Solvent-Dependent Structures of Natural Products Based on the Combined Use of DFT Calculations and 1H-NMR Chemical Shifts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental 1H-NMR Chemical Shifts
2.1.1. Assignment of the Resonances
2.1.2. Solvent Effects on 1H-NMR Chemical Shifts
2.1.3. Temperature-Dependence of 1H-NMR Chemical Shifts
2.2. Quantum Chemical Calculations
2.2.1. DFT-Calculated vs. Experimental 1H-NMR Chemical Shifts in Solution with CPCM: Effects of Various Functionals and Basis Sets
2.2.2. Effect of Conformation of Substituents on the Calculated 1H-NMR Chemical Shifts
2.2.3. Effect of Discrete Solvent Molecules on Intra- and Intermolecular Hydrogen Bond Interactions and Conformation of Substituents
2.2.4. Comparison Between DFT-Calculated Structures in Solution and Single-Crystal X-ray Method
3. Materials and Methods
3.1. Chemicals
3.2. NMR
3.3. Computational Methods
4. Conclusions
- Excellent linear correlation can be obtained between experimental and DFT-calculated 1H-NMR chemical shifts even with computationally less demanding level of theory.
- Inclusion of discrete solvent molecules induces a minor effect on the computed 1H-NMR chemical shifts of the intramolecular hydrogen bond, but shows a significant effect on the 1H-NMR chemical shifts of the C(3)–OH which participates in intermolecular solute-solvent hydrogen bond; this results in excellent agreement with the experimental 1H-NMR chemical shifts.
- The 1H-NMR chemical shifts of the OH groups which participate in intramolecular hydrogen bond are dependent on the conformational state of substituents and, thus, can be used as molecular sensors in conformational analysis.
- The use of X-ray structures as input geometries results in 1H-NMR chemical shifts which strongly deviate from the experimental values and no functional dependence could be obtained.
- Comparison of the most important intramolecular data of the DFT-calculated and the X-ray structures demonstrate very good agreement with distances involving heavy atoms but significant differences for distances involving hydrogen atoms, most notably the intramolecular hydrogen bond and C–H bond lengths which deviate by 0.152 to 0.132 Å and 0.133 to 0.100 Å, respectively. Further differences have been found in the conformational state of the –CH3, –OCH3, and –OH groups.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Massa, W. Crystal Structure Determination; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Smart, L.E.; Moore, E.A. Solid State Chemistry: An Introduction; Taylor & Francis: London, UK, 2005. [Google Scholar]
- Jeffrey, G.A.; Sanger, S.W. Hydrogen Bonding in Biological Structures; Springer: Berlin, Germany, 1991. [Google Scholar]
- Yee, A.A.; Savchenko, A.; Ignachenko, A.; Lukin, I.; Xu, X.; Skarina, T.; Evdokimova, E.; Liu, C.S.; Semesi, A.; Guido, V.; et al. NMR and X-ray crystallography, complementary tools in structural proteomics of small proteins. J. Am. Chem. Soc. 2005, 127, 16512–16517. [Google Scholar] [CrossRef] [PubMed]
- Szymczyna, B.R.; Taurog, R.E.; Young, M.J.; Snyder, J.C.; Johnson, J.E.; Williamson, J.R. Synergy of NMR, computation, and X-ray crystallography for structural biology. Structure 2009, 17, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Günther, H. NMR Spectroscopy: Basic Principles, Concepts and Applications in Chemistry; Wiley VCH: Weinheim, Germany, 2013. [Google Scholar]
