In Vitro Human Metabolism and Inhibition Potency of Verbascoside for CYP Enzymes
Abstract
:1. Introduction
2. Results
2.1. Identification of Verbascoside through Ultra-High-Performance Liquid Chromatography Quadrupole Time-Of-Flight Mass Spectrometry (UHPLC-QTOF-MS)
2.2. In Vitro Metabolism of Verbascoside
2.3. Inhibition of CYP Activities by Verbascoside
2.4. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Inhibitory Activity of Verbascoside
2.5. Nitric Oxide (NO) Inhibitory Activity of Verbascoside
2.6. Cellular Antiproliferative Activity of Verbascoside
3. Discussion
4. Materials and Methods
4.1. Cell Lines, Chemicals, and Reagents
4.2. In Vitro Metabolism and Identification of Verbascoside through UHPLC-QTOF-MS
4.3. Inhibition of Placental (CYP1A1), Microsomal, and Recombinant (CYP1A2, CYP2A6, CYP3A4, CYP1B1, CYP2C19, and CYP2D6) Oxidation by Verbascoside
4.4. Inhibition of Placental CYP19A1 Oxidation
4.5. DPPH Inhibitory Activity of Verbascoside
4.6. NO Inhibitory Activity of Verbascoside
4.7. Cellular Antiproliferative Activity of Verbascoside
5. Statistical Analysis
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jimenez, C.; Riguera, R. Phenylethanoid glycosides in plants: Structure and biological activity. Nat. Prod. Rep. 1994, 11, 591–606. [Google Scholar] [CrossRef] [PubMed]
- Dembitsky, V.M. Astonishing diversity of natural surfactants: 5. Biologically active glycosides of aromatic metabolites. Lipids 2005, 40, 869–900. [Google Scholar] [CrossRef] [PubMed]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside- a review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Cheimondi, C.; Samara, P.; Polychronopoulos, P.; Tsakiri, E.N.; Nikou, T.; Myrianthopoulos, V.; Sakellaropolous, T.; Zoumporlis, V.; Mikros, E.; Papassideri, I.; et al. Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol. 2018, 16, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, P.; Alipieva, K.; Stojanov, K.; Milanova, V.; Georgiev, M.I. Plant-derived verbascoside and isoverbascoside regulat Toll-like receptor 2 and 4-driven neutrophils priming and activation. Phytomedicine 2019, 55, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Nektarios, A.; Sofia, M.; Eugenia, T.; Catherine, H.; Ioannis, T.; Stavros, L.; Serko, H. Advanced research on acteoside for chemistry and bioactivities. J. Agric. Food. Chem. 2003, 13, 449–464. [Google Scholar]
- Olivier, D.K.; Shikanga, E.A.; Combrinck, S.; Krause, R.W.M.; Regnier, T.; Dlamini, T.P. Phenylethanoid glycosides from Lippia javanica. S. Afr. J. Bot. 2010, 76, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Gan, L.; Li, G.Q.; Deng, L.; Zhang, X.; Deng, Y. Pharmacokinetics of plantamajoside and acteoside from Plantago asiatica in rats by liquid chromatography- mass spectrometry. J Pharm. Biomed. Anal. 2014, 89, 251–256. [Google Scholar] [CrossRef]
- Qi, M.; Xiong, A.; Li, P.; Yang, Q.; Yang, L.; Wang, Z. Identification of acteoside and its major metabolites in rat urine by ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Chromatogr. B 2013, 940, 77–85. [Google Scholar] [CrossRef]
- Cui, Q.; Pan, Y.; Xu, X.; Zhang, W.; Wu, X.; Qu, S.; Liu, X. The metabolic profile of acteoside produced by human or rat intestinal bacteria or intestinal enzyme in vitro employed UPLC-QTOF-MS. Fitoterapia 2016, 109, 67–74. [Google Scholar] [CrossRef]
- Fasinu, P.S.; Bouic, P.J.; Rosenkranz, B. An overview of the evidence and mechanisms of herb-drug interactions. Front. Pharmacol. 2012. [Google Scholar] [CrossRef] [PubMed]
- Mayur, B.; Sandesh, S.; Shruti, S.; Sung-Yum, S. Antioxidant and α-glucosidase inhibitory properties of Carpesium abrotanoides. J. Med. Plants Res. 2010, 4, 1547–1553. [Google Scholar]
