Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic and Flavonoids Contents, Antioxidant and Antimicrobial Activities
2.2. Gastroprotective Effect induced by BLD
2.3. Toxicity Study of B. grisebachii Lyophilized Decoction on Human Cell Lines
2.4. UHPLC-OT Analysis of BLD
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Plant Material
3.3. Lyophilized Decoction
3.4. Determination of Total Phenolics (TP) and Flavonoids (F) Content
3.5. Antioxidant Activity
3.5.1. DPPH Scavenging Activity
3.5.2. Ferric-Reducing Antioxidant Power Assay (FRAP)
3.5.3. Trolox Equivalent Antioxidant Activity (TEAC) Assay
3.5.4. Lipid Peroxidation in Human Erythrocytes
3.6. Toxicity Study of B. grisebachii Lyophilized Decoction on “in vitro” Human Cell Lines
3.6.1. Cell Lines and Culture Conditions
3.6.2. Cytotoxicity Assay by MTT
3.7. Induction of Gastric Lesions
3.7.1. Animals
3.7.2. Induction of Gastric Lesions
3.8. Antibacterial Activity
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bustos, D.A.; Tapia, A.A.; Feresin, G.E.; Ariza Espinar, L. Ethnopharmacobotanical survey of Bauchazeta district, San Juan Province, Argentina. Fitoterapia 1996, 67, 411–415. [Google Scholar]
- Lima, B.; Sanchez, M.; Agüero, M.B.; Tapia, A.; Palermo, J.A.; Feresin, G.E. Antibacterial activity of extracts and compounds isolated from the Andean medicinal plant Azorella cryptantha (Clos) Reiche, Apiaceae. Ind. Crops Prod. 2015, 64, 152–157. [Google Scholar] [CrossRef]
- Gianello, J.C.; Giordano, O.S. Constituents from Baccharis grisebachii. Ann. Asoc. Quim. Argent. 1987, 75, 1–3. [Google Scholar]
- Feresin, G.E.; Tapia, A.; López, S.N.; Zacchino, S.A. Antimicrobial activity of plants used in traditional medicine of San Juan province, Argentine. J. Ethnopharmacol. 2001, 78, 103–107. [Google Scholar] [CrossRef]
- Feresin, G.E.; Tapia, A.; Gimenez, A.; Ravelo, A.G.; Zacchino, S.; Sortino, M.; Schmeda-Hirschmann, G. Constituents of the Argentinian medicinal plant Baccharis grisebachii and their antimicrobial activity. J. Ethnopharmacol. 2003, 89, 73–80. [Google Scholar] [CrossRef]
- Tapia, A.; Rodriguez, J.; Theoduloz, C.; Lopez, S.; Feresin, G.E.; Schmeda-Hirschmann, G. Free radical scavengers and antioxidants from Baccharis grisebachii. J. Ethnopharmacol. 2004, 95, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Mongelli, E.; Pampuro, S.; Coussio, J.; Salomon, H.; Ciccia, G. Cytotoxic and DNA interaction activities of extracts from medicinal plants used in Argentina. J. Ethnopharmacol. 2000, 71, 145–151. [Google Scholar] [CrossRef]
- Pérez-García, F.; Marín, E.; Adzet, T.; Cañigueral, S. Activity of plant extracts on the respiratory burst and the stress protein synthesis. Phytomedicine 2001, 8, 31–38. [Google Scholar] [CrossRef]
- Hadad, M.; Zygadlo, J.A.; Lima, B.; Derita, M.; Feresin, G.; Zacchino, S.A.; Tapia, A. Chemical composition and antimicrobial activity of essential oil from Baccharis grisebachii Hieron (Asteraceae). J. Chil. Chem. Soc. 2007, 52, 1186–1189. [Google Scholar] [CrossRef]
- Hadad, M.; Gattuso, S.; Gattuso, M.; Feresin, G.; Tapia, A. Anatomical Studies of Baccharis grisebachii Hieron. (Asteraceae). Used in Folk Medicine of San Juan Province, Argentina; Museo de Botánica “Juan, A. Domínguez,”; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica: Buenos Aires, Argentina, 2013; Volume 29. [Google Scholar]