- Frey, P.A.; Whitt, S.A.; Tobin, J.B. A low-barrier hydrogen bond in the catalytic triad of serine proteases. Science 1994, 264, 1927–1930. [Google Scholar] [CrossRef] [PubMed]
- Bertolasi, V.; Gilli, P.; Ferretti, V.; Gilli, G. Intramolecular O–H…O hydrogen bonds assisted by resonance. Correlation between crystallographic data and 1H NMR chemical shifts. J. Chem. Soc. Perkin Trans. 1997, 2, 945–952. [Google Scholar] [CrossRef]
- Harris, T.K.; Mildvan, A.S. High-precision measurement of hydrogen bond lengths in proteins by nuclear magnetic resonance methods. Proteins Struct. Funct. Bioinf. 1999, 35, 275–282. [Google Scholar] [CrossRef]
- Baxter, N.J.; Williamson, M.P. Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 1997, 9, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Dyson, H.J.; Rance, M.; Houghten, R.A.; Lerner, R.A.; Wright, P.E. Folding of immunogenic peptide fragments of proteins in water solution: I. Sequence requirements for the formation of a reverse turn. J. Mol. Biol. 1988, 201, 161–200. [Google Scholar] [CrossRef]
- Neuhaus, D.; Williamson, M.P. The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed.; Willey–VCH: New York, NY, USA, 2000. [Google Scholar]
- Vögeli, B. The nuclear Overhauser effect from a quantitative perspective. Prog. Nucl. Magn. Reson. Spectrosc. 2014, 78, 1–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dingley, A.J.; Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings. J. Am. Chem. Soc. 1998, 120, 8293–8297. [Google Scholar] [CrossRef]
- Grzesiek, S.; Cordier, F.; Dingley, A.J. Scalar couplings across hydrogen bonds. Methods Enzymol. 2002, 338, 111–133. [Google Scholar]
- De Dios, A.C. Ab initio calculations of the NMR chemical shift. Prog. Nucl. Magn. Reson. Spectrosc. 1996, 29, 229–278. [Google Scholar] [CrossRef]
- Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R. Determination of relative configuration in organic compounds by NMR spectroscopy and computational methods. Chem. Rev. 2007, 107, 3744–3779. [Google Scholar] [CrossRef]
- Barone, V.; Improta, R.; Rega, N. Quantum mechanical computations and spectroscopy: From small rigid molecules in the gas phase to large flexible molecules in solution. Acc. Chem. Res. 2008, 41, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Mulder, F.A.; Filatov, M. NMR chemical shift data and ab initio shielding calculations: Emerging tools for protein structure determination. Chem. Soc. Rev. 2010, 39, 578–590. [Google Scholar] [CrossRef] [PubMed]
- Lodewyk, M.W.; Siebert, M.R.; Tantillo, D.J. Computational prediction of 1H and 13C chemical shifts: A useful tool for natural product, mechanistic, and synthetic organic chemistry. Chem. Rev. 2012, 112, 1839–1862. [Google Scholar] [CrossRef] [PubMed]
- Bagno, A.; Rastrelli, F.; Saielli, G. Toward the complete prediction of the 1H and 13C NMR spectra of complex organic molecules by DFT methods: Application to natural substances. Chem. Eur. J. 2006, 12, 5514–5525. [Google Scholar] [CrossRef]
- Rychnovsky, S.D. Predicting NMR spectra by computational methods: Structure revision of hexacyclinol. Org. Lett. 2006, 8, 2895–2898. [Google Scholar] [CrossRef]
- Smith, S.G.; Goodman, J.M. Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. J. Org. Chem. 2009, 74, 4597–4607. [Google Scholar] [CrossRef]
