molecules-logo

Journal Browser

Journal Browser

Biological Activities of Plant Secondary Metabolites

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (30 June 2020) | Viewed by 67463

Special Issue Editor


E-Mail Website
Guest Editor
Department of Life Sciences and Biotechnology (SVeB), University of Ferrara, Ferrara, Italy
Interests: plant secondary metabolites; chemical characterization; antimicrobial activity; antioxidant activity; cytotoxicity
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Medicinal plants have historically played an important role as a source of new drugs. Renewed scientific interest in plant secondary metabolites for drug discovery and for treating important pathologies is evident from the analysis of publications trends in several scientific databases and from the impact on the public health policies.

In this scenario, the study of the biological activity of plant derivatives, often due to the synergistic interactions of several active molecules, becomes crucial in the fight against serious diseases, such as cancer, whose cause is always multi-factorial.

In light of these premises, this Special Issue aims to collect contributions on potential of plant secondary metabolites for health applications, through the chemical characterization of standardized extracts, single compounds and their mixtures, their biological activities, such as cytotoxicity against microorganisms and human cell lines, antimicrobial, antifungal, antioxidant, anti-inflammatory effect and safety properties, such as genotoxicity and/or geno-protection.

Prof. Dr. Alessandra Guerrini
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant secondary metabolites
  • chemical characterization
  • cytotoxicity
  • biological effects

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 3412 KiB  
Article
Grape Cane Extracts as Multifunctional Rejuvenating Cosmetic Ingredient: Evaluation of Sirtuin Activity, Tyrosinase Inhibition and Bioavailability Potential
by Magdalena Anna Malinowska, Kévin Billet, Samantha Drouet, Thibaut Munsch, Marianne Unlubayir, Duangjai Tungmunnithum, Nathalie Giglioli-Guivarc’h, Christophe Hano and Arnaud Lanoue
Molecules 2020, 25(9), 2203; https://doi.org/10.3390/molecules25092203 - 8 May 2020
Cited by 35 | Viewed by 6439
Abstract
Grape canes are waste biomass of viticulture containing bioactive polyphenols valuable in cosmetics. Whereas several studies reported the cosmetic activities of E-resveratrol, only few described the potential of E-ε-viniferin, the second major constituent of grape cane extracts (GCE), and none of [...] Read more.
Grape canes are waste biomass of viticulture containing bioactive polyphenols valuable in cosmetics. Whereas several studies reported the cosmetic activities of E-resveratrol, only few described the potential of E-ε-viniferin, the second major constituent of grape cane extracts (GCE), and none of them investigated GCE as a natural blend of polyphenols for cosmetic applications. In this study, we considered the potential of GCE from polyphenol-rich grape varieties as multifunctional cosmetic ingredients. HPLC analysis was performed to quantify major polyphenols in GCE i.e., catechin, epicatechin, E-resveratrol, E-piceatannol, ampelopsin A, E-ε-viniferin, hopeaphenol, isohopeaphenol, E-miyabenol C and E-vitisin B from selected cultivars. Skin whitening potential through tyrosinase inhibition assay and the activation capacity of cell longevity protein (SIRT1) of GCE were compared to pure E-resveratrol and E-ε-viniferin. Drug-likeness of GCE polyphenols were calculated, allowing the prediction of skin permeability and bioavailability. Finally, the present data enabled the consideration of GCE from polyphenol-rich varieties as multifunctional cosmetic ingredients in accordance with green chemistry practices. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