- Li, Y.; Zhou, G.; Peng, Y.; Tu, P.; Li, X. Screening and identification of three typical phenylethanoid glycosides metabolites from Cistanches Herba by human intestinal bacteria using UPLC/Q-TOF-MS. J. Pharm. Biomed. Anal. 2016, 118, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.J.; Woo, E.; Choi, C.Y.; Shin, D.W.; Lee, D.G.; You, H.J.; Jeong, H.G. Effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci. 2004, 74, 1051–1064. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Shiou, L.Y.; Chien, M.Y.; Hou, W.; Hu, M. Antioxidant and antihypertensive activities of acteoside and its analogs. Bot. Stud. 2012, 53, 421–429. [Google Scholar]
- Koo, K.A.; Kim, S.H.; Oh, T.H.; Kim, Y.C. Acteoside and its aglycones protect primary cultures of rat cortical cells from glutamate-induced excitotoxicity. Life Sci. 2006, 79, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Speranza, L.; Franceschelli, S.; Pesce, M.; Reale, M.; Menghini, L.; Vinciguerra, I.; De Lutiis, M.A.; Felaco, M. Antiinflammatory effects of THP-1 cells treated with verbascoside. Phytother. Res. 2010, 24, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Paola, R.D.I.; Oteri, G.; Mazzon, E.; Crisafulli, C. Effects of verbascoside, biotechnically purified by Syringa vulgaris plant cell cultures, in a rodent model of periodontitis. J. Pharm. Pharmacogn. 2011, 63, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Etemad, L.; Zafari, R.; Vahdati-Mashhadian, N.; Moallem, S.A.; Shirvan, Z.O.; Hosseinzadeh, H. Acute, sub-acute and cell toxicity of verbascoside. Res. J. Med. Plants 2015, 9, 354–360. [Google Scholar]
- Lee, J.Y.; Woo, E.R.; Kang, K.W. Inhibition of lipopolysaccharide-inducible nitric oxide synthase expression by acteoside through blocking of AP-1 activation. J. Ethnopharmacol. 2005, 97, 565–566. [Google Scholar] [CrossRef]
- Sipahi, H.; Gostner, J.M.; Becker, K.; Charehsaz, M.; Kirmizibekmez, H.; Schennach, H.; Aydin, A.; Fuchs, D. Bioactivities of two common polyphenolic compounds: Verbascoside and catechin. Pharm Biol. 2014, 54, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Niinivehmas, S.; Postila, P.A.; Rauhamäki, S.; Manivannan, E.; Kortet, S.; Ahinko, M.; Huuskonen, P.; Nyberg, N.; Koskimies, P.; Latti, S.; et al. Blocking oestradiol synthesis pathways with potent and selective coumarin derivatives. J. Enzyme Inhib. Med. Chem. 2018, 33, 743–754. [Google Scholar] [CrossRef] [Green Version]
- Rauhamäki, S.; Postila, P.A.; Niinivehmas, S.; Kortet, S.; Schildt, E.; Pasanen, M.; Manivannan, E.; Ahinko, M.; Koskimies, P.; Nyberg, N.; et al. Structure-Activity Relationship Analysis of 3-Phenylcoumarin-Based Monoamine Oxidase B Inhibitors. Front. Chem. 2018, 6, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Juvonen, R.O.; Ahinko, M.; Husskonen, J.; Raunio, H.; Pentikainen, O.P. Development of new coumarin-based profluorescent substrates for human cytochrome P450 enzymes. Xenobiotica 2018. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.A.; Gielen, J.E.; Nebert, D. W. Genetic evidence for many unique liver microsomal P-450-mediated Monooxygenase activities in heterogeneic stock mice. J. Biol. Chem. 1981, 256, 12068–12075. [Google Scholar] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the qualification of migrogram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Huuskonen, P.; Auriola, S.; Pasanen, M. Zearalenone metabolism in human placental subcellar organelles, JEG-3 cells, and recombinant CYP19A1. Placenta 2015, 36, 1052–1055. [Google Scholar] [CrossRef] [PubMed]
- Huuskonen, P.; Amezaga, M.R.; Bellingham, M.; Jones, L.H.; Storvik, M.; Hakkinen, M.; Keski-Nisula, L.; Heinonen, S.; O’Shaughnessy, P.J.; Fowler, P.A.; et al. The human placental proteome is affected by maternal smoking. Reproductive Toxicol. 2016, 63, 22–31. [Google Scholar] [CrossRef]
- Crespi, C.L.; Miller, V.P.; Penman, B.W. Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal Biochem. 1997, 248, 188–190. [Google Scholar] [CrossRef]
