 0.01 | – | 0.01 | – | 0.02 | – | 0.01 |
16 | Resveratrol 3,5-O-dihexoside 3 | 0.20 | 0.08 | 0.30 | 0.28 | 0.26 | 0.40 | 0.25 | 0.41 | 0.30 |
17 | Polydatin (Resveratrol 3-O-glucoside) 1 | 0.34 | 4.10 | 2.49 | 1.14 | 8.67 | 1.93 | 4.27 | 1.58 | 3.43 |
18 | Resveratrol hexoside isomer 2 3 | 0.38 | 1.10 | 0.63 | 0.46 | 0.71 | 0.53 | 0.47 | 0.25 | 0.65 |
19 | Resveratrol dimer hexoside isomer 1 3 | 0.19 | 0.06 | 0.24 | 0.02 | 0.29 | 0.11 | 0.88 | 0.05 | 0.05 |
20 | trans-Resveratrol 1 | 0.55 | 0.05 | 0.39 | 0.01 | 0.70 | 0.45 | 0.37 | 0.24 | 0.16 |
21 | Resveratrol trimer isomer 1 3 | 0.33 | – | 0.23 | – | 0.38 | 0.91 | 0.08 | 0.03 | 0.01 |
22 | Resveratrol dimer hexoside isomer 2 3 | 0.20 | 0.05 | 0.19 | 0.02 | 1.02 | 0.46 | 0.23 | 0.08 | 0.05 |
23 | Resveratrol tetramer 3 | 0.52 | – | 0.19 | – | 0.14 | 0.22 | 0.82 | 0.27 | – |
24 | Resveratrol dimer 3 | 2.30 | – | 1.58 | 0.02 | 1.08 | 2.28 | 1.32 | 0.18 | 0.03 |
25 | Resveratrol trimer isomer 2 3 | 3.32 | 0.01 | 1.69 | 0.01 | 0.71 | 2.73 | 2.55 | 0.10 | – |
26 | Resveratrol trimer isomer 3 3 | 7.23 | 0.05 | 3.85 | 0.01 | 2.31 | 5.33 | 2.60 | 0.32 | 0.04 |
27 | Resveratrol trimer isomer 4 3 | 1.10 | – | 0.30 | – | 0.28 | 0.43 | 0.90 | 0.08 | 0.01 |
28 | Resveratrol trimer isomer 5 3 | 0.80 | – | 0.11 | – | 0.06 | 0.93 | 0.36 | 0.36 | 0.01 |
Flavonoids | ||||||||||
29 | Catechin 1 | 0.15 | 1.04 | 0.11 | 0.14 | 0.78 | 0.10 | 0.41 | 0.12 | 0.09 |
30 | Isoquercetin (Quercetin 3-O-glucoside) 1 | – | 1.04 | 0.12 | 0.11 | 0.18 | 0.10 | 0.13 | 0.08 | 0.26 |
31 | Myricetin 1 | – | – | 0.17 | – | – | – | – | – | – |
32 | Luteolin 1 | 0.04 | 0.10 | 0.04 | 0.02 | 0.03 | 0.03 | 0.04 | 0.03 | – |
33 | Naringenin 1 | 0.01 | 0.08 | 0.01 | – | 0.01 | 0.04 | 0.04 | 0.02 | – |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonello, M.; Gašić, U.; Tešić, Ž.; Attard, E. Production of Stilbenes in Callus Cultures of the Maltese Indigenous Grapevine Variety, Ġellewża. Molecules 2019, 24, 2112. https://doi.org/10.3390/molecules24112112
Bonello M, Gašić U, Tešić Ž, Attard E. Production of Stilbenes in Callus Cultures of the Maltese Indigenous Grapevine Variety, Ġellewża. Molecules. 2019; 24(11):2112. https://doi.org/10.3390/molecules24112112
Chicago/Turabian StyleBonello, Mariella, Uroš Gašić, Živoslav Tešić, and Everaldo Attard. 2019. "Production of Stilbenes in Callus Cultures of the Maltese Indigenous Grapevine Variety, Ġellewża" Molecules 24, no. 11: 2112. https://doi.org/10.3390/molecules24112112
APA StyleBonello, M., Gašić, U., Tešić, Ž., & Attard, E. (2019). Production of Stilbenes in Callus Cultures of the Maltese Indigenous Grapevine Variety, Ġellewża. Molecules, 24(11), 2112. https://doi.org/10.3390/molecules24112112