Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Phlojodicarpus sibiricus Organs and Their Influence on Triacylglycerol Content in 3T3-L1 Preadipocytes
2.2. Khellactone Derivatives and Other Coumarins as the Main Phenolics of P. sibiricus: HPLC-DAD-ESI-QQQ-MS/MS Profile of Root and Herb Extracts
2.2.1. Khellactone and It Esters
2.2.2. Khellactone Glucosides
2.2.3. Coumarins with Various Structures
2.2.4. Phenylpropanoids and Flavonoids
2.3. Quantification Assay for Seven Coumarins and One Caffeoylquinic Acid in P. sibiricus Plant Organs and Remedies by Microcolumn HPLC-UV
2.4. Siberian Populations of P. sibiricus: Comparision of HPLC and Principal Component Analysis Data
2.5. Dihydrosamidin as an Antiobesity Principle of P. sibiricus Roots
3. Materials and Methods
3.1. Plant Materials and Chemicals
3.2. Chemical Composition Analysis
3.3. Total Coumarin Content Spectrophotometric Assay
3.4. Inhibition of Triacylglycerol Accumulation in Differentiated 3T3-L1 Adipocytes
3.5. Total Extract, Fractions and Decoction Preparation
3.6. HPLC-DAD-ESI-QQQ-MS/MS Profiling Condition
3.7. Microcolumn HPLC-UV (mc-HPLC-UV) Quantification Condition
3.8. Method Validation
3.9. Statistical and Multivariative Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moro, C.O.; Basile, U.G. Obesity and medicinal plants. Fitoterapia 2000, 71, S73–S82. [Google Scholar] [CrossRef]
- Hasani-Ranjbar, S.; Jouyandeh, Z.; Abdollahi, M. A systematic review of antiobesity medicinal plants – an update. J. Diabet. Metabol. Disod. 2013, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Taira, N.; Nugara, R.N.; Inafuku, M.; Takara, K.; Ogi, T.; Ichiba, T.; Iwasaki, H.; Okabe, T.; Oku, H. In vivo and in vitro anti-obesity activities of dihydropyranocoumarins derivatives from Peucedanum japonicum Thunb. J. Funct. Foods 2017, 29, 19–28. [Google Scholar] [CrossRef]
- Peschkova, G.A. (Ed.) Flora of Siberia. Volume 10: Vol. 10: Geraniaceae-Cornaceae; Taylor & Francis Inc.: London, UK, 2006; pp. 1–314. ISBN 1578081092. [Google Scholar]
- Sarker, S.D.; Nahar, L. Progress in the chemistry of naturally occurring coumarins. Prog. Chem. Org. Nat. Prod. 2017, 106, 241–304. [Google Scholar] [CrossRef] [PubMed]
- Nikonov, G.K.; Vandyshev, V.V. Visnadin—A new component of the plant genus Phlojodicarpus. Chem. Nat. Comp. 1969, 5, 101–102. [Google Scholar] [CrossRef]
- Babilev, F.V.; Nikonov, G.K. Coumarins of the roots of Phlojodicarpus villosus Turcz. Chem. Nat. Comp. 1965, 1, 278–279. [Google Scholar] [CrossRef]
- Antonova, O.K.; Shemeryankin, B.V. Coumarins of the roots of Phlojodicarpus sibiricus. Chem. Nat. Comp. 1982, 17, 588. [Google Scholar] [CrossRef]
- Gantimur, D.; Syrchina, A.I.; Semenov, A.A. Khellactone derivatives from Phlojodicarpus sibiricus. Chem. Nat. Comp. 1986, 22, 103–104. [Google Scholar] [CrossRef]
- Gantimur, D.; Semenov, A.A. Coumarins from Phlojodicarpus sibiricus. Chem. Nat. Comp. 1981, 17, 41–43. [Google Scholar] [CrossRef]
- Gantimur, D.; Syrchina, A.I.; Semenov, A.A. New glycosides from plants of the genus Phlojodicarpus. Chem. Nat. Comp. 1986, 22, 32–35. [Google Scholar] [CrossRef]
- Gantimur, D.; Syrchina, A.I.; Semenov, A.A. Isoimperatorin from Phlojodicarpus sibiricus. Chem. Nat. Comp. 1986, 22, 104–105. [Google Scholar] [CrossRef]
- Shul’ts, E.E.; Ganbaatar, Z.; Petrova, T.N.; Shakirov, M.M.; Bagryanskaya, I.Y.; Taraskin, V.V.; Radnaeva, L.D.; Otgonsuren, D.; Pokrovskii, A.G.; Tolstikov, G.A. Plant coumarins. IX. Phenolic compounds of Ferulopsis hystrix growing in Mongolia. Cytotoxic activity of 8,9-dihydrofurocoumarins. Chem. Nat. Comp. 2012, 48, 211–217. [Google Scholar] [CrossRef]
- Gantimur, D.; Syrchina, A.I.; Semenov, A.A. A peucedanol glucoside from Phlojodicarpus turczaninovii. Chem. Nat. Comp. 1985, 21, 177–179. [Google Scholar] [CrossRef]