14 pages, 1081 KiB  
Article
Bio-Guided Isolation of Prospective Bioactive Constituents from Roots of Clausena indica (Dalzell) Oliv
by Nguyen Van Quan, Tran Dang Xuan, La Hoang Anh and Hoang-Dung Tran
Molecules 2019, 24(24), 4442; https://doi.org/10.3390/molecules24244442 - 4 Dec 2019
Cited by 13 | Viewed by 4418
Abstract
Clausena indica fruits are routinely used for the culinary purpose as natural spices, whereas leaves and roots are folk medicine with various health benefits in southern China, South and Southeast Asia. In this study, the bioassay-guided fractionation by column chromatography yielded three pure [...] Read more.
Clausena indica fruits are routinely used for the culinary purpose as natural spices, whereas leaves and roots are folk medicine with various health benefits in southern China, South and Southeast Asia. In this study, the bioassay-guided fractionation by column chromatography yielded three pure compounds including dentatin, nordentatin, and clausine K and five active fractions (Re1-5) from C. indica roots. These known anticancer compounds were confirmed by X-ray diffraction, 1H-, 13C-nuclear magnetic resonance (NMR), and electrospray ionization tandem mass spectrometric (ESI-MS-MS) analyses. Meanwhile, the phytochemical constituents from fractions were identified by gas chromatography-mass spectrometry (GC-MS). The isolates, fractions’ components and their biological activities were first time investigated on C. indica. By in vitro DPPH and ABTS scavenging assays, nordentatin (IC50 = 49.2 and 69.9 µg/mL, respectively) and the fraction Re4 (32.4 and 38.5 µg/mL, respectively) showed the strongest antiradical activities, whereas clausine K presented a moderate and dentatin had negligible antioxidant activity, respectively. The anti-α-amylase activity of C. indica root extracts was mainly attributed to the fraction Re2 which inactivated the enzymatic assay with IC50 of 573.8 µg/mL. Among tested samples, only nordentatin and clausine K were effective in the pancreatic elastase inhibition, however, their influences were trivial. Markedly, clausine K and Re4 performed the most remarkable tyrosinase inhibition with IC50 values of 179.5 and 243.8 µg/mL, respectively, which were in turn 4 and 3 times stronger than myricetin (IC50 = 735.6 µg/mL), a well-known tyrosinase inhibitor. This is the first report affirming clausine K to be a new strong tyrosinase inhibitor. Isolated compounds from C. indica roots were quantified by high-performance liquid chromatography (HPLC), of which, dentatin, nordentatin, and clausine K accounted for 14.74, 6.14, and 1.28 mg/g dry weight. The findings suggest that bioactive constituents from C. indica roots may be potentially employed for the development of antidiabetic, antiaging and cosmetic agents. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

11 pages, 4247 KiB  
Article
Characterization of Composition and Antifungal Properties of Leaf Secondary Metabolites from Thirteen Cultivars of Chrysanthemum morifolium Ramat
by Huanhuan Xue, Yifan Jiang, Hongwei Zhao, Tobias G. Köllner, Sumei Chen, Fadi Chen and Feng Chen
Molecules 2019, 24(23), 4202; https://doi.org/10.3390/molecules24234202 - 20 Nov 2019
Cited by 28 | Viewed by 4178
Abstract
Chrysanthemum morifolium Ramat is an ornamental plant of worldwide cultivation. Like many other species in the family Asteraceae, C. morifolium is a rich producer of secondary metabolites. There are two objectives in this study: (I) to determine and compare the diversity of apolar [...] Read more.
Chrysanthemum morifolium Ramat is an ornamental plant of worldwide cultivation. Like many other species in the family Asteraceae, C. morifolium is a rich producer of secondary metabolites. There are two objectives in this study: (I) to determine and compare the diversity of apolar secondary metabolites among different cultivars of C. morifolium and (II) to compare their properties as antifungal agents. To attain these objectives, we selected 13 cultivars of C. morifolium that are commonly used for making chrysanthemum tea as experimental materials. Leaves at the same developmental stage were collected from respective mature plants and subjected to organic extraction. The extracts were analyzed using gas chromatography–mass spectrometry. A total of 37 apolar secondary metabolites including 26 terpenoids were detected from the 13 cultivars. These 13 cultivars can be largely divided into three chemotypes based on chemical principal components analysis. Next, the extracts from the 13 cultivars were examined in in vitro assays for their antifungal properties against three species of pathogenic fungi: Fusarium oxysporum, Magnaporthe oryzae, and Verticillium dahliae. Significant variability in antifungal activity of the leaf extracts among different cultivars was observed. The 13 cultivars can be divided into four groups based on their antifungal activities, which could be partly correlated to the contents of terpenoids. In short, this study reveals large variations in chemical composition, particularly of terpenoids, of leaf secondary metabolites among different cultivars of C. morifolium and their different abilities in functioning as antifungal agents. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

14 pages, 1474 KiB  
Article
Lasianosides A–E: New Iridoid Glucosides from the Leaves of Lasianthus verticillatus (Lour.) Merr. and Their Antioxidant Activity
by Gadah Abdulaziz Al-Hamoud, Raha Saud Orfali, Shagufta Perveen, Kenta Mizuno, Yoshio Takeda, Tatsuo Nehira, Kazuma Masuda, Sachiko Sugimoto, Yoshi Yamano, Hideaki Otsuka and Katsuyoshi Matsunami
Molecules 2019, 24(21), 3995; https://doi.org/10.3390/molecules24213995 - 5 Nov 2019
Cited by 8 | Viewed by 3371
Abstract
The genus Lasianthus (Rubiaceae) consists of approximately 180 species, of which the greatest species diversity is found in tropical Asia. Some of the Lasianthus species have been used in folk medicine to treat tinnitus, arthritis, fever, and bleeding. Lasianthus verticillatus (Lour.) Merr. (Syn. [...] Read more.
The genus Lasianthus (Rubiaceae) consists of approximately 180 species, of which the greatest species diversity is found in tropical Asia. Some of the Lasianthus species have been used in folk medicine to treat tinnitus, arthritis, fever, and bleeding. Lasianthus verticillatus (Lour.) Merr. (Syn. Lasianthus trichophlebus auct. non Hemsl.) is a shrub, branchlets terete about 1.5–3 m in height. This paper studies the chemical composition of the leaves of L. verticillatus for the first time, which resulted in the isolation of five undescribed iridoid glucosides, lasianosides A–E (15), together with three known compounds (68). The undescribed structures of isolated compounds (15) were characterized by physical and spectroscopic data analyses, including one-dimensional (1D) and two-dimensional (2D) NMR, IR, UV, and high-resolution electrospray ionization mass spectra (HR-ESI-MS). Furthermore, the electronic circular dichroism data determined the absolute configurations of the new compounds. The free radical scavenging properties of isolated compounds was assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, and their cytotoxicity was assessed toward human lung cancer cell line A549 by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Among the isolated compounds, 3 and 4 displayed potent radical scavenging activities with IC50 values of 30.2 ± 1.8 and 32.0 ± 1.2 µM, which were comparable to that of Trolox (29.2 ± 0.39 µM), respectively, while 5 possessed moderate activity with an IC50 value of 46.4 ± 2.3 µM. None of the isolated compounds exerted cytotoxicity against human cell line A549. As a result, lasianosides C, D, and E have the potential to be non-toxic safe antioxidant agents. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

10 pages, 1135 KiB  
Article
A New Benzopyranyl Cadenane Sesquiterpene and Other Antiplasmodial and Cytotoxic Metabolites from Cleistochlamys kirkii
by Stephen S. Nyandoro, Gasper Maeda, Joan J.E. Munissi, Amra Gruhonjic, Paul A. Fitzpatrick, Sofia Lindblad, Sandra Duffy, Jerry Pelletier, Fangfang Pan, Rakesh Puttreddy, Vicky M. Avery and Máté Erdélyi
Molecules 2019, 24(15), 2746; https://doi.org/10.3390/molecules24152746 - 29 Jul 2019
Cited by 14 | Viewed by 4691
Abstract
Phytochemical investigations of ethanol root bark and stem bark extracts of Cleistochlamys kirkii (Benth.) Oliv. (Annonaceae) yielded a new benzopyranyl cadinane-type sesquiterpene (cleistonol, 1) alongside 12 known compounds (213). The structures of the isolated compounds were established from [...] Read more.
Phytochemical investigations of ethanol root bark and stem bark extracts of Cleistochlamys kirkii (Benth.) Oliv. (Annonaceae) yielded a new benzopyranyl cadinane-type sesquiterpene (cleistonol, 1) alongside 12 known compounds (213). The structures of the isolated compounds were established from NMR spectroscopic and mass spectrometric analyses. Structures of compounds 5 and 10 were further confirmed by single crystal X-ray crystallographic analyses, which also established their absolute stereochemical configuration. The ethanolic crude extract of C. kirkii root bark gave 72% inhibition against the chloroquine-sensitive 3D7-strain malaria parasite Plasmodium falciparum at 0.01 μg/mL. The isolated metabolites dichamanetin, (E)-acetylmelodorinol, and cleistenolide showed IC50 = 9.3, 7.6 and 15.2 μM, respectively, against P. falciparum 3D7. Both the crude extract and the isolated compounds exhibited cytotoxicity against the triple-negative, aggressive breast cancer cell line, MDA-MB-231, with IC50 = 42.0 μg/mL (crude extract) and 9.6–30.7 μM (isolated compounds). Our findings demonstrate the potential applicability of C. kirkii as a source of antimalarial and anticancer agents. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

29 pages, 3954 KiB  
Article
Khellactone Derivatives and Other Phenolics of Phlojodicarpus sibiricus (Apiaceae): HPLC-DAD-ESI-QQQ-MS/MS and HPLC-UV Profile, and Antiobesity Potential of Dihydrosamidin
by Daniil N. Olennikov, Innokentii A. Fedorov, Nina I. Kashchenko, Nadezhda K. Chirikova and Cecile Vennos
Molecules 2019, 24(12), 2286; https://doi.org/10.3390/molecules24122286 - 19 Jun 2019
Cited by 22 | Viewed by 4500
Abstract
With obesity, the consumption of phenolic-enriched food additives as a part of traditional nutrition avoids the negative implications of eating high-calorie products. This study investigated the new herbal food additive, Phlojodicarpus sibiricus roots and herb, ubiquitously used in Siberia as a spice. Chromatographic [...] Read more.
With obesity, the consumption of phenolic-enriched food additives as a part of traditional nutrition avoids the negative implications of eating high-calorie products. This study investigated the new herbal food additive, Phlojodicarpus sibiricus roots and herb, ubiquitously used in Siberia as a spice. Chromatographic techniques such as HPLC-DAD-ESI-QQQ-MS/MS and microcolumn HPLC-UV were the basic instruments for component profiling and quantification, and antiobesity potential was investigated using a differentiated 3T3-L1 adipocytes assay. We found that the roots and herb of P. sibiricus were high-coumarin-containing additives inhibiting triacylglycerol accumulation in 3T3-L1 preadipocytes. Forty-one phenolics were detected in P. sibiricus extracts, and 35 were coumarins, including 27 khellactone derivatives present as esters and glucosides. Total coumarin content varied from 36.16 mg/g of herb to 98.24 mg/g of roots, and from 0.32 mg/mL to 52.91 mg/mL in P. sibiricus preparations. Moreover, Siberian populations of P. sibiricus were characterised by a different HPLC-based coumarin profile. The most pronounced inhibiting effect on triacylglycerol accumulation in 3T3-L1 preadipocytes was shown for dihydrosamidin (khellactone 3′-O-isovaleroyl-4′-O-acetyl ester), which was more active than other khellactone esters and glucosides. The results demonstrated that if used as a food additive Phlojodicarpus sibiricus could be a source of bioactive coumarins of the khellactone group with high antiobesity potential. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

12 pages, 674 KiB  
Article
Antioxidative and Potentially Anti-inflammatory Activity of Phenolics from Lovage Leaves Levisticum officinale Koch Elicited with Jasmonic Acid and Yeast Extract
by Urszula Złotek, Urszula Szymanowska, Łukasz Pecio, Solomiia Kozachok and Anna Jakubczyk
Molecules 2019, 24(7), 1441; https://doi.org/10.3390/molecules24071441 - 11 Apr 2019
Cited by 25 | Viewed by 5124
Abstract
The effect of elicitation with jasmonic acids (JA) and yeast extract (YE) on the production of phenolic compounds as well as the antioxidant and anti-inflammatory properties of phenolic extracts of lovage was evaluated. The analysis of phenolic compounds carried out with the UPLC-MS [...] Read more.
The effect of elicitation with jasmonic acids (JA) and yeast extract (YE) on the production of phenolic compounds as well as the antioxidant and anti-inflammatory properties of phenolic extracts of lovage was evaluated. The analysis of phenolic compounds carried out with the UPLC-MS technique indicated that rutin was the dominant flavonoid, while 5-caffeoylquinic acid was the main component in the phenolic acid fraction in the lovage leaves. The application of 10 µM JA increased the content of most of the identified phenolic compounds. The highest antioxidant activities estimated as free radical scavenging activity against ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) and reducing power were determined for the sample elicited with 10 µM JA, while this value determined as iron chelating ability was the highest for the 0.1% YE-elicited lovage. The 0.1% and 1% YE elicitation also caused significant elevation of the lipoxygenase (LOX) inhibition ability, while all the concentrations of the tested elicitors significantly improved the ability to inhibit cyclooxygenase 2 (COX2) (best results were detected for the 10 µM JA and 0.1% YE2 sample). Thus, 0.1% yeast extract and 10 µM jasmonic acid proved to be most effective in elevation of the biological activity of lovage. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

13 pages, 2623 KiB  
Article
In Vivo Gastroprotective and Antidepressant Effects of Iridoids, Verbascoside and Tenuifloroside from Castilleja tenuiflora Benth
by Ricardo López-Rodríguez, Maribel Herrera-Ruiz, Gabriela Trejo-Tapia, Blanca Eda Domínguez-Mendoza, Manasés González-Cortazar and Alejandro Zamilpa
Molecules 2019, 24(7), 1292; https://doi.org/10.3390/molecules24071292 - 2 Apr 2019
Cited by 21 | Viewed by 3888
Abstract
Stress is an important factor in the etiology of some illnesses such as gastric ulcers and depression. Castilleja tenuiflora Benth. (Orobanchaceae) is used in Mexican traditional medicine for the treatment of gastrointestinal diseases and nervous disorders. Previous studies indicated that organic extracts from [...] Read more.
Stress is an important factor in the etiology of some illnesses such as gastric ulcers and depression. Castilleja tenuiflora Benth. (Orobanchaceae) is used in Mexican traditional medicine for the treatment of gastrointestinal diseases and nervous disorders. Previous studies indicated that organic extracts from C. tenuiflora had gastroprotective effects and antidepressant activity. In this study, we aimed to evaluate the gastroprotective and antidepressant activity of fractions and isolated compounds from the methanolic extract (MECt) of C. tenuiflora in stressed mice. Chromatographic fractionation of MECt produced four fractions (FCt-1, FCt-2, CFt-3, and FCt-4) as well as four bioactive compounds which were identified using TLC, HPLC and NMR analyses. The cold restraint stress (CRS)-induced gastric ulcer model followed by the tail suspension test and the forced swim test were used to evaluate the gastroprotective effect and antidepressant activity of the extract fractions. FCt-2 and FCt-3 at 100 mg/kg had significant gastroprotective and antidepressant effects. All isolated compounds (verbascoside, teniufloroside and mixture geniposide/ musseanoside) displayed gastroprotective effects and antidepressant activity at 1 or 2 mg/kg. The above results allow us to conclude that these polyphenols and iridoids from C. tenuiflora are responsible for the gastroprotective and antidepressant effects. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

9 pages, 851 KiB  
Article
Polyacetylenes from the Roots of Swietenia macrophylla King
by Cheng-Neng Mi, Hao Wang, Hui-Qin Chen, Cai-Hong Cai, Shao-Peng Li, Wen-Li Mei and Hao-Fu Dai
Molecules 2019, 24(7), 1291; https://doi.org/10.3390/molecules24071291 - 2 Apr 2019
Cited by 10 | Viewed by 2844
Abstract
A phytochemical investigation of the roots of Swietenia macrophylla led to the isolation of seven polyacetylenes, including five new compounds (15) and two known ones (67). Their structures were elucidated by extensive spectroscopic analysis and [...] Read more.
A phytochemical investigation of the roots of Swietenia macrophylla led to the isolation of seven polyacetylenes, including five new compounds (15) and two known ones (67). Their structures were elucidated by extensive spectroscopic analysis and detailed comparison with reported data. All the isolates were tested for their cytotoxicity against the human hepatocellular carcinoma cell line BEL-7402, human myeloid leukemia cell line K562, and human gastric carcinoma cell line SGC-7901. Compounds 1 and 6 showed moderate cytotoxicity against the above three human cancer cell lines with IC50 values ranging from 14.3 to 45.4 μM. Compound 4 displayed cytotoxicity against the K562 and SGC-7901 cancer cell lines with IC50 values of 26.2 ± 0.4 and 21.9 ± 0.3 μM, respectively. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

18 pages, 4383 KiB  
Article
Triterpene Acid and Phenolics from Ancient Apples of Friuli Venezia Giulia as Nutraceutical Ingredients: LC-MS Study and In Vitro Activities
by Stefania Sut, Gokhan Zengin, Filippo Maggi, Mario Malagoli and Stefano Dall’Acqua
Molecules 2019, 24(6), 1109; https://doi.org/10.3390/molecules24061109 - 20 Mar 2019
Cited by 48 | Viewed by 5151
Abstract
Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples (‘Golden Delicious’, ‘Red Delicious’, ‘Granny Smith’ and ‘Royal Gala’). Total [...] Read more.
Triterpene acid and phenolic constituents from nine ancient varieties of apple (Malus domestica) fruits cultivated in Fanna, Friuli Venezia Giulia region, northeast Italy, were analyzed and compared with four commercial apples (‘Golden Delicious’, ‘Red Delicious’, ‘Granny Smith’ and ‘Royal Gala’). Total phenolic and flavonoid contents were measured by spectrophotometric assays. The quali-quantitative fingerprint of secondary metabolites including triterpene acid was obtained by LC-DAD-(ESI)-MS and LC-(APCI)-MS, respectively. Based on the two LC-MS datasets, multivariate analysis was used to compare the composition of ancient fruit varieties with those of four commercial apples. Significant differences related mainly to the pattern of triterpene acids were found. Pomolic, euscaphyc, maslinic and ursolic acids are the most abundant triterpene in ancient varieties pulps and peels, while ursolic and oleanolic acids were prevalent in the commercial fruits. Also, the content of the phenolic compounds phloretin-2-O-xyloglucoside and quercetin-3-O-arabinoside was greater in ancient apple varieties. The antioxidant (radical scavenging, reducing power, metal chelating and phosphomolybdenum assays) and enzyme inhibitory effects (against cholinesterase, tyrosinase, amylase and glucosidase) of the samples were investigated in vitro. Antioxidant assays showed that the peels were more active than pulps. However, all the samples exhibited similar enzyme inhibitory effects. Ancient Friuli Venezia Giulia apple cultivars can be a source of chlorogenic acid and various triterpene acids, which are known for their potential anti-inflammatory activity and beneficial effects on lipid and glucose metabolism. Our results make these ancient varieties suitable for the development of new nutraceutical ingredients. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

16 pages, 1056 KiB  
Article
Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction
by Jessica Gómez, Mario J. Simirgiotis, Beatriz Lima, Jésica D. Paredes, Carlos M. Villegas Gabutti, Carlos Gamarra-Luques, Jorge Bórquez, Lorena Luna, Graciela H. Wendel, Alejandra O. Maria, Gabriela E. Feresin and Alejandro Tapia
Molecules 2019, 24(6), 1085; https://doi.org/10.3390/molecules24061085 - 19 Mar 2019
Cited by 17 | Viewed by 4048
Abstract
The decoction of the local plant Baccharis grisebachii is used as a digestive, gastroprotective, external cicatrizing agent and antiseptic in Argentine. A lyophilized decoction (BLD) from the aerial parts of this plant was evaluated regarding its anti-ulcer, antioxidant and cytotoxic activities and the [...] Read more.
The decoction of the local plant Baccharis grisebachii is used as a digestive, gastroprotective, external cicatrizing agent and antiseptic in Argentine. A lyophilized decoction (BLD) from the aerial parts of this plant was evaluated regarding its anti-ulcer, antioxidant and cytotoxic activities and the bioactivities were supported by UHPLC-MS metabolome fingerprinting which revealed the presence of several small bioactive compounds. The antioxidant properties were evaluated by DPPH, TEAC, FRAP and lipoperoxidation inhibition in erythrocytes methods, and the antibacterial activity was evaluated according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The BLD showed a moderate free radical scavenging activity in the DPPH (EC50 = 106 µg/mL) and lipid peroxidation in erythrocytes assays (67%, at 250 µg/mL). However, the BLD had the highest gastroprotective effect at a dose of 750 mg/kg with a ninety-three percent inhibition of damage through a mechanism that involve NO and prostaglandins using the ethanol-induced gastric damage in a standard rat model. On the other hand, BLD does not induce cytotoxic changes on human tumor and no-tumor cell lines at the concentrations assayed. Regarding the metabolomic analysis, thirty-one compounds were detected and 30 identified based on UHPLC-OT-MS including twelve flavonoids, eleven cinnamic acid derivatives, one coumarin, one stilbene and two other different phenolic compounds. The results support that the medicinal decoction of Baccharis grisebachii is a valuable natural product with gastroprotective effects and with potential to improve human health that opens a pathway for the development of important phytomedicine products. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

11 pages, 689 KiB  
Article
Antimycobacterial and Nitric Oxide Production Inhibitory Activities of Triterpenes and Alkaloids from Psychotria nuda (Cham. & Schltdl.) Wawra
by Almir Ribeiro de Carvalho Junior, Rafaela Oliveira Ferreira, Michel de Souza Passos, Samyra Imad da Silva Boeno, Lorena de Lima Glória das Virgens, Thatiana Lopes Biá Ventura, Sanderson Dias Calixto, Elena Lassounskaia, Mario Geraldo de Carvalho, Raimundo Braz-Filho and Ivo Jose Curcino Vieira
Molecules 2019, 24(6), 1026; https://doi.org/10.3390/molecules24061026 - 15 Mar 2019
Cited by 15 | Viewed by 4319
Abstract
A phytochemical study of leaves and twigs of Psychotria nuda resulted in 19 compounds, including five indole alkaloids, N,N,N-trimethyltryptamine, lyaloside, strictosamide, strictosidine, and 5α-carboxystrictosidine; two flavonolignans, cinchonain Ia and cinchonain Ib; an iridoid, roseoside; a sugar, lawsofructose; a [...] Read more.
A phytochemical study of leaves and twigs of Psychotria nuda resulted in 19 compounds, including five indole alkaloids, N,N,N-trimethyltryptamine, lyaloside, strictosamide, strictosidine, and 5α-carboxystrictosidine; two flavonolignans, cinchonain Ia and cinchonain Ib; an iridoid, roseoside; a sugar, lawsofructose; a coumarin, scopoletin; a diterpene, phytol; three triterpenes, pomolic acid, spinosic acid, and rotungenic acid; and five steroids, sitosterol, stigmasterol, campesterol, β-sitosterol-3-O-β-d-glucoside, and β-stigmasterol-3-O-β-d-glucoside. Some compounds were evaluated for their in vitro activity against Mycobacterium tuberculosis and their ability to inhibit NO production by macrophages stimulated by lipopolysaccharide (LPS). The compounds pomolic acid, spinosic acid, strictosidine, and 5α-carboxystrictosidine displayed antimycobacterial activity with minimum inhibitory concentrations ranging from 7.1 to 19.2 µg/mL. These compounds showed promising inhibitory activity against NO production (IC50 3.22 to 25.5 μg/mL). 5α-carboxystrictosidine did not show cytotoxicity against macrophages RAW264.7 up to a concentration of 100 µg/mL. With the exception of strictosamide, this is the first report of the occurrence of these substances in P. nuda. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

15 pages, 1319 KiB  
Article
Hydrolysable Tannins and Biological Activities of Meriania hernandoi and Meriania nobilis (Melastomataceae)
by Claudia Lorena Valverde Malaver, Ana Julia Colmenares Dulcey, Carlos Rial, Rosa M. Varela, José M. G. Molinillo, Francisco A. Macías and José Hipólito Isaza Martínez
Molecules 2019, 24(4), 746; https://doi.org/10.3390/molecules24040746 - 19 Feb 2019
Cited by 7 | Viewed by 3822
Abstract
A bio-guided study of leaf extracts allowed the isolation of two new macrobicyclic hydrolysable tannins, namely merianin A (1) and merianin B (2), and oct-1-en-3-yl β-xylopyranosyl-(1”-6’)-β-glucopyranoside (3) from Meriania hernandoi, in addition to [...] Read more.
A bio-guided study of leaf extracts allowed the isolation of two new macrobicyclic hydrolysable tannins, namely merianin A (1) and merianin B (2), and oct-1-en-3-yl β-xylopyranosyl-(1”-6’)-β-glucopyranoside (3) from Meriania hernandoi, in addition to 11 known compounds reported for the first time in the Meriania genus. The structures were elucidated by spectroscopic analyses including one- and two-dimensional NMR techniques and mass spectrometry. The bioactivities of the compounds were determined by measuring the DPPH radical scavenging activity and by carrying out antioxidant power assays (FRAP), etiolated wheat coleoptile assays and phytotoxicity assays on the standard target species Lycopersicum esculentum W. (tomato). Compounds 1 and 2 exhibited the best free radical scavenging activities, with FRS50 values of 2.0 and 1.9 µM, respectively. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Graphical abstract

21 pages, 4510 KiB  
Article
Phenolic Composition, Antioxidant Properties, and Inhibition toward Digestive Enzymes with Molecular Docking Analysis of Different Fractions from Prinsepia utilis Royle Fruits
by Xuan Zhang, Yijia Jia, Yanli Ma, Guiguang Cheng and Shengbao Cai
Molecules 2018, 23(12), 3373; https://doi.org/10.3390/molecules23123373 - 19 Dec 2018
Cited by 48 | Viewed by 5095
Abstract
The present study investigated the phenolic profiles and antioxidant properties of different fractions from Prinsepia utilis Royle fruits using molecular docking analysis to delineate their inhibition toward digestive enzymes. A total of 20 phenolics was identified and quantified. Rutin, quercetin-3-O-glucoside, and [...] Read more.
The present study investigated the phenolic profiles and antioxidant properties of different fractions from Prinsepia utilis Royle fruits using molecular docking analysis to delineate their inhibition toward digestive enzymes. A total of 20 phenolics was identified and quantified. Rutin, quercetin-3-O-glucoside, and isorhamnetin-3-O-rutinoside were the major phenolic compounds in the total phenolic fraction and flavonoid-rich fraction. The anthocyanin-rich fraction mainly contained cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside. All of the fractions exhibited strong radical scavenging activities and good inhibition on cellular reactive oxygen species (ROS) generation in H2O2-induced HepG2 cells, as evaluated by DPPH and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) assays. Moreover, the powerful inhibitory effects of those fractions against pancreatic lipase and α-glucosidase were observed. The major phenolic compounds that were found in the three fractions also showed good digestive enzyme inhibitory activities in a dose-dependent manner. Molecular docking analysis revealed the underlying inhibition mechanisms of those phenolic standards against digestive enzymes, and the theoretical analysis data were consistent with the experimental results. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

13 pages, 1422 KiB  
Article
Chemoinformatic Analysis of Selected Cacalolides from Psacalium decompositum (A. Gray) H. Rob. & Brettell and Psacalium peltatum (Kunth) Cass. and Their Effects on FcεRI-Dependent Degranulation in Mast Cells
by Jorge Iván Castillo-Arellano, Juan Carlos Gómez-Verjan, Nadia A. Rojano-Vilchis, Myrna Mendoza-Cruz, Manuel Jiménez-Estrada, Héctor E. López-Valdés, Hilda Martínez-Coria, Roger Gutiérrez-Juárez, Claudia González-Espinosa, Ricardo Reyes-Chilpa and Isabel Arrieta-Cruz
Molecules 2018, 23(12), 3367; https://doi.org/10.3390/molecules23123367 - 19 Dec 2018
Cited by 6 | Viewed by 4160
Abstract
Cacalolides are a kind of sesquiterpenoids natural compounds synthesized by Psacalium decompositum (A. Gray) H. Rob. & Brettell or Psacalium peltatum (Kunth) Cass. Antioxidant and hypoglycemic effects have been found for cacalolides such as cacalol, cacalone or maturine, however, their effects on inflammatory [...] Read more.
Cacalolides are a kind of sesquiterpenoids natural compounds synthesized by Psacalium decompositum (A. Gray) H. Rob. & Brettell or Psacalium peltatum (Kunth) Cass. Antioxidant and hypoglycemic effects have been found for cacalolides such as cacalol, cacalone or maturine, however, their effects on inflammatory processes are still largely unclear. The main aim of this study was to investigate the biological activities of secondary metabolites from P. decompositum and P. peltatum through two approaches: (1) chemoinformatic and toxicoinformatic analysis based on ethnopharmacologic background; and (2) the evaluation of their potential anti-inflammatory/anti-allergic effects in bone marrow-derived mast cells by IgE/antigen complexes. The bioinformatics properties of the compounds: cacalol; cacalone; cacalol acetate and maturin acetate were evaluated through Osiris DataWarrior software and Molinspiration and PROTOX server. In vitro studies were performed to test the ability of these four compounds to inhibit antigen-dependent degranulation and intracellular calcium mobilization, as well as the production of reactive oxygen species in bone marrow-derived mast cells. Our findings showed that cacalol displayed better bioinformatics properties, also exhibited a potent inhibitory activity on IgE/antigen-dependent degranulation and significantly reduced the intracellular calcium mobilization on mast cells. These data suggested that cacalol could reduce the negative effects of the mast cell-dependent inflammatory process. Full article
(This article belongs to the Special Issue Biological Activities of Plant Secondary Metabolites)
Show Figures

Figure 1

Back to TopTop