Synthesis of a Novel Zn-Salphen Building Block and Its Acrylic Terpolymer Counterparts as Tunable Supramolecular Recognition Systems
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Zn-Salphen Complex, 1
2.2. Synthesis and Characterization of Poly[(Zn-Salphen)x%-stat-(nBuA)-stat-(MMA)] Terpolymers 2 and 3
2.3. Supramolecular Recognition Studies
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of Zn-Salphen Complex, 1
3.3. Solvent Free Radical Polymerization
3.4. Supramolecular Recognition Studies
3.4.1. Preparation of the Evaluation Platforms
3.4.2. Analytical Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ciavardini, A.; Dalla Cort, A.; Fornarini, S.; Scuderi, D.; Giardini, A.; Forte, G.; Bodo, E.; Piccirillo, P. Adenosine monophosphate recognition by zinc–salophen complexes: IRMPD spectroscopy and quantum modeling study. J. Mol. Spectrosc. 2017, 335, 108–116. [Google Scholar] [CrossRef]
- Sabaté, F.; Giannicchi, I.; Acón, L.; Dalla Cort, A.; Rodríguez, L. Anion selectivity of Zn–salophen receptors: influence of ligand substituents. Inorg. Chim. Acta 2015, 434, 1–6. [Google Scholar] [CrossRef]
- Asatkar, A.K.; Senanayak, S.P.; Bedi, A.; Panda, S.; Narayan, K.S.; Zade, S.S. Zn(II) and Cu(II) complexes of a new thiophene-based salphen-type ligand: solution-processable high-performance field-effect transistor materials. Chem. Commun. 2014, 50, 7036–7039. [Google Scholar] [CrossRef]
- Zhao, J.; Dang, F.; Liu, B.; Wu, Y.; Yang, X.; Zhou, G.; Wu, Z.; Wong, W.-Y. Bis-ZnII salphen complexes bearing pyridyl functionalized ligands for efficient organic light-emitting diodes (OLEDs). Dalton Trans. 2017, 46, 6098–6110. [Google Scholar] [CrossRef]
- Germino, J.C.; de Freitas, J.N.; Domingues, R.A.; Quites, F.J.; Faleiros, M.M.; Atvars, T.D.Z. Organic light-emitting diodes based on PVK and Zn(II) salicylidene composites. Synthetic Met. 2018, 241, 7–16. [Google Scholar] [CrossRef]
- Gonawala, S.; Leopoldino, V.R.; Kpogo, K.; Verani, C.N. Langmuir–Blodgett films of salophen-based metallosurfactants as surface pretreatment coatings for corrosion mitigation. Chem. Commun. 2016, 52, 11155–11158. [Google Scholar] [CrossRef]
- Masar, M.S., III; Gianneschi, N.C.; Oliveri, C.G.; Stern, C.L.; Nguyen, S.T.; Mirkin, C.A. Allosterically regulated supramolecular catalysis of acyl transfer reactions for signal amplification and detection of small molecules. J. Am. Chem. Soc. 2007, 129, 10149–10158. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, S.; Pan, M.; Meng, Y. Activities comparison of Schiff base zinc and tri-zinc complexes for alternating copolymerization of CO2 and epoxides. Polym. Chem. 2014, 5, 3838–3846. [Google Scholar] [CrossRef]
- Kuil, M.; Goudriaan, P.E.; Kleij, A.W.; Tooke, D.M.; Spek, A.L.; van Leeuwen, P.W.N.M.; Reek, J.N.H. Rigid bis-zinc(II) salphen building blocks for the formation of template-assisted bidentate ligands and their application in catalysis. Dalton Trans. 2007, 2311–2320. [Google Scholar] [CrossRef]
- Vivas, M.G.; Germinio, J.C.; Barboza, C.A.; Vazquez, P.A.M.; De Boni, L.; Atvars, T.D.Z.; Mendonça, C.R. Excited-state and two-photon absorption in salicylidene molecules: the role of Zn(II) planarization. J. Phys. Chem. C 2016, 120, 4032–4039. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, X.; Zhang, X.; Ou, X.; Zhang, W.; Jie, J.; Chang, J.C.; Lee, C.-S.; Lee, S.-T. Facile one-step fabrication of ordered organic nanowire films. Adv. Mater. 2009, 21, 4172–4175. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Failla, S.; Malandrino, G.; Di Bella, S. Controlling the molecular self-assembly into nanofibers of amphiphilic zinc(II) salophen complexes. J. Phys. Chem. C 2013, 117, 15335–15341. [Google Scholar] [CrossRef]
- Martínez Belmonte, M.; Escudero-Adán, E.C.; Martin, E.; Kleij, A.W. Isolation and characterization of unusual multinuclear Schiff base complexes: rearrangements reactions and octanuclear cluster formation. Dalton Trans. 2012, 41, 5193–5200. [Google Scholar] [CrossRef]