- Gantimur, D.; Semenov, A.A. Coumarins of Phlojodicarpus villosus. Chem. Nat. Comp. 1984, 20, 362. [Google Scholar] [CrossRef]
- Rusakova, L.M. (Ed.) Traditions and Innovations in Life and Culture of the Siberian Peoples; SD RAS: Novosibirsk, Russia, 1983; pp. 120–131. [Google Scholar]
- Mikhailova, V.T. (Ed.) Traditions of the Buryat Cuisine; Printhouse L.T.: Ulan-Ude, Russia, 2008; pp. 52–54. [Google Scholar]
- Kuznetsova, L.V.; Mikhaleva, L.G.; Zakharova, V.I. (Eds.) Atlas of Medical Plants of Yakutia. Volume 2. Medical Plants Used in Ethnomedicine; Yakutian Scientific Center: Yakutsk, Russia, 2005; pp. 2–163. ISBN 5-463-00014-x. [Google Scholar]
- Batorova, S.M.; Yakovlev, G.P.; Aseeva, T.A. Reference-Book of Traditional Tibetan Medicine Herbs; Nauka: Novosibirsk, Russia, 2013; pp. 127–129. ISBN 978-5-02-019103-7. [Google Scholar]
- Khaidav, T. Medical Plants in Mongolian Medicine; Gosizdatel’stvo: Ulan-Bator, Mongolia, 1985; pp. 204–208. [Google Scholar]
- Barnaulov, O.D.; Belenovskaya, L.M.; Medvedeva, L.I. (Eds.) Plant Resources of USSR: Flowering Plants, Chemical Components, Uses—Family Rutaceae—Elaegnaceae; Nauka: Leningrad, Russia, 1988; pp. 150–152. ISBN 5-02-026574-8. [Google Scholar]
- Turova, A.D.; Sapozhnikova, E.N. Medical Plants of USSR and Their Uses; Meditsina: Moscow, Russia, 1982; pp. 76–123. ISBN 5-89355-107-9. [Google Scholar]
- Taraskin, V.V.; Radnaeva, L.D.; Anenkhonov, O.A.; Pavlov, I.A. Fatty-acid composition of rhizomes and roots of Phlojodicarpus sibiricus and Ferulopsis hystrix. Chem. Nat. Comp. 2015, 51, 498–950. [Google Scholar] [CrossRef]
- Nugara, R.N.; Inafuku, M.; Takara, K.; Iwasaki, H.; Oku, H. Pteryxin: A coumarin in Peucedanum japonicum Thunb leaves exerts antiobesity activity through modulation of adipogenic gene network. Nutrition 2014, 30, 1177–1184. [Google Scholar] [CrossRef] [PubMed]
- Nukitrangsan, N.; Okabe, T.; Toda, T.; Inafuku, M.; Iwasaki, H.; Oku, H. Effect of Peucedanum japonicum Thunb extract on high-fat diet-induced obesity and gene expression in mice. J. Oleo Sci. 2012, 61, 89–101. [Google Scholar] [CrossRef]
- Nugara, R.N.; Inafuku, M.; Oku, H. Peucedanum japonicum Thunb and its antiobesity effects: Evidence and related mechanisms. J. Lipid Nutr. 2016, 25, 177–196. [Google Scholar] [CrossRef]
- Sahebkar, A.; Iranshahi, M. Volatile constituents of the genus Ferula (Apiaceae): A review. J. Essent. Oil Bear. Plants 2011, 14, 504–531. [Google Scholar] [CrossRef]
- Sarkhail, P. Traditional uses, phytochemistry and pharmacological properties of the genus Peucedanum: A review. J. Ethnopharmacol. 2014, 156, 235–270. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Natural medicine: The genus Angelica. Curr. Med. Chem. 2004, 11, 1479–1500. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Gangadharappa, H.V.; Mruthunjaya, K. Cuminum cyminum—A popular spice: An updated review. Pharmacogn J. 2017, 9, 292–301. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed. Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef] [PubMed]
- Stevens, B.J.H.; Selvendran, R.R. Structural features of cell-wall polysaccharides of the carrot Daucus carota. Carbohydr. Res. 1984, 128, 321–333. [Google Scholar] [CrossRef]
- González, A.G.; Barroso, J.T.; López-Dorta, H.; Luis, J.R.; Rodríguez-Luis, F. Pyranocoumarin derivatives from Seseli tortuosum. Phytochemistry 1979, 18, 1021–1023. [Google Scholar] [CrossRef]
- Malmir, M.; Gohari, A.R.; Saeidnia, S.; Ajani, Y. Coumarins from the aerial parts of Lomatopodium staurophyllum. Planta Med. 2012, 78, PI409. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, J. Determination of the absolute configuration of khellactone esters from Peucedanum japonicum Roots. J. Nat. Prod. 2017, 80, 1354–1360. [Google Scholar] [CrossRef]
- Domínguez-Mendoza, E.A.; Cornejo-Garrido, J.; Burgueño-Tapia, E.; Ordaz-Pichardo, C. Antidiabetic effect, antioxidant activity, and toxicity of 3′,4′-di-O-acetyl-cis-khellactone in streptozotocin-induced diabetic rats. Bioorg. Med. Chem. Lett. 2016, 26, 4086–4091. [Google Scholar] [CrossRef]
- Ikeshiro, Y.; Mase, I.; Tomita, Y. Dihydropyranocoumarins from roots of Peucedanum japonicum. Phytochemistry 1992, 31, 4303–4306. [Google Scholar] [CrossRef]
- Lv, H.; Luo, J.; Wang, X.; Kong, L. Application of UPLC-quadrupole-TOF-MS coupled with recycling preparative HPLC in isolation and preparation of coumarin isomers with similar polarity from Peucedanum praeruptorum. Chromatographia 2013, 76, 141–148. [Google Scholar] [CrossRef]
- Lee, J.W.; Lee, C.; Jin, Q.; Yeon, E.T.; Lee, D.; Kim, S.Y.; Han, S.B.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Pyranocoumarins from Glehnia littoralis inhibit the LPS-induced NO production in macrophage RAW 264.7 cells. Bioorg. Med. Chem. Lett. 2014, 24, 2717–2719. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, H.; Morikawa, T.; Ohgushi, T.; Ishiwada, T.; Nishida, N.; Yoshikawa, M. Inhibitors of nitric oxide production from the flowers of Angelica furcijuga: Structures of hyuganosides IV and V. Chem. Pharm. Bull. 2005, 53, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Takata, M.; Okuyama, T.; Shibata, S. Studies on coumarins of a Chinese drug, “qian-hu”; VIII. Structures of new coumarin-glycosides of “bai-hua qian-hu”. Planta Med. 1988, 54, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Abyshev, A.Z.; Isaev, N.Y.; Kerimov, Y.B. Coumarins of three species of the genus Haplophyllum. Chem. Nat. Comp. 1980, 16, 571–573. [Google Scholar] [CrossRef]
- Lemmich, J.; Havelund, S. Coumarin glycosides from Seseli montanum. Phytochemistry 1978, 17, 139–141. [Google Scholar] [CrossRef]
- Zgorka, G.; Dragan, T.; Głowniak, K.; Basiura, E. Determination of furanochromones and pyranocoumarins in drugs and Ammi visnaga fruits by combined solid-phase extraction–high performance liquid chromatography and thin-layer chromatography–high-performance liquid chromatography. J. Chromatogr. A 1998, 797, 305–309. [Google Scholar] [CrossRef]
- Kim, H.M.; Jeong, S.Y.; Kim, S.M.; Lee, K.H.; Kim, J.H.; Seong, R.S. Simultaneous determination and recognition analysis of coumarins in Angelica decursiva and Peucedanum praeruptorum by HPLC-DAD. Nat. Prod. Sci. 2016, 22, 162–167. [Google Scholar] [CrossRef]
- Leshchinskii, L.A. Clinical use of the new spasmolytic drug didimin at some diseases. Clin. Med. 1973, 51, 89–92. (In Russia) [Google Scholar]
- Sigurdsson, S.; Jonsdottir, S.; Gudbjarnason, S. Geographical variation of the furanocoumarin composition of the fruits of icelandic Angelica archangelica. Z. Naturforsch. 2012, 67c, 1–7. [Google Scholar] [CrossRef]
- Burczyk, J.; Wierzchowska-Renke, K.; Głowniak, K.; Głowniak, P.; Marek, D. Geographic and environmental influences on the variation of essential oil and coumarins in Crithmum maritimum L. J. Herbs Spices Med. Plants 2002, 9, 305–311. [Google Scholar] [CrossRef]
- Nikonov, G.K.; Avramenko, L.G.; Sharova, G.P. Synthesis of acyl derivatives of hydroxycoumarins and the relationship between their structural and spasmolytic activity. Pharm. Chem. J. 1971, 5, 657–663. [Google Scholar] [CrossRef]
- Smith, E.; Hosansky, N.; Bywater, W.G.; van Tamelen, E.E. Constitution of samidin, dihydrosamidin and visnadin. J. Am. Chem. Soc. 1957, 79, 3534–3540. [Google Scholar] [CrossRef]
- Thastrup, O.; Fjalland, B.; Lemmich, J. Coronary vasodilatory, spasmolytic and cAMP-phosphodiesterase inhibitory properties of dihydropyranocoumarins and dihydrofuranocoumarins. Acta Pharm. Toxicol. 1983, 52, 246–253. [Google Scholar] [CrossRef]
- Xie, L.; Takeuchi, Y.; Cosentino, L.M.; Lee, K.H. Anti-AIDS agents. 37. Synthesis and structure-activity relationships of (3′R,4′R)-(+)-cis-khellactone derivatives as novel potent anti-HIV agents. J. Med. Chem. 1999, 42, 2662–2672. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.Y.; Fong, W.F.; Zhang, J.X.; Leung, C.H.; Kwong, H.L.; Yang, M.S.; Li, D.; Cheung, H.Y. Reversal of multidrug resistance in cancer cells by pyranocoumarins isolated from Radix Peucedani. Eur. J. Pharmacol. 2003, 473, 9–17. [Google Scholar] [CrossRef]
- Shen, X.; Chen, G.; Zhu, G.; Cai, J.; Wang, L.; Hu, Y.; Fong, W.F. 3′-O,4′-O-Aromatic acyl substituted 7,8-pyranocoumarins: A new class of P-glycoprotein modulators. J. Pharm. Pharmacol. 2012, 64, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Kashchenko, N.I. New isorhamnetin glucosides and other phenolic compounds from Calendula officinalis. Chem. Nat. Comp. 2013, 49, 833–840. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kruglova, M.Y. A new quercetin glycoside and other phenolic compounds from the genus Filipendula. Chem. Nat. Comp. 2013, 49, 610–616. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K.; Gornostai, T.G.; Selyutina, I.Y.; Zilfikarov, I.N. Effect of low temperature cultivation on the phytochemical profile and bioactivity of Arctic plants: A case of Dracocephalum palmatum. Int. J. Molec. Sci. 2017, 18, 2579. [Google Scholar] [CrossRef]
- Chirikova, N.K.; Olennikov, D.N.; Tankhaeva, L.M. Quantitative determination of flavonoid content in the aerial parts of Baikal skullcap (Scutellaria baicalensis Georgi). Russ. J. Bioorg. Chem. 2010, 36, 915–922. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M. Quantitative determination of phenolic compounds in Mentha piperita leaves. Chem. Nat. Comp. 2010, 46, 22–27. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Tankhaeva, L.M.; Samuelsen, A.B. Quantitative analysis of polysaccharides from Plantago major using the Dreywood method. Chem. Nat. Comp. 2006, 42, 265–268. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Kashchenko, N.I.; Chirikova, N.K. Meadowsweet teas as new functional beverages: Comparative analysis of nutrients, phytochemicals and biological effects of four Filipendula species. Molecules 2017, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Tankhaeva, L.M. Lamiaceae carbohydrates. 1. Pectinic substances and hemicelluloses from Mentha × piperita. Chem. Nat. Comp. 2007, 43, 501–507. [Google Scholar] [CrossRef]
- Koyama, T.; Miyata, M.; Nishimura, T.; Yazawa, K. Suppressive effects by leaves of the Dypsis lutescens palm on fat accumulation in 3T3-L1 cells and fat absorption in mice. Biosci. Biotechnol. Biochem. 2012, 76, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Olennikov, D.N.; Chirikova, N.K.; Kashchenko, N.I.; Nikolaev, V.M.; Kim, S.-W.; Vennos, C. Bioactive phenolics of the genus Artemisia (Asteraceae): HPLC-DAD-ESI-TQ-MS/MS profile of the Siberian species and their inhibitory potential against α-amylase and α-glucosidase. Front. Pharmacol. 2018, 9, 756. [Google Scholar] [CrossRef]
Sample Availability: Samples of the plants and extracts are available from the authors. |
Extract Type | Essential Oil, mg/g a,2 | Coumarins, mg/g a,2 | Flavonoids, mg/g a,2 | CQAs, mg/g a,2 | WSPS, mg/g a,2 | PS, mg/g a,2 | TG, μg/mg Protein b,3,4 |
---|---|---|---|---|---|---|---|
P. sibiricus roots | 7.52 ± 0.31 | 108.94 ± 1.96 | Traces | Traces | 2.58 ± 0.05 | 2.27 ± 0.04 | 526.4 ± 20.5 * |
P. sibiricus herb | 2.11 ± 0.08 | 56.28 ± 1.06 | Traces | 18.62 ± 0.46 | 3.74 ± 0.07 | 2.61 ± 0.05 | 755.1 ± 35.1 * |
P. sibiricus seeds | Traces | 5.62 ± 0.10 | Traces | Traces | 2.11 ± 0.04 | 1.90 ± 0.03 | 809.7 ± 32.3 |
No | TR, min | UV Pattern 1 | Found in | Compound | Molecular Formula (m.w.) | ESI-MS Data, m/z (Intensity, %) 4 | |
---|---|---|---|---|---|---|---|
Roots | Herb | ||||||
1 | 15.03 | A | + | Umbelliferone 2 | C9H6O3 (162.1) | 185 (100) [M + Na]+, 163 (8) [M + H]+ | |
2 | 15.67 | A | + | Bergapten 2 | C12H8O4 (216.2) | 257 (5) [(M + Na) + H2O]+, 255 (47) [M + K]+, 239 (100) [M + Na]+, 217 (2) [M + H]+ | |
3 | 16.18 | A | + | Khellactone 2 | C14H14O5 (262.3) | 301 (9) [M + K]+, 285 (100) [M + Na]+, 269 (60) [M + Li]+ | |
4 | 17.35 | A | + | + | Khellactone 4′-O-methyl ester 2 | C15H16O5 (276.3) | 315 (33) [M + K]+, 299 (100) [M + Na]+, 283 (18) [M + Li]+ |
5 | 17.71 | A | + | Khellactone 4′-O-isovaleroyl/2-methylbutyroyl ester 3 | C19H22O6 (346.4) | 715 (<1) [2M + Na]+, 387 (5) [(M + Na) + H2O]+, 385 (15) [M + K]+, 369 (100) [M + Na]+, 365 (6) [(M + H) + H2O]+, 353 (12) [M + Li]+, 347 (2) [M + H]+, 267 (6) [(M + Na) – C5H10O2]+, 245 (5) [(M + H) – C5H10O2]+, 227 (<1) [(M + H) – C5H10O2 – H2O]+, 199 (<1) [(M + H) – C5H10O2 – H2O – CO]+ | |
6 | 18.24 | A | + | + | Khellactone 4′-O-acetyl ester 2 | C16H16O6 (304.4) | 343 (7) [M + K]+, 327 (100) [M + Na]+, 323 (<1) [(M + H) + H2O]+, 311 (47) [M + Li]+, 305 (<1) [M + H]+, 267 (5) [(M + Na) – C2H4O2]+, 245 (<1) [(M + H) – C2H4O2]+ |
7 | 18.63 | A | + | Khellactone 4′-O-isovaleroyl/2-methylbutyroyl ester 3 | C19H22O6 (346.4) | 715 (<1) [2M + Na]+, 387 (6) [(M + Na) + H2O]+, 385 (27) [M + K]+, 369 (100) [M + Na]+, 365 (5) [(M + H) + H2O]+, 353 (61) [M + Li]+, 347 (<1) [M + H]+, 267 (9) [(M + Na) – C5H10O2]+, 245 (1) [(M + H) – C5H10O2]+, 227 (<1) [(M + H) – C5H10O2 – H2O]+, 199 (<1) [(M + H) – C5H10O2 – H2O – CO]+ | |
8 | 19.87 | A | + | Lomatin O-isovaleroyl/2-methylbutyroyl ester 3 | C19H22O5 (330.4) | 387 (7) [(M + K)+H2O]+, 371 (1) [(M + Na)+H2O]+, 369 (63) [M + K]+, 355 (9) [(M + Li)+H2O]+, 353 (100) [M + Na]+, 349 (23) [(M + H) + H2O]+, 337 (47) [M + Li]+, 331 (7) [M + H]+, 269 (20) [(M + Na) – C5H8O]+, 247 (24) [(M + H) – C5H8O]+ | |
9 | 22.43 | A | + | Khellactone 3′,4′-di-O-acetyl ester 2 | C19H22O6 (346.4) | 387 (14) [(M + Na)+H2O]+, 385 (28) [M + K]+, 369 (100) [M + Na]+, 365 (24) [(M + H) + H2O]+, 353 (48) [M + Li]+, 347 (<1) [M + H]+, 309 (16) [(M + Na) – C2H4O2]+, 287 (12) [(M + H) – C2H4O2]+, 367 (52) [(M + Na) – C2H4O2 – C2H2O]+, 245 (16) [(M + H) – C2H4O2 – C2H2O]+, 227 (14) [(M + H) – C2H4O2 – C2H2O – H2O]+, 199 (5) [(M + H) – C2H4O2 – C2H2O – H2O – CO]+ | |
10 | 23.20 | A | + | Khellactone 4′-O-isobutyroyl ester 3 | C18H20O6 (332.4) | 371 (21) [M + K]+, 355 (100) [M + Na]+, 351 (2) [(M + H) + H2O]+, 339 (12) [M + Li]+, 245 (2) [(M + H) – C4H8O2]+ | |
11 | 24.89 | A | + | Khellactone 4′-O-angeloyl ester (d-laserpitin) 2 | C19H20O6 (344.4) | 711 (<1) [2M + Na]+, 385 (11) [(M + Na) + H2O]+, 383 (22) [M + K]+, 367 (100) [M + Na]+, 363 (7) [(M + H) + H2O]+, 351 (11) [M + Li]+, 345 (<1) [M + H]+, 267 (5) [(M + Na) – C5H8O2]+, 245 (2) [(M + H) – C5H8O2]+ | |
12 | 25.14 | A | + | + | Khellactone 3′-O-acetyl-4′-O-isobutyroyl ester (hyuganin D) 2 | C20H22O7 (374.4) | 771 (<1) [2M + Na]+, 415 (11) [(M + Na) + H2O]+, 413 (14) [M + K]+, 397 (100) [M + Na]+, 393 (16) [(M + H) + H2O]+, 381 (10) [M + Li]+, 287 (11) [(M + H) – C4H8O2]+, 245 (<1) [(M + H) – C4H8O2 – C2H2O]+, 227 (<1) [(M + H) – C4H8O2 – C2H2O – H2O]+, 199 (<1) [(M + H) – C4H8O2 – C2H2O – H2O – CO]+ |
13 | 25.27 | A | + | Khellactone 3′-O-(2-methylbutyroyl)-4′-O-acetyl ester (visnadin) 2 | C21H24O7 (388.4) | 815 (5) [2M + K]+, 799 (100) [2M + Na]+, 783 (54) [2M + Li]+, 429 (15) [(M + Na)+H2O]+, 427 (63) [M + K]+, 411 (99) [M + Na]+, 407 (6) [(M + H) + H2O]+, 395 (25) [M + Li]+, 389 (<1) [M + H]+, 351 (<1) [(M + Na) – C2H4O2]+, 329 (57) [(M + H) – C2H4O2]+, 245 (<1) [(M + H) – C2H4O2 – C5H8O]+, 227 (<1) [(M + H) – C2H4O2 – C5H8O – H2O]+, 199 (<1) [(M + H) – C2H4O2 – C5H8O – H2O – CO]+ | |
14 | 25.64 | A | + | Khellactone 3′-O-acetyl-4′-O-angeloyl ester (pteryxin) 2 | C21H22O7 (386.4) | 811 (<1) [2M + K]+, 795 (37) [2M + Na]+, 779 (11) [2M + Li]+, 427 (23) [(M + Na) + H2O]+, 425 (51) [M + K]+, 409 (100) [M + Na]+, 405 (11) [(M + H) + H2O]+, 393 (50) [M + Li]+, 387 (<1) [M + H]+, 309 (<1) [(M + Na) – C5H8O2]+, 287 (18) [(M + H) – C5H8O2]+, 245 (<1) [(M + H) – C5H8O2 – C5H6O]+, 227 (<1) [(M + H) – C5H8O2 – C5H6O – H2O]+, 199 (<1) [(M + H) – C5H8O2 – C5H6O – H2O – CO]+ | |
15 | 26.01 | A | + | + | Khellactone 3′-O-isovaleroyl-4′-O-acetyl ester (dihydrosamidin) 2 | C21H24O7 (388.4) | 815 (<1) [2M + K]+, 799 (83) [2M + Na]+, 783 (40) [2M + Li]+, 429 (23) [(M + Na) + H2O]+, 427 (55) [M + K]+, 411 (100) [M + Na]+, 407 (12) [(M + H) + H2O]+, 406 (55) [M + H2O]+, 395 (42) [M + Li]+, 388 (<1) [M + H]+, 329 (85) [(M + H) – C2H4O2]+, 245 (5) [(M + H) – C2H4O2 – C5H8O]+, 227 (<1) [(M + H) – C2H4O2 – C5H8O – H2O]+, 199 (<1) [(M + H) – C2H4O2 – C5H8O – H2O – CO]+ |
16 | 26.05 | A | + | Khellactone 3′-O-acetyl-4′-O-isovaleroyl ester (suksdorfin) 2 | C21H24O7 (388.4) | 799 (16) [2M + Na]+, 783 (2) [2M + Li]+, 429 (10) [(M + Na) + H2O]+, 427 (16) [M + K]+, 411 (100) [M + Na]+, 407 (15) [(M + H) + H2O]+, 395 (21) [M + Li]+, 309 (<1) [(M + Na) – C5H10O2]+, 287 (25) [(M + H) – C5H10O2]+, 245 (5) [(M + H) – C5H10O2 – C2H2O]+, 227 (<1) [(M + H) – C5H10O2 – C2H2O – H2O]+, 199 (<1) [(M + H) – C5H10O2 – C2H2O – H2O – CO]+ | |
17 | 27.23 | A | + | Khellactone 3′-O-acetyl-4′-O-(2-methylbutyroyl) ester (hyuganin C) 2 | C21H24O7 (388.4) | 799 (22) [2M + Na]+, 783 (15) [2M + Li]+, 429 (20) [(M + Na) + H2O]+, 427 (27) [M + K]+, 411 (100) [M + Na]+, 407 (7) [(M + H) + H2O]+, 395 (24) [M + Li]+, 309 (<1) [(M + Na) – C5H10O2]+, 287 (12) [(M + H) – C5H10O2]+, 245 (10) [(M + H) – C5H10O2 – C2H2O]+, 227 (<1) [(M + H) – C5H10O2 – C2H2O – H2O]+, 199 (<1) [(M + H) – C5H10O2 – C2H2O – H2O – CO]+ | |
18 | 27.63 | A | + | Khellactone 3′,4′-di-O-senecioyl ester 2 | C24H26O7 (426.5) | 875 (11) [2M + Na]+, 860 (7) [2M + Li]+, 467 (10) [(M + Na) + H2O]+, 465 (4) [M + K]+, 449 (100) [M + Na]+, 445 (2) [(M + H) + H2O]+, 433 (15) [M + Li]+, 427 (<1) [M + H]+, 349 (<1) [(M + Na) – C5H8O2]+, 327 (10) [(M + H) – C5H8O2]+, 245 (<1) [(M + H) – C5H8O2 – C5H6O]+ | |
19 | 27.97 | A | + | Khellactone 3′,4′-di-O-angeloyl ester (praeruptorin D) 2 | C24H26O7 (426.5) | 875 (5) [2M + Na]+, 860 (2) [2M + Li]+, 467 (16) [(M + Na) + H2O]+, 465 (17) [M + K]+, 449 (100) [M + Na]+, 445 (6) [(M + H) + H2O]+, 433 (23) [M + Li]+, 427 (<1) [M + H]+, 349 (<1) [(M + Na) – C5H8O2]+, 327 (5) [(M + H) – C5H8O2]+, 245 (<1) [(M +H) – C5H8O2 – C5H6O]+ | |
20 | 28.00 | A | + | Khellactone 3′-O-isovaleroyl/2-methylbutyroyl-4′-O- senecioyl/angeloyl ester 3 | C24H28O7 (428.5) | 895 (<1) [2M + K]+, 879 (5) [2M + Na]+, 863 (<1) [2M + Li]+, 485 (6) [(M + K) + H2O]+, 469 (22) [(M + Na) + H2O]+, 467 (15) [M + K]+, 453 (12) [(M + Li) + H2O]+, 451 (100) [M + Na]+, 446 (22) [(M + H) + H2O]+, 435 (34) [M + Li]+, 429 (<1) [M + H]+, 329 (21) [(M + H) – C5H8O2]+, 245 (24) [(M + H) – C5H8O2 – C5H8O]+, 227 (5) [(M + H) – C5H8O2 – C5H8O – H2O]+, 199 (<1) [(M + H) – C5H8O2 – C5H8O – H2O – CO]+ | |
21 | 28.19 | A | + | Khellactone 3′-O-isovaleroyl/2-methylbutyroyl-4′-O- isobuturoyl ester 3 | C23H28O7 (416.5) | 871 (<1) [2M + K]+, 855 (<1) [2M + Na]+, 473 (7) [(M + K) + H2O]+, 457 (14) [(M + Na) + H2O]+, 455 (13) [M + K]+, 441 (20) [(M + Li) + H2O]+, 439 (100) [M + Na]+, 435 (9) [(M + H) + H2O]+, 423 (20) [M + Li]+, 417 (<1) [M + H]+, 329 (28) [(M + H) – C4H8O2]+, 245 (<1) [(M + H) – C4H8O2 – C5H8O]+, 227 (12) [(M + H) – C4H8O2 – C5H8O – H2O]+ | |
22 | 28.51 | A | + | Khellactone 3′-O-senecioyl/angeloyl-4′-O-isovaleroyl/ 2-methylbutyroyl ester 3 | C24H28O7 (428.5) | 895 (<1) [2M + K]+, 879 (11) [2M + Na]+, 863 (<1) [2M + Li]+, 485 (9) [(M + K) + H2O]+, 469 (23) [(M + Na) + H2O]+, 467 (18) [M + K]+, 453 (27) [(M + Li) + H2O]+, 451 (100) [M + Na]+, 446 (24) [(M + H) + H2O]+, 435 (32) [M + Li]+, 429 (<1) [M + H]+, 327 (26) [(M + H) – C5H10O2]+, 245 (26) [(M + H) – C5H10O2 – C5H6O]+, 227 (10) [(M + H) – C5H10O2 – C5H6O – H2O]+, 199 (<1) [(M + H) – C5H10O2 – C5H6O – H2O – CO]+ | |
23 | 28.59 | A | + | Khellactone 3′,4′-di-O-isovaleroyl/2-methylbutyroyl ester / khellactone isovaleroyl-2-methylbutyroyl ester 3 | C24H30O7 (430.5) | 899 (<1) [2M + K]+, 883 (15) [2M + Na]+, 867 (2) [2M + Li]+, 487 (5) [(M + K) + H2O]+, 471 (14) [(M + Na) + H2O]+, 469 (22) [M + K]+, 455 (31) [(M + Li) + H2O]+, 453 (100) [M + Na]+, 449 (12) [(M + H) + H2O]+, 437 (35) [M + Li]+, 431 (<1) [M + H]+, 329 (22) [(M + H) – C5H10O2]+, 245 (4) [(M + H) – C5H10O2 – C5H8O]+, 227 (10) [(M + H) – C5H10O2 – C5H8O – H2O]+ | |
24 | 28.63 | A | + | Khellactone 3′,4′-di-O-isoburyoyl ester 3 | C22H26O7 (402.5) | 459 (2) [(M + K) + H2O]+, 443 (8) [(M + Na) + H2O]+, 441 (8) [M + K]+, 427 (12) [(M + Li) + H2O]+, 425 (100) [M + Na]+, 409 (63) [M + Li]+, 403 (14) [M + H]+, 315 (11) [(M + H) – C4H8O2]+, 245 (5) [(M + H) – C4H8O2 – C4H6O]+, 227 (7) [(M + H) – C4H8O2 – C4H6O – H2O]+ | |
25 | 29.02 | A | + | Khellactone 3′,4′-di-O-isovaleroyl/2-methylbutyroyl ester / khellactone isovaleroyl-2-methylbutyroyl ester 3 | C24H30O7 (430.5) | 899 (<1) [2M + K]+, 883 (16) [2M + Na]+, 867 (7) [2M + Li]+, 487 (7) [(M + K) + H2O]+, 471 (11) [(M + Na) + H2O]+, 469 (24) [M + K]+, 455 (35) [(M + Li) + H2O]+, 453 (100) [M + Na]+, 449 (10) [(M + H) + H2O]+, 437 (37) [M + Li]+, 431 (<1) [M + H]+, 329 (28) [(M + H) – C5H10O2]+, 245 (2) [(M + H) – C5H10O2 – C5H8O]+, 227 (12) [(M + H) – C5H10O2 – C5H8O – H2O]+ | |
26 | 8.32 | A | + | + | Umbelliferone-O-desoxyhexosyl-O-hexoside 3 | C20H24O12 (456.4) | 495 (21) [M + K]+, 479 (100) [M + Na]+, 475 (7) [(M + H) + H2O]+, 463 (25) [M + Li]+, 325 (9) [(M + H) – dHex]+, 185 (2) [(M + Na) – dHex – Hex]+, 163 (1) [(M +H) – dHex – Hex]+ |
27 | 8.57 | A | + | + | Umbelliferone-7-O-(6″-apiosyl)-glucoside (6″-apiosylskimmin) 2 | C20H24O12 (456.4) | 935 (<1) [2M + Na]+, 497 (35) [(M + Na) + H2O]+, 495 (39) [M + K]+, 479 (100) [M + Na]+, 475 (10) [(M + H) + H2O]+, 463 (38) [M + Li]+, 347 (<1) [(M + Na) – Api]+, 325 (8) [(M + H) – Api]+, 185 (1) [(M + Na) – Api – Glc]+, 163 (2) [(M + H) – Api – Glc]+ |
28 | 10.49 | A | + | Peucedanol-7-O-glucoside 2 | C20H26O10 (426.4) | 465 (27) [M + K]+, 449 (100) [M + Na]+, 433 (14) [M + Li]+, 427 (1) [M + H]+, 287 (2) [(M + Na) – Glc]+, 265 (10) [(M + H) – Glc]+ | |
29 | 12.53 | A | + | Peucedanol-2′-O-glucoside (tentative) 3 | C20H26O10 (426.4) | 465 (31) [M + K]+, 449 (100) [M + Na]+, 433 (12) [M + Li]+, 427 (2) [M + H]+, 287 (7) [(M + Na) – Glc]+, 265 (12) [(M + H) – Glc]+ | |
30 | 12.57 | A | + | + | Khellactone-4′-O-glucoside (tentative) 3 | C20H24O10 (424.4) | 463 (33) [M + K]+, 447 (100) [M + Na]+, 431 (14) [M + Li]+, 285 (<1) [(M + Na) – Glc]+, 263 (6) [(M + H) – Glc]+ |
31 | 13.81 | A | + | + | Khellactone-3′-O-glucoside (praeroside II) 2 | C20H24O10 (424.4) | 887 (<1) [2M + K]+, 871 (6) [2M + Na]+, 463 (69) [M + K]+, 447 (100) [M + Na]+, 431 (<1) [M + Li]+, 425 (5) [M + H]+, 285 (<1) [(M + Na) – Glc]+, 263 (3) [(M + H) – Glc]+ |
32 | 14.15 | A | + | + | Peucedanol-3′-O-glucoside 2 | C20H26O10 (426.4) | 465 (24) [M + K]+, 449 (100) [M + Na]+, 433 (26) [M + Li]+, 431 (10) [(M + Na) – H2O]+, 427 (2) [M + H]+, 305 (5) [(M + Na + H2O) – Glc]+, 287 (6) [(M + Na) – Glc]+, 283 (8) [(M + H + H2O) – Glc]+, 265 (8) [(M + H) – Glc]+ |
33 | 1.04 | B | + | 1-O-Caffeoyl-glucose 2 | C15H18O9 (342.3) | 341 (100) [M − H]−, 179 (11) [(M − H) – Glc]- | |
34 | 1.29 | B | + | 1-O-Caffeoylquinic acid 2 | C16H18O9 (354.3) | 353 (100) [M − H]−, 191 (52) [(M − H) – Caf]−, 179 (44) [Caf − H]− | |
35 | 3.61 | B | + | 6-O-Caffeoyl-glucose 2 | C15H18O9 (342.3) | 341 (100) [M − H]−, 179 (22) [(M − H) – Glc]− | |
36 | 5.82 | B | + | 5-O-Caffeoylquinic acid 2 | C16H18O9 (354.3) | 353 (100) [M − H]−, 191 (61) [(M − H) – Caf]−, 179 (37) [Caf − H]− | |
37 | 10.43 | C | + | Diosmetin-7-O-glucoside 2 | C22H22O11 (462.4) | 461 (100) [M − H]−, 299 (14) [(M − H) – Glc]−, 285 (4) [(M − H) – Glc – 14]− | |
38 | 10.71 | C | + | Chrysoeriol-7-O-glucoside 2 | C22H22O11 (462.4) | 461 (100) [M − H]−, 299 (25) [(M − H) – Glc]−, 285 (7) [(M − H) – Glc – 14]− | |
39 | 15.51 | A | + | Khellactone O-isobutyryl ester (tentative) 3 | C18H20O6 (332.4) | 371 (38) [M + K]+, 355 (100) [M + Na]+ | |
40 | 16.12 | A | + | Khellactone O-hexoside 3 | C20H24O10 (424.4) | 871 (6) [2M + Na]+, 463 (40) [M + K]+, 447 (100) [M + Na]+, 263 (2) [(M + H) – Hex]+ | |
41 | 20.75 | A | + | Khellactone 3′-O-methyl ester (tentative) 3 | C15H16O5 (276.3) | 315 (47) [M + K]+, 299 (100) [M + Na]+, 263 (2) [(M + H) – CH2]+ |
Compound b | Roots c | Herb c | Seeds c | Root Decoction d | Herb Decoction d | Root Tincture d | Herb Tincture d | Root Oil Solution d |
---|---|---|---|---|---|---|---|---|
9 | 2.52 ± 0.11 | Tr. | Tr. | N.d. | N.d. | 0.15 ± 0.00 | Tr. | 0.65 ± 0.01 |
11 | 4.70 ± 0.09 | 12.51 ± 0.24 | 2.14 ± 0.04 | N.d. | N.d. | 0.21 ± 0.00 | 0.64 ± 0.01 | 1.44 ± 0.02 |
12 | 1.49 ± 0.02 | Tr. | 0.10 ± 0.00 | N.d. | N.d. | 0.07 ± 0.00 | Tr. | 0.86 ± 0.02 |
15 | 80.14 ± 1.44 | 10.85 ± 0.21 | 12.28 ± 0.025 | 0.03 ± 0.00 | Tr. | 3.84 ± 0.08 | 0.87 ± 0.02 | 49.96 ± 0.98 |
17 | 0.53 ± 0.02 | Tr. | Tr. | Tr. | N.d. | 0.05 ± 0.00 | Tr. | Tr. |
27 | 7.47 ± 0.14 | 2.21 ± 0.04 | 0.40 ± 0.01 | 0.25 ± 0.00 | 0.04 ± 0.00 | 0.59 ± 0.01 | 0.18 ± 0.00 | N.d. |
31 | 1.39 ± 0.03 | 10.59 ± 0.22 | 0.46 ± 0.01 | 0.04 ± 0.00 | 0.30 ± 0.01 | 0.11 ± 0.00 | 0.91 ± 0.00 | N.d. |
36 | Tr. | 4.60 ± 0.09 | 0.14 ± 0.00 | Tr. | 0.12 ± 0.00 | Tr. | 0.39 ± 0.01 | N.d. |
ΣCou | 98.24 | 36.16 | 15.42 | 0.32 | 0.34 | 5.02 | 2.60 | 52.91 |
Compound | Concentration, μg/mL | TG, μg/mg Protein b |
---|---|---|
Khellactone 4′-O-angeloyl ester (d-laserpitin, 11) | 10 | 523.6 ± 20.9 * |
20 | 483.6 ± 20.7 * | |
Khellactone 3′-O-isovaleroyl-4′-O-acetyl ester (dihydrosamidin, 15) | 10 | 184.2 ± 7.3 * |
20 | 161.7 ± 6.9 * | |
Umbelliferone-7-O-(6′-apiosyl)-glucoside (6′-apiosylskimmin, 27) | 10 | 806.1 ± 32.2 |
20 | 804.5 ± 40.0 | |
Khellactone-3′-O-glucoside (praeroside II, 31) | 10 | 792.0 ± 34.5 |
20 | 763.4 ± 30.5 | |
Diosmetin-7-O-glucoside (37) | 10 | 802.6 ± 33.7 |
20 | 801.5 ± 33.0 | |
5-O-Caffeoylquinic acid (reference compound) | 10 | 286.2 ± 11.4 * |
Control (water) | - | 812.8 ± 25.1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olennikov, D.N.; Fedorov, I.A.; Kashchenko, N.I.; Chirikova, N.K.; Vennos, C. Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin. Molecules 2019, 24, 2286. https://doi.org/10.3390/molecules24122286
Olennikov DN, Fedorov IA, Kashchenko NI, Chirikova NK, Vennos C. Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin. Molecules. 2019; 24(12):2286. https://doi.org/10.3390/molecules24122286
Chicago/Turabian StyleOlennikov, Daniil N., Innokentii A. Fedorov, Nina I. Kashchenko, Nadezhda K. Chirikova, and Cecile Vennos. 2019. "Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin" Molecules 24, no. 12: 2286. https://doi.org/10.3390/molecules24122286
APA StyleOlennikov, D. N., Fedorov, I. A., Kashchenko, N. I., Chirikova, N. K., & Vennos, C. (2019). Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin. Molecules, 24(12), 2286. https://doi.org/10.3390/molecules24122286