- White, R.E. High-throughput screening in drug metabolism and pharmacokinetic support for drug discovery. Annu. Rev. Pharmacol. Toxicol. 2000, 40, 133–157. [Google Scholar] [CrossRef]
- Pasanen, M. Human placental aromatase activity: Use of a C18 reversed-phase catridge for separation of tritiated water or steroid metabolites in placentas from both smoking and non-smoking mothers in vitro. Biol. Res. Pregnancy Perinatol. 1985, 6, 94–99. [Google Scholar] [PubMed]
- Berrington, D.; Lall, N. Anticancer activity of certain herbs and spices on the cervical epithelial carcinoma (HeLa) cell line. Evid. Based Complementary Altern. Med. 2012. [Google Scholar] [CrossRef] [PubMed]
- Twilley, D.; Kishore, N.; Meyer, D.; Moodley, I.; Kumar, V.; Lall, N. The effect of Helichrysum odoratissimum (L.) Sweet on cancer cell proliferation and cytokine production. J. Pharmacog. Phytochem. Res. 2017, 9, 621–631. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Metabolite | RT (min) | Calculated Mass | Formula | m/z | Δ Mass (ppm) | Score of Isotopic Pattern Matching |
---|---|---|---|---|---|---|
Verbascoside | 4.762 | 624.2054 | C29H36O15 | 623.1989 | 1.17 | 99.6 |
Methyl conjugation | ||||||
VM1 | 5.25 | 638.2211 | C30H38O15 | 637.2141 | 0.40 | 96.1 |
VM2 | 5.336 | 638.2211 | C30H38O15 | 637.2137 | −0.40 | 98.7 |
VM3 | 5.438 | 638.2211 | C30H38O15 | 637.2130 | −1.39 | 84.9 |
VM4 | 5.603 | 638.2211 | C30H38O15 | 637.2134 | −0.68 | 95.2 |
VM5 | 5.734 | 638.2211 | C30H38O15 | 637.2132 | −0.93 | 94.2 |
Sulfonation conjugation | ||||||
VS1 | 4.516 | 704.1622 | C29H36O18S | 703.1557 | 1.08 | 99.0 |
VS2 | 4.773 | 704.1622 | C29H36O18S | 703.1561 | 1.64 | 66.9 |
VS3 | 4.976 | 704.1622 | C29H36O18S | 703.1551 | 0.25 | 85.2 |
Glucuronide conjugation | ||||||
VG1 | 3.96 | 800.2375 | C35H43O21 | 799.2306 | 0.51 | 94.5 |
VG2 | 4.49 | 800.2375 | C35H43O21 | 799.2313 | 1.27 | 91.5 |
VG3 | 4.76 | 800.2375 | C35H43O21 | 799.2313 | 1.43 | 99.0 |
Recombinant CYP | Microsomal | ||
---|---|---|---|
CYP Enzyme | Substrates | IC50 (µM) with 95% confidence intervals | IC50 (µM) with 95% Confidence Intervals |
CYP 1A1 | TFD024 | N/A a | 350 (0–870) |
CYP 1A2 | OCA349 | 83 (21–144) | 24 (0–48) |
CYP 1B1 | TFD008_1 | 86 (71–101) | No inhibition b |
CYP 2A6 | coumarin | No inhibition | 135 (92–180) |
CYP 2C19 | TFD032 | Stimulation c | |
CYP 2D6 | TFD023 | 131 (37–225) | 96 (21–171) |
CYP 3A4 | OCA369 | 314 (0–953) | 76 (24–129) |
CYP 19A1 | Androstendione d | N/A | No inhibition |
Sample | DPPH IC50 a (µM) | NO IC50 (µM) | Peripheral Blood Mononuclear Cell (PBMC) IC50 (µM) | HepG2 IC50 (µM) |
---|---|---|---|---|
Verbascoside | 2.50 ± 0.02 | 382.01 ± 4.15 | 169.55 ± 3.73 | >640.42 |
Ascorbic acid b | 43.72 ± 1.12 | 143.94 ± 3.30 | -c | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reid, A.-M.; Juvonen, R.; Huuskonen, P.; Lehtonen, M.; Pasanen, M.; Lall, N. In Vitro Human Metabolism and Inhibition Potency of Verbascoside for CYP Enzymes. Molecules 2019, 24, 2191. https://doi.org/10.3390/molecules24112191
Reid A-M, Juvonen R, Huuskonen P, Lehtonen M, Pasanen M, Lall N. In Vitro Human Metabolism and Inhibition Potency of Verbascoside for CYP Enzymes. Molecules. 2019; 24(11):2191. https://doi.org/10.3390/molecules24112191
Chicago/Turabian StyleReid, Anna-Mari, Risto Juvonen, Pasi Huuskonen, Marko Lehtonen, Markku Pasanen, and Namrita Lall. 2019. "In Vitro Human Metabolism and Inhibition Potency of Verbascoside for CYP Enzymes" Molecules 24, no. 11: 2191. https://doi.org/10.3390/molecules24112191
APA StyleReid, A. -M., Juvonen, R., Huuskonen, P., Lehtonen, M., Pasanen, M., & Lall, N. (2019). In Vitro Human Metabolism and Inhibition Potency of Verbascoside for CYP Enzymes. Molecules, 24(11), 2191. https://doi.org/10.3390/molecules24112191