- Whiteoak, C.J.; Salassa, G.; Kleij, A.W. Recent advances with π-conjugated salen systems. Chem. Soc. Rev. 2012, 41, 622–631. [Google Scholar] [CrossRef]
- Escárcega-Bobadilla, M.V.; Anselmo, D.; Wezenberg, S.J.; Escudero-Adán, E.C.; Martínez Belmonte, M.; Martin, E.; Kleij, A.W. Metal-directed assembly of chiral bis-Zn(II) Schiff base structures. Dalton Trans. 2012, 41, 9766–9772. [Google Scholar] [CrossRef]
- Piccino, M.; Angulo-Pachón, C.A.; Ballester, P.; Escuder, B.; Dalla Cort, A. Rational design of a supramolecular gel based on a Zn(II)–salophen bis-dipeptide derivative. RSC Adv. 2016, 6, 57306–57309. [Google Scholar] [CrossRef]
- Kuil, M.; Puijk, I.M.; Kleij, A.W.; Tooke, D.M.; Spek, A.M.; Reek, J.N.H. The assembly of supramolecular boxes and coordination polymers based on bis-zinc-salphen building blocks. Chem. Asian J. 2009, 4, 50–57. [Google Scholar] [CrossRef]
- Hui, J.K.-H.; Yu, Z.; MacLachlan, M. Supramolecular assembly of zinc salphen complexes: access to metal-containing gels and nanofibers. Angew. Chem. Int. Ed. 2007, 46, 7980–7983. [Google Scholar] [CrossRef]
- Oliveri, I.P.; Malandrino, G.; Di Bella, S. Self-assembled nanostructures of amphiphilic zinc(II) salophen complexes: role of the solvent on their structure and morphology. Dalton Trans. 2014, 43, 10208–10214. [Google Scholar] [CrossRef]
- Cano, M.; Rodríguez, L.; Lima, J.C.; Pina, F.; Dalla Cort, A.; Pasquini, C.; Schiaffino, L. Specific supramolecular interactions between Zn2+-salophen complexes and biologically relevant anions. Inorg. Chem. 2009, 48, 6229–6235. [Google Scholar] [CrossRef]
- Dong, J.; Tan, C.; Zhang, K.; Liu, Y.; Low, P.J.; Jiang, J.; Cui, Y. Chiral NH-controlled supramolecular metallacycles. J. Am. Chem. Soc. 2017, 139, 1554–1564. [Google Scholar] [CrossRef]
- Escárcega-Bobadilla, M.V.; Kleij, A.W. Artificial chirogenesis: a gateway to new opportunities in material science and catalysis. Chem. Sci. 2012, 3, 2421–2428. [Google Scholar] [CrossRef]
- Jurček, O.; Cametti, M.; Pontini, M.; Kolehmainen, E.; Rissanen, K. A zinc–salophen/bile-acid conjugate receptor solubilized by CTABr micelles binds phosphate in water. Org. Biomol. Chem. 2013, 11, 4585–4590. [Google Scholar] [CrossRef]
- Van Leeuwen, P.W.N.M. Supramolecular Catalysis, 1st ed.; Wiley: Weinheim, Germany, 2008. [Google Scholar]
- Anselmo, D.; Gramage-Doria, R.; Besset, T.; Escárcega-Bobadilla, M.V.; Salassa, G.; Escudero-Adán, E.C.; Martínez Belmonte, M.; Martin, E.; Reek, J.N.H.; Kleij, A.W. Supramolecular bulky phosphines comprising 1,3,5-triaza-7-phosphaadamantane and Zn(salphen)s: structural features and application in hydrosilylation catalysis. Dalton Trans. 2013, 42, 7595–7603. [Google Scholar] [CrossRef] [Green Version]
- Escárcega-Bobadilla, M.V.; Martínez Belmonte, M.; Martin, E.; Escudero-Adán, E.C.; Kleij, A.W. A recyclable trinuclear bifunctional catalyst derived from a tetraoxo bis-Zn(salphen) metalloligand. Chem. Eur. J. 2013, 19, 2641–2648. [Google Scholar] [CrossRef]
- Escárcega-Bobadilla, M.V.; Zelada-Guillén, G.A.; Pyrlin, S.V.; Wegrzyn, M.; Ramos, M.M.D.; Giménez, E.; Stewart, A.; Maier, G.; Kleij, A.W. Nanorings and rods interconnected by self-assembly mimicking an artificial network of neurons. Nat. Commun. 2013, 4, 2648. [Google Scholar] [CrossRef]
- Zelada-Guillén, G.A.; Escárcega-Bobadilla, M.V.; Wegrzyn, M.; Giménez, E.; Maier, G.; Kleij, A.W. Enhanced conductivity for carbon nanotube based materials through supramolecular hierarchical self-assembly. Adv. Mater. Interfaces. 2018, 5, 1701585. [Google Scholar] [CrossRef]
- Yagi, K.; Ito, M.; Houjou, H. Facile preparation of a fully π–conjugated metallopolymer composed of fused salphen complexes. Macromol. Rapid Commun. 2012, 33, 540–544. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Y.; Song, P.; Cai, Y.; Guo, Q.; Fang, Z.; Peng, M. A novel zinc chelate complex containing both phosphorus and nitrogen for improving the flame retardancy of low density polyethylene. J. Anal. Appl. Pyrolysis. 2011, 92, 339–346. [Google Scholar] [CrossRef]
- Mazlan, N.-F.; Tan, L.L.; Karim, N.H.A.; Heng, L.Y.; Jamaluddin, N.D.; Yusof, N.Y.M.; Quay, D.H.X.; Khalid, B. Acrylic-based genosensor utilizing metal salphen labeling approach for reflectometric dengue virus detection. Talanta 2019, 198, 358–370. [Google Scholar] [CrossRef]
- Germino, J.C.; Quites, F.J.; Faria, G.C.; Ramos, R.J.; Atvars, T.D.Z. Improving the electroluminescence of [Zn(salophen)(OH2)] in polyfluorene-based light-emitting diode: the role of energy transfer and charge recombination. J. Braz. Chem. Soc. 2016, 27, 295–302. [Google Scholar] [CrossRef]
- Leung, A.C.W.; MacLachlan, M.J. Poly(salphenyleneethynylene)s: soluble, conjugated metallopolymers that exhibit unique supramolecular crosslinking behavior. J. Mater. Chem. 2007, 17, 1923–1932. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, S.; Tong, W.-L.; Chan, M.C.W. Poly(Zn-salphen)-alt-(p-phenyleneethynylene)s as dynamic helical metallopolymers: luminescent properties and conformational behavior. Macromolecules. 2017, 50, 6896–6902. [Google Scholar] [CrossRef]
- Iio, K.; Yamasaki, S.; Tasaki, S.; Kudoh, H.; Matsunaga, M. Radical polymerization of allylbiguanidine. J. Polym. Sci. Pol. Chem. 2004, 42, 1707–1711. [Google Scholar] [CrossRef]
- Heng, L.Y.; Hall, E.A.H. Producing “self-plasticizing” ion-selective membranes. Anal. Chem. 2000, 72, 42–51. [Google Scholar] [CrossRef]
- Kubisiak, M.; Zelga, K.; Bury, W.; Justyniak, I.; Budny-Godlewski, K.; Ochal, Z.; Lewiński, J. Development of zinc alkyl/air systems as radical initiators for organic reactions. Chem. Sci. 2015, 6, 3102–3108. [Google Scholar] [CrossRef] [Green Version]
- Laible, R.C. Allyl polymerizations. Chem. Rev. 1958, 58, 807–843. [Google Scholar] [CrossRef]
- White, R.P.; Lipson, J.E.G. Polymer free volume and its connection to the glass transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef]
- Kämpfe, A.; Kroke, E.; Wagler, J. Hypercoordinate silicon complexes of (O,N,N’ vs. O,N,O’) Schiff base type N-(2-carbamidophenyl)imines: examples of exclusively O-silylated carbamides. Eur. J. Inorg. Chem. 2009, 1027–1035. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Copolymer | ÐM | |||
---|---|---|---|---|
2 | 71,029 | 20,887 | 3.4 | 169 |
3 | 81,197 | 48,103 | 1.7 | 384 |
4 | 84,378 | 21,194 | 4.0 | 175 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zelada-Guillén, G.A.; Cuéllar-Sánchez, A.B.; Romero-Ávila, M.; Escárcega-Bobadilla, M.V. Synthesis of a Novel Zn-Salphen Building Block and Its Acrylic Terpolymer Counterparts as Tunable Supramolecular Recognition Systems. Molecules 2019, 24, 2245. https://doi.org/10.3390/molecules24122245
Zelada-Guillén GA, Cuéllar-Sánchez AB, Romero-Ávila M, Escárcega-Bobadilla MV. Synthesis of a Novel Zn-Salphen Building Block and Its Acrylic Terpolymer Counterparts as Tunable Supramolecular Recognition Systems. Molecules. 2019; 24(12):2245. https://doi.org/10.3390/molecules24122245
Chicago/Turabian StyleZelada-Guillén, Gustavo A., Ana B. Cuéllar-Sánchez, Margarita Romero-Ávila, and Martha V. Escárcega-Bobadilla. 2019. "Synthesis of a Novel Zn-Salphen Building Block and Its Acrylic Terpolymer Counterparts as Tunable Supramolecular Recognition Systems" Molecules 24, no. 12: 2245. https://doi.org/10.3390/molecules24122245
APA StyleZelada-Guillén, G. A., Cuéllar-Sánchez, A. B., Romero-Ávila, M., & Escárcega-Bobadilla, M. V. (2019). Synthesis of a Novel Zn-Salphen Building Block and Its Acrylic Terpolymer Counterparts as Tunable Supramolecular Recognition Systems. Molecules, 24(12), 2245. https://doi.org/10.3390/molecules24122245