- Cornejo, A.; Salgado, F.; Caballero, J.; Vargas, R.; Simirgiotis, M.; Areche, C. Secondary metabolites in ramalina terebrata detected by UHPLC/ESI/MS/MS and identification of parietin as tau protein inhibitor. Int. J. Mol. Sci. 2016, 17, 1303. [Google Scholar] [CrossRef]
- Simirgiotis, M.J. Antioxidant capacity and HPLC-DAD-MS profiling of chilean peumo (Cryptocarya alba) fruits and comparison with german peumo (Crataegus monogyna) from Southern Chile. Molecules 2013, 18, 2061–2080. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.E.; Zambrano, R.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanins and antioxidant capacities of six Chilean berries by HPLC-HR-ESI-ToF-MS. Food Chem. 2015, 176. [Google Scholar] [CrossRef]
- Quispe, C.; Bórquez, J.; Villalobos, M.; Simirgiotis, M. Chemical Composition and Antioxidant Activity of Aloe vera from the Pica Oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. J. Chem. 2018, 6123850. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Quispe, C.; Areche, C.; Sepúlveda, B. Phenolic compounds in Chilean mistletoe (quintral, Tristerix tetrandus) analyzed by UHPLC-Q/Orbitrap/MS/MS and its antioxidant properties. Molecules 2016, 21, 245. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Quispe, C.; Mocan, A.; Villatoro, J.M.; Areche, C.; Bórquez, J.; Sepúlveda, B.; Echiburu-Chau, C. UHPLC high resolution orbitrap metabolomic fingerprinting of the unique species Ophryosporus triangularis meyen from the atacama desert, Northern Chile. Braz. J. Pharmacogn. 2017, 27. [Google Scholar] [CrossRef]
- Mueller, C.F.H.; Laude, K.; McNally, J.S.; Harrison, D.G. Redox Mechanisms in Blood Vessels. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 274–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, E.; Karimi Galougahi, K.; Liu, C.-C.; Bhindi, R.; Figtree, G.A. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox Biol. 2013, 1, 483–491. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Sabir, S.M.; Athayde, M.L.; Boligon, A.A.; Rocha, J.B.T. Antioxidant activities and phenolic profile of Baccharis trimera, a commonly used medicinal plant from Brazil. S. Afr. J. Bot. 2017, 113, 318–323. [Google Scholar] [CrossRef]
- Rabelo, A.C.S.; de Pádua Lúcio, K.; Araújo, C.M.; de Araújo, G.R.; de Amorim Miranda, P.H.; Carneiro, A.C.A.; de Castro Ribeiro, É.M.; de Melo Silva, B.; de Lima, W.G.; Costa, D.C. Baccharis trimera protects against ethanol induced hepatotoxicity in vitro and in vivo. J. Ethnopharmacol. 2018, 215, 1–13. [Google Scholar] [CrossRef]
- Sobrinho, A.C.N.; de Souza, E.B.; Rocha, M.F.G.; Albuquerque, M.R.J.R.; Bandeira, P.N.; dos Santos, H.S.; de Paula Cavalcante, C.S.; Oliveira, S.S.; Aragão, P.R.; de Morais, S.M.; et al. Chemical composition, antioxidant, antifungal and hemolytic activities of essential oil from Baccharis trinervis (Lam.) Pers. (Asteraceae). Ind. Crops Prod. 2016, 84, 108–115. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Quispe, C.; Bórquez, J.; Mocan, A.; Sepúlveda, B. High resolution metabolite fingerprinting of the resin of Baccharis tola Phil. from the Atacama Desert and its antioxidant capacities. Ind. Crops Prod. 2016, 94, 368–375. [Google Scholar] [CrossRef]
- Gonzales, E.; Iglesias, I.; Carretero, E.; Villar, A. Gastric cytoprotection of bolivian medicinal plants. J. Ethnopharmacol. 2000, 70, 329–333. [Google Scholar] [CrossRef]
- Baggio, C.H.; Freitas, C.S.; Rieck, L.; Marques, M.C.A. Gastroprotective effects of a crude extract of Baccharis illinita DC in rats. Pharmacol. Res. 2003, 47, 93–98. [Google Scholar] [CrossRef]
- Vidari, G.; Finzi, P.V.; Zarzuelo, A.; Gálvez, J.; Zafra, C.; Chiriboga, X.; Berenguer, B.; Casa, C.L.; de la Lastra, C.A.; Motilva, V.; et al. Antiulcer and Antidiarrhoeic Effect of Baccharis teindalensis. Pharm. Biol. 2003, 41, 405–411. [Google Scholar] [CrossRef]
- Lemos, M.; de Barros, M.P.; Sousa, J.P.B.; da Silva Filho, A.A.; Bastos, J.K.; de Andrade, S.F. Baccharis dracunculifolia, the main botanical source of Brazilian green propolis, displays antiulcer activity. J. Pharm. Pharmacol. 2007, 59, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Klopell, F.C.; Lemos, M.; Sousa, J.P.B.; Comunello, E.; Maistro, E.L.; Bastos, J.K.; de Andrade, S.F. Nerolidol, an antiulcer constituent from the essential oil of Baccharis dracunculifolia DC (Asteraceae). Z. Naturforsch. C. 2007, 62, 537–542. [Google Scholar] [CrossRef]
- de Toledo Dias, L.F.; de Melo, E.S.; Hernandes, L.S.; Bacchi, E.M. Atividades antiúlcera e antioxidante Baccharis trimera (Less) DC (Asteraceae). Rev. Bras. Farmacogn. 2009, 19, 309–314. [Google Scholar] [CrossRef] [Green Version]
- dos Reis Lívero, F.A.; da Silva, L.M.; Ferreira, D.M.; Galuppo, L.F.; Borato, D.G.; Prando, T.B.L.; Lourenço, E.L.B.; Strapasson, R.L.B.; Stefanello, M.É.A.; de Paula Werner, M.F.; et al. Hydroethanolic extract of Baccharis trimera promotes gastroprotection and healing of acute and chronic gastric ulcers induced by ethanol and acetic acid. Naunyn Schmiedebergs Arch. Pharmacol. 2016, 389, 985–998. [Google Scholar] [CrossRef] [PubMed]
- Magierowski, M.; Magierowska, K.; Kwiecien, S.; Brzozowski, T. Gaseous Mediators Nitric Oxide and Hydrogen Sulfide in the Mechanism of Gastrointestinal Integrity, Protection and Ulcer Healing. Molecules 2015, 20, 9099–9123. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, T.K.; Robert, A. Prevention by mild irritants of gastric necrosis produced in rats by sodium taurocholate. Dig. Dis. Sci. 1980, 25, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Robert, A.; Nezamis, J.E.; Lancaster, C.; Hanchar, A.J. Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology 1979, 77, 433–443. [Google Scholar] [PubMed]
- Brzozowski, T.; Konturek, P.C.; Konturek, S.J.; Brzozowska, I.; Pawlik, T. Role of prostaglandins in gastroprotection and gastric adaptation. J. Physiol. Pharmacol. 2005, 56 Suppl. 5, 33–55. [Google Scholar]
- D’Andrea, G. Quercetin: A flavonol with multifaceted therapeutic applications? Fitoterapia 2015, 106, 256–271. [Google Scholar] [CrossRef]
- Kant, V.; Jangir, B.L.; Nigam, A.; Kumar, V.; Sharma, S. Dose regulated cutaneous wound healing potential of quercetin in male rats. Wound Med. 2017, 19, 82–87. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Nandakumar, N.; Palaniswami, R.; Nishigaki, Y.; Nishigaki, I. Kaempferol, a potential cytostatic and cure for inflammatory disorders. Eur. J. Med. Chem. 2014, 86, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.Y.; Chen, Y.C. A review of the dietary flavonoid, kaempferol on human health and cancer chemoprevention. Food Chem. 2013, 138, 2099–2107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivasan, E.; Rajasekaran, R. Comparative binding of kaempferol and kaempferide on inhibiting the aggregate formation of mutant (G85R) SOD1 protein in familial amyotrophic lateral sclerosis: A quantum chemical and molecular mechanics study. BioFactors 2018, 44, 431–442. [Google Scholar] [CrossRef]
- Shimojo, Y.; Ozawa, Y.; Toda, T.; Igami, K.; Shimizu, T. Probiotic Lactobacillus paracasei A221 improves the functionality and bioavailability of kaempferol-glucoside in kale by its glucosidase activity. Sci. Rep. 2018, 8, 9239. [Google Scholar] [CrossRef]
- Liu, H.; Tan, L.; Huang, X.; Liao, Y.; Zhang, W.; Li, P.; Wang, Y.; Peng, W.; Wu, Z.; Su, W.; et al. Chromatogram-Bioactivity Correlation-Based Discovery and Identification of Three Bioactive Compounds Affecting Endothelial Function in Ginkgo Biloba Extract. Molecules 2018, 23, 1071. [Google Scholar] [CrossRef]
- Zang, Y.; Hashimoto, S.; Yu, C.; Igarashi, K. Protective effects of dietary kaempferol glycoside components from unripe soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) leaves and their serous metabolite on carbon tetrachloride-induced liver injury mice. J. Food Sci. Technol. 2018, 55, 4515–4521. [Google Scholar] [CrossRef]
- Murillo, J.I.; Encarnación-Dimayuga, R.; Malmstrøm, J.; Christophersen, C.; Franzblau, S.G. Antimycobacterial flavones from Haplopappus sonorensis. Fitoterapia 2003, 74, 226–230. [Google Scholar] [CrossRef]
- Suksamrarn, A.; Poomsing, P.; Aroonrerk, N.; Punjanon, T.; Suksamrarn, S.; Kongkun, S. Antimycobacterial and antioxidant flavones from Limnophila geoffrayi. Arch. Pharm. Res. 2003, 26, 816–820. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, X.; Diao, X.; Liao, M.; Sun, Y.; Zhang, L. Metabolism profiling of nevadensin in vitro and in vivo by UHPLC-Q-TOF-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1084, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Bórquez, J.; Schmeda-Hirschmann, G. Antioxidant capacity, polyphenolic content and tandem HPLC-DAD-ESI/MS profiling of phenolic compounds from the South American berries Luma apiculata and L. chequén. Food Chem. 2013, 139. [Google Scholar] [CrossRef]
- Justesen, U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J. Mass Spectrom. 2001, 36, 169–178. [Google Scholar] [CrossRef]
- Aljancić, I.; Stanković, M.; Tesević, V.; Vujisić, L.; Vajs, V.; Milosavljević, S. Protective effect on human lymphocytes of some flavonoids isolated from two Achillea species. Nat. Prod. Commun. 2010, 5, 729–732. [Google Scholar]
- Végh, K.; Riethmüller, E.; Hosszú, L.; Darcsi, A.; Müller, J.; Alberti, Á.; Tóth, A.; Béni, S.; Könczöl, Á.; Balogh, G.T.; et al. Three newly identified lipophilic flavonoids in Tanacetum parthenium supercritical fluid extract penetrating the Blood-Brain Barrier. J. Pharm. Biomed. Anal. 2018, 149, 488–493. [Google Scholar] [CrossRef]
- Dai, Y.; Cheng, R.; Gao, J.; Li, Y.; Lou, C.; Li, Y. Casticin inhibits PDGF-induced proliferation and migration of airway smooth muscle cells. Eur. J. Pharmacol. 2018, 830, 39–46. [Google Scholar] [CrossRef]
- Wang, J. Casticin alleviates lipopolysaccharide-induced inflammatory responses and expression of mucus and extracellular matrix in human airway epithelial cells through Nrf2/Keap1 and NF-κB pathways. Phyther. Res. 2018, 32, 1346–1353. [Google Scholar] [CrossRef]
- Ma, J.; Yin, G.; Lu, Z.; Xie, P.; Zhou, H.; Liu, J.; Yu, L. Casticin prevents DSS induced ulcerative colitis in mice through inhibitions of NF-κB pathway and ROS signaling. Phyther. Res. 2018, 32, 1770–1783. [Google Scholar] [CrossRef] [PubMed]
- Simirgiotis, M.J.; Ramirez, J.E.; Schmeda Hirschmann, G.; Kennelly, E.J. Bioactive coumarins and HPLC-PDA-ESI-ToF-MS metabolic profiling of edible queule fruits (Gomortega keule), an endangered endemic Chilean species. Food Res. Int. 2013, 54. [Google Scholar] [CrossRef]
- Wei, W.; Wang, L.; Zhou, K.; Xie, H.; Zhang, M.; Zhang, C. Rhapontin ameliorates colonic epithelial dysfunction in experimental colitis through SIRT1 signaling. Int. Immunopharmacol. 2017, 42, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Masike, K.; Mhlongo, M.I.; Mudau, S.P.; Nobela, O.; Ncube, E.N.; Tugizimana, F.; George, M.J.; Madala, N.E. Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chem. Cent. J. 2017, 11, 29. [Google Scholar] [CrossRef]
- Kuczkowiak, U.; Petereit, F.; Nahrstedt, A. Hydroxycinnamic Acid Derivatives Obtained from a Commercial Crataegus Extract and from Authentic Crataegus spp. Sci. Pharm. 2014, 82, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Marks, S.; Knight, S.; Kuhnert, N. Characterization by LC-MS(n) of four new classes of p-coumaric acid-containing diacyl chlorogenic acids in green coffee beans. J. Agric. Food Chem. 2006, 54, 4095–4101. [Google Scholar] [CrossRef] [PubMed]
- Clifford, M.N.; Johnston, K.L.; Knight, S.; Kuhnert, N. Hierarchical Scheme for LC-MSn Identification of Chlorogenic Acids. J. Agric. Food Chem. 2003, 51, 2900–2911. [Google Scholar] [CrossRef] [PubMed]
- de Barros, M.P.; Lemos, M.; Maistro, E.L.; Leite, M.F.; Sousa, J.P.B.; Bastos, J.K.; de Andrade, S.F. Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. J. Ethnopharmacol. 2008, 120, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Panda, V.; Suresh, S. Gastro-protective effects of the phenolic acids of Macrotyloma uniflorum (horse gram) on experimental gastric ulcer models in rats. Food Biosci. 2015, 12, 34–46. [Google Scholar] [CrossRef]
- Brito, A.; Areche, C.; Sepúlveda, B.; Kennelly, E.J.; Simirgiotis, M.J. Anthocyanin characterization, total phenolic quantification and antioxidant features of some chilean edible berry extracts. Molecules 2014, 19, 10936–10955. [Google Scholar] [CrossRef]
- Herrmann, K.; Nagel, C.W. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr. 1989, 28, 315–347. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.M.; Quinn, C.A.; Hergenrother, P.J. Total Synthesis and Cytoprotective Properties of Dykellic Acid. J. Med. Chem. 2009, 52, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, B.; Ii, H.; Qu, W.; Yuan, H. Anticancer Effects of Gingerol in Retinoblastoma Cancer Cells (RB355 Cell Line) Are Mediated via Apoptosis Induction, Cell Cycle Arrest and Upregulation of PI3K/Akt Signaling Pathway. Med. Sci. Monit. 2018, 24, 1980–1987. [Google Scholar] [CrossRef] [Green Version]
- Luna, L.; Simirgiotis, M.J.; Lima, B.; Bórquez, J.; Feresin, G.E.; Tapia, A. UHPLC-MS metabolome fingerprinting: The isolation of main compounds and antioxidant activity of the andean species tetraglochin ameghinoi (Speg.) Speg. Molecules 2018, 23, 793. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst 2002, 127, 183–198. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Giordano, O.S.; Pestchanker, M.J.; Guerreiro, E.; Saad, J.R.; Enriz, R.D.; Rodríguez, A.M.; Jáuregui, E.A.; Guzmán, J.A.; María, A.O.M.; Wendel, G.H. Structure-activity relationship in the gastric cytoprotective effect of several sesquiterpene lactones. J. Med. Chem. 1992, 35, 2452–2458. [Google Scholar] [CrossRef]
- Performance Standards for Antimicrobial Susceptibility Testing; M100-S22; Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2012.
Sample Availability: Samples of the compounds and extracts are available from the authors. |
Assay | Lyophilized Decoction (BLD) |
---|---|
Phenolic content | |
Total phenolics (mg GAE/g extract) | 62.46 ± 9.27 |
Flavonoids (mg QE/g extract) | 5.30 ± 0.41 |
Antioxidant capacity | |
DPPH (IC50 in µg/mL) | 106.40 ± 22.48 |
FRAP (mM TE/g extract) | 0.70 ± 0.19 |
TEAC (mg TE/g extract) | 0.61 ± 0.04 |
Percentage ILP (at 250 µg/mL) | 67.46 ± 1.05 |
Catechin (Percentage ILP at 100 µg/mL) | 72.80± 3.32 |
B. grisebachii Treatment (mg/kg) | Gastroprotective Effect | |
---|---|---|
Ulcer Index | % Lesion Reduction | |
LD (250) | 4.4 ± 0.2 | 9.6 |
LD (500) | 2.1 ± 0.5 *** | 56.0 |
LD (750) | 0.3 ± 0.2 *** | 93.2 |
Omeprazole (60) | 3.2 ± 0.2 ** | 34.2 |
Control EtOH | 4.8 ± 0.1 | 0 |
Peak # | Retention Time (min) | UV Max | Tentative Identification | Elemental Composition [M − H]− | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (δ ppm) | MSn Ions |
---|---|---|---|---|---|---|---|---|
1 | 1.87 | - | Unknown | 272.95877 | 2.88 | - | ||
2 | 1.29 | - | Gluconic acid * | C6H12O7− | 195.04965 | 195.04993 | −1.42 | - |
3 | 2.41 | - | Quinic acid | C7H12O6− | 191.05501 | 191.05478 | 1.23 | - |
4 | 8.38 | 310 | Hydroxybenzoic acid hexoside | C13H15O8− | 299.07614 | 299.07568 | −1.53 | 137.02442 |
5 | 8.59 | 239–320 | Caffeoylquinic acid (chlorogenic acid) * | C16H17O9− | 353.08618 | 353.08671 | 2.31 | 191.05481 (quinic acid) |
6 | 9.02 | 246–320 | Feruloylquinic acid | C17H19O9− | 367.10236 | 367.10162 | −2.12 | 193.04915 (ferulic acid) |
7 | 9.74 | 335 | p-Coumaroylquinic acid | C16H17O8− | 337.09137 | 337.09289 | −1.25 | 163.0427 (coumaric moiety) |
8 | 10.21 | 246–320 | Feruloylquinic acid | C17H19O9− | 367.10236 | 367.10159 | −2.08 | 193.04915 (ferulic acid) |
9 | 10.64 | 255–355 | Quercetin * | C15H10O7− | 301.03302 | 301.03428 | −4.18 | 179.03343, 151.00220, 125.02163 |
10 | 10.93 | 265–365 | Kaempferol hexoside | C21H19O11− | 447.09219 | 447.09088 | −2.9 | 285.03894 (kaempferol) |
11 | 11.17 | 330 | 2 (3-Hydroxyisopentyl) caffeic acid | C14H17O5− | 265.10675 | 265.10705 | −1.13 | 191.04498, 179.03369, 173.04430 |
12 | 11.90 | 255–354 | Rutin | C27H29O16− | 609.14611 | 609.14532 | 301.03308, (quercetin) 271.02472 | |
13 | 11.19 | 255–355 | Isorhamnetin * | C16H11O7− | 315.04956 | 315.04993 | −1.16 | 300.02597 (demethylated molecule) 257.080051, 160.84082 |
14 | 11.38 | 246–335 | Caffeoylquinic acid | C16H17O9− | 353.08603 | 353.08671 | −1.92 | 191.05481 (quinic acid) |
15 | 11.56 | 270–312 | Rapontin | C21H23O9− | 419.13287 | 419.13366 | −1.87 | 257.08051 (C15H13O4− pontigenin) 213.09070, 173.04413 |
16 | 11.86 | 320–346 | Fraxetin | C10H8O5− | 207.02880 | 207.02852 | −1.35 | 193.04932, 179.03372, 173.0443 |
17 | 12.21 | 265–365 | Kaempferol * | C15H9O6− | 285.03873 | 285.03936 | −2.23 | 265.03394, 174.95479,160.84067, 151.00232, |
18 | 12.43 | 330 | Feruloylquinic acid | C17H19O9− | 367.10236 | 367.10162 | −2.08 | 193.04915 (ferulic acid) |
19 | 12.89 | 335 | 3-Prenyl-4-hydroxycinnamic acid (3-prenyl-p-coumaric acid = drupanin) * | C14H15O3− | 231.10130 | 231.10124 | −1.15 | 187.11157, 163.04002 (deprenylated molecule) |
20 | 12.94 | 335 | 2-Prenyl-4-hydroxycinnamic acid (2-Prenyl-p-coumaric acid) | C14H15O3− | 231.10157 | 231.10124 | −1.42 | 187.11157, 163.04005 (deprenylated molecule) |
21 | 13.03 | 225 | Dykellic acid | C14H15O4− | 247.09649 | 247.09610 | −1.56 | |
22 | 13.41 | 254–354 | Dimethylmyricetin (syringetin) | C17H13O8− | 345.05984 | 345.05991 | −1.70 | 330.03610, (demethylated molecule) 315.01309 (di-demethylated molecule) |
23 | 14.34 | 254–354 | Dimethylmyricetin | C17H13O8− | 345.06049 | 345.05991 | −1.70 | 330.03625, (demethylated molecule) 315.01315 (di-demethylated molecule) |
24 | 15.68 | 255–355 | Rhamnacin (3,7-dimethyl quercetin) | C17H13O7− | 329.06558 | 329.06506 | −1.56 | 299.01822 (M-CH3) C15H7O7− |
25 | 16.06 | 265–365 | Kaempferide | C16H11O6− | 299.05501 | 299.05463 | −1.29 | 284.03119 (kaempferol) |
26 | 18.63 | 254–330–354 | Jaceidin | C18H15O8− | 359.07559 | 359.07614 | −1.53 | 344.05167, demethylated molecule 329.02853 di-demethylated molecule, 314.00159 |
27 | 19.24 | 335 | Prenyl-5-hydroxycinnamic acid (3-prenyl-m-coumaric acid) | C14H15O3− | 231.10118 | 231.10124 | −1.38 | 187.11157 |
28 | 19.64 | 335 | 2-Prenyl-5-hydroxycinnamic acid (2-prenyl-m-coumaric acid) | C14H15O3− | 231.10121 | 231.10124 | −1.55 | 187.11157 |
29 | 20.02 | 255–355 | Nevadesin (5,7-dihydroxy-6,8,4′-trimethoxyflavone) | C18H15O7− | 343.08123 | 343.08063 | −1.75 | 313.03363(di-demethylated molecule), 193.01280 |
30 | 20.21 | 254–330–354 | Polymethoxylated flavonol (possibly casticin) | C19H17O8− | 373.09103 | 373.09179 | −2.03 | 358.06799 (demethylated molecule), 343.04413, (didemethylated molecule) 317.03029; 299.01791;177.01866 |
31 | 20.23 | 280 | Unknown (possibly botryenalol) | C17H25O4− | 293.17474 | 293.17380 | 2.51 | 279.1616 (demethylated molecule) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, J.; Simirgiotis, M.J.; Lima, B.; Paredes, J.D.; Villegas Gabutti, C.M.; Gamarra-Luques, C.; Bórquez, J.; Luna, L.; Wendel, G.H.; Maria, A.O.; et al. Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction. Molecules 2019, 24, 1085. https://doi.org/10.3390/molecules24061085
Gómez J, Simirgiotis MJ, Lima B, Paredes JD, Villegas Gabutti CM, Gamarra-Luques C, Bórquez J, Luna L, Wendel GH, Maria AO, et al. Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction. Molecules. 2019; 24(6):1085. https://doi.org/10.3390/molecules24061085
Chicago/Turabian StyleGómez, Jessica, Mario J. Simirgiotis, Beatriz Lima, Jésica D. Paredes, Carlos M. Villegas Gabutti, Carlos Gamarra-Luques, Jorge Bórquez, Lorena Luna, Graciela H. Wendel, Alejandra O. Maria, and et al. 2019. "Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction" Molecules 24, no. 6: 1085. https://doi.org/10.3390/molecules24061085
APA StyleGómez, J., Simirgiotis, M. J., Lima, B., Paredes, J. D., Villegas Gabutti, C. M., Gamarra-Luques, C., Bórquez, J., Luna, L., Wendel, G. H., Maria, A. O., Feresin, G. E., & Tapia, A. (2019). Antioxidant, Gastroprotective, Cytotoxic Activities and UHPLC PDA-Q Orbitrap Mass Spectrometry Identification of Metabolites in Baccharis grisebachii Decoction. Molecules, 24(6), 1085. https://doi.org/10.3390/molecules24061085