- Saielli, G.; Nicolaou, K.C.; Ortiz, A.; Zhang, H.; Bagno, A. Addressing the stereochemistry of complex organic molecules by density functional theory-NMR: Vannusal B in retrospective. J. Am. Chem. Soc. 2011, 133, 6072–6077. [Google Scholar] [CrossRef]
- Tarazona, G.; Benedit, G.; Fernández, R.; Pérez, M.; Rodriguez, J.; Jiménez, C.; Cuevas, C. Can stereoclusters separated by two methylene groups be related by DFT studies? The case of the cytotoxic meroditerpenes halioxepines. J. Nat. Prod. 2018, 81, 343–348. [Google Scholar] [CrossRef]
- Siskos, M.G.; Tzakos, A.G.; Gerothanassis, I.P. Accurate ab initio calculations of O–H⋯ O and O–H⋯− O proton chemical shifts: Towards elucidation of the nature of the hydrogen bond and prediction of hydrogen bond distances. Org. Biomol. Chem. 2015, 13, 8852–8868. [Google Scholar] [CrossRef] [PubMed]
- Siskos, M.G.; Choudhary, M.I.; Tzakos, A.G.; Gerothanassis, I.P. 1H ΝΜR chemical shift assignment, structure and conformational elucidation of hypericin with the use of DFT calculations–The challenge of accurate positions of labile hydrogens. Tetrahedron 2016, 72, 8287–8293. [Google Scholar] [CrossRef]
- Siskos, M.G.; Choudhary, M.I.; Gerothanassis, I.P. Hydrogen atomic positions of O–H···O hydrogen bonds in solution and in the solid state: The synergy of quantum chemical calculations with 1H-NMR chemical shifts and X-ray diffraction methods. Molecules 2017, 22, 415. [Google Scholar] [CrossRef] [PubMed]
- Siskos, M.G.; Choudhary, M.I.; Gerothanassis, I.P. Refinement of labile hydrogen positions based on DFT calculations of 1H NMR chemical shifts: Comparison with X-ray and neutron diffraction methods. Org. Biomol. Chem. 2017, 15, 4655–4666. [Google Scholar] [CrossRef] [PubMed]
- Siskos, M.G.; Choudhary, M.I.; Gerothanassis, I.P. DFT-calculated structures based on 1H NMR chemical shifts in solution vs. structures solved by single-crystal X-ray and crystalline-sponge methods: Assessing specific sources of discrepancies. Tetrahedron 2018, 74, 4728–4737. [Google Scholar] [CrossRef]
- Torralba, M.P.; Sanz, D.; Claramunt, R.M.; Alkorta, I.; Dardonville, C.; Elguero, J. The structure of fosfomycin salts in solution and in the solid state by nuclear magnetic resonance spectroscopy and DFT calculations. Tetrahedron 2018, 74, 3937–3942. [Google Scholar] [CrossRef]
- Lee, M.S.; Cha, E.Y.; Sul, J.Y.; Song, I.S.; Kim, J.Y. Chrysophanic acid blocks proliferation of colon cancer cells by inhibiting EGFR/mTOR pathway. Phytotherapy Res. 2011, 25, 833–837. [Google Scholar] [CrossRef]
- Dong, X.; Fu, J.; Yin, X.; Cao, S.; Li, X.; Huyiligeqi, L.; Ni, J. Emodin: A review of its pharmacology, toxicity and pharmacokinetics. Phytotherapy Res. 2016, 30, 1207–1218. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.C.; Chung, J.G. Anticancer potential of emodin. BioMedicine 2012, 2, 108–116. [Google Scholar] [CrossRef]
- Wijesekara, I.; Zhang, C.; Van Ta, Q.; Vo, T.S.; Li, Y.X.; Kim, S.K. Physcion from marine-derived fungus Microsporum sp. induces apoptosis in human cervical carcinoma HeLa cells. Microbiol. Res. 2014, 169, 255–261. [Google Scholar] [CrossRef]
- Perrin, C.L.; Nielson, J.B. “Strong” hydrogen bonds in chemistry and biology. Ann. Rev. Phys. Chem. 1997, 48, 511–544. [Google Scholar] [CrossRef] [PubMed]
- Exarchou, V.; Troganis, A.; Gerothanassis, I.P.; Tsimidou, M.; Boskou, D. Do strong intramolecular hydrogen bonds persist in aqueous solution? Variable temperature gradient 1H, 1H–13C GE-HSQC and GE-HMBC NMR studies of flavonols and flavones in organic and aqueous mixtures. Tetrahedron 2002, 58, 7423–7429. [Google Scholar] [CrossRef]
- Charisiadis, P.; Exarchou, V.; Troganis, A.N.; Gerothanassis, I.P. Exploring the “forgotten”–OH NMR spectral region in natural products. Chem. Commun. 2010, 46, 3589–3591. [Google Scholar] [CrossRef] [PubMed]
- Charisiadis, P.; Primikyri, A.; Exarchou, V.; Tzakos, A.G.; Gerothanassis, I.P. Unprecedented ultra-high-resolution hydroxy group 1H NMR spectroscopic analysis of plant extracts. J. Nat. Prod. 2011, 74, 2462–2466. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Charisiadis, P.; Primikyri, A.; Pappas, C.G.; Exarchou, V.; Tzakos, A.G.; Gerothanassis, I.P. Hydrogen bonding probes of phenol–OH groups. Org. Biomol. Chem. 2013, 11, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
- Siskos, M.G.; Kontogianni, V.G.; Tsiafoulis, C.G.; Tzakos, A.G.; Gerothanassis, I.P. Investigation of solute–solvent interactions in phenol compounds: Accurate ab initio calculations of solvent effects on 1H NMR chemical shifts. Org. Biomol. Chem. 2013, 11, 7400–7411. [Google Scholar] [CrossRef] [PubMed]
- Charisiadis, P.; Kontogianni, V.; Tsiafoulis, C.; Tzakos, A.; Siskos, M.; Gerothanassis, I.P. 1H-NMR as a structural and analytical tool of intra-and intermolecular hydrogen bonds of phenol-containing natural products and model compounds. Molecules 2014, 19, 13643–13682. [Google Scholar] [CrossRef] [PubMed]
- Aliev, A.E.; Harris, K.D.M. Probing Hydrogen Bonding in Solids Using Solid State NMR Spectroscopy. In Supramolecular Assembly via Hydrogen Bonds I; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Lomas, J.S. 1H NMR spectra of butane-1, 4-diol and other 1, 4-diols: DFT calculation of shifts and coupling constants. Magn. Reson. Chem. 2014, 52, 87–97. [Google Scholar] [CrossRef]
- Abraham, M.H.; Abraham, R.J.; Acree, W.E.; Aliev, A.E.; Leo, A.J.; Whaley, W.L. An NMR method for the quantitative assessment of intramolecular hydrogen bonding; application to physicochemical, environmental, and biochemical properties. J. Org. Chem. 2014, 79, 11075–11083. [Google Scholar] [CrossRef] [PubMed]
- Lomas, J.S. 1H NMR spectra of alcohols in hydrogen bonding solvents: DFT/GIAO calculations of chemical shifts. Magn. Reson. Chem. 2016, 54, 28–38. [Google Scholar] [CrossRef]
- Kubica, D.; Molchanov, S.; Gryff-Keller, A. Solvation of uracil and its derivatives by DMSO: A DFT-supported 1H NMR and 13C NMR study. J. Phys. Chem. A 2017, 121, 1841–1848. [Google Scholar] [CrossRef] [PubMed]
- Tolstoy, P.M.; Koeppe, B.; Denisov, G.S.; Limbach, H.H. Combined NMR and UV-vis spectroscopy in the solution state: Study of the geometries of strong OHO hydrogen bonds of phenols with carboxylic acids. Angew. Chem. Int. Ed. 2009, 48, 5745–5747. [Google Scholar] [CrossRef] [PubMed]
- Bolvig, S.; Hansen, P.E. Isotope effects on chemical shifts as an analytical tool in structural studies of intramolecular hydrogen bonded compounds. Curr. Org. Chem. 2000, 4, 19–54. [Google Scholar] [CrossRef]
- Hansen, P. Isotope effects on chemical shifts in the study of intramolecular hydrogen bonds. Molecules 2015, 20, 2405–2424. [Google Scholar] [CrossRef]
- Stevens, S.E.; Sugawara, N.; Bonora, G.M.; Toniolo, C. Conformational analysis of linear peptides. 3. Temperature dependence of NH chemical shifts in chloroform. J. Am. Chem. Soc. 1980, 102, 7048–7050. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 0.9, Revision. B.01; Gaussian, Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Klein, R.A.; Mennucci, B.; Tomasi, J. Ab initio calculations of 17O NMR-chemical shifts for water. The limits of PCM theory and the role of hydrogen-bond geometry and cooperativity. J. Phys. Chem. A 2004, 108, 5851–5863. [Google Scholar] [CrossRef]
- Argay, G.; Kalman, A.; Kovacevic, N.; Grubisic, D.; Ribar, B. Crystal structure of l,8-dihydroxy-3-methyl-9, 10-anthracendion. Z. Kristallogr. 1996, 211, 723–724. [Google Scholar]
- Zhu, J.C.; Liang, Y.; Wang, H.S.; Pan, Y.M.; Zhang, Y. 1,3,8-trihydroxy-6-methylanthraquinone monohydrate. Acta Cryst. E 2007, 63, o233–o235. [Google Scholar] [CrossRef]
- Hopf, H.; Jones, P.G.; Goclik, E.; Aust, P.; Rödiger, J. A new polymorph of physcion. Acta Cryst. C 2012, 68, o317–o319. [Google Scholar] [CrossRef]
- Deringer, V.L.; Hoepfner, V.; Dronskowski, R. Accurate hydrogen positions in organic crystals: Assessing a quantum-chemical aide. Cryst. Growth Des. 2012, 12, 1014–1021. [Google Scholar] [CrossRef]
- Rybarczyk-Pirek, A.J.; Malecka, M.; Palusiak, M. Use of quantum theory of atoms in molecules in the search of appropriate hydrogen atom locations in X-ray diffraction based studies. Cryst. Growth Des. 2016, 16, 6841–6848. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds chrysophanol (1), emodin (2), and physcion (3) are available from the authors. |
Compound | Group | δCDCl3 | δacetone-d6 | Δδ (δacetone-d6-δCDCl3) | δDMSO-d6 | Δδ (δDMSO-d6-δCDCl3) |
---|---|---|---|---|---|---|
Chrysophanol (1) | C(1)–OH | 12.11 | 12.03 | −0.08 | 11.96 | −0.15 |
C(8)–OH | 12.00 | 11.95 | −0.05 | 11.87 | −0.13 | |
C(4)–H | 7.64 | 7.62 | −0.02 | 7.56 | −0.08 | |
C(5)–H | 7.81 | 7.70 | −0.11 | 7.71 | −0.10 | |
C(3) –H | 7.65 | 7.82 | 0.17 | 7.80 | 0.15 | |
C(7)–H | 7.27 | 7.35 | 0.08 | 7.38 | 0.11 | |
C(2)–H | 7.09 | 7.19 | 0.10 | 7.22 | 0.13 | |
C(6)–CH3 | 2.45 | 2.45 | 0.00 | 2.44 | −0.01 | |
Emodin (2) | C(1)–OH | 12.26 | 12.21 | −0.05 | 12.11 | −0.15 |
C(8)–OH | 12.08 | 12.09 | 0.01 | 12.04 | −0.04 | |
C(5)–H | 7.61 | 7.58 | −0.03 | 7.50 | −0.11 | |
C(4)–H | 7.26 | 7.27 | 0.01 | 7.18 | −0.08 | |
C(7)–H | 7.07 | 7.15 | 0.08 | 7.11 | 0.04 | |
C(2)–H | 6.65 | 6.67 | 0.02 | 6.57 | −0.08 | |
C(3)–OH | 6.18 | 10.21 | 4.03 | 11.41 | 5.23 | |
C(6)–CH3 | 2.41 | 2.47 | 0.06 | 2.41 | 0.00 | |
Physcion (3) | C(1)–OH | 12.30 | 12.24 | −0.06 | 12.17 | −0.13 |
C(8)–OH | 12.10 | 12.05 | −0.05 | 11.97 | −0.13 | |
C(2)–H | 6.67 | 6.80 | 0.13 | 6.68 | 0.01 | |
C(4)–H | 7.35 | 7.28 | −0.07 | 7.20 | −0.15 | |
C(5)–H | 7.61 | 7.59 | −0.02 | 7.53 | −0.08 | |
C(7)–H | 7.06 | 7.16 | 0.10 | 7.20 | 0.14 | |
C(3)–OCH3 | 3.92 | 4.00 | 0.08 | 3.92 | 0.00 | |
C(6)–CH3 | 2.43 | 2.47 | 0.04 | 2.42 | −0.01 |
Compound | Group | Δδ/ΔTa | ||
---|---|---|---|---|
CDCl3 | Acetone-d6 | DMSO-d6 | ||
Chrysophanol (1) | C(1)–OH | −1.9 | −1.1 | −1.8 |
C(8)–OH | −1.8 | −1.1 | −0.4 | |
Emodin (2) | C(1)–OH | −1.7 | −1.2 | −1.1 |
C(8)–OH | −2.1 | −1.2 | −0.7 | |
C(3)–OH | −19.1 | −9.7 | −5.3 | |
Physcion (3) | C(1)–OH | −1.9 | −1.1 | −1.9 |
C(8)–OH | −1.8 | −1.0 | −0.6 |
Method | Correlation Coefficient (R2) | Mean Square Error | Slope |
---|---|---|---|
B3LYP/6-31+G(d) | 0.9995 | 0.0082 | 1.0303 |
ωB97XD/6-31+G(d) | 0.9962 | 0.0573 | 0.9953 |
APFD/6-31+G(d) | 0.9997 | 0.0046 | 1.0498 |
M06-2X/Def2TZVP | 0.9961 | 0.0592 | 0.9934 |
TPSSh/TZVP | 0.9981 | 0.0352 | 1.0915 |
Compound | Group | δX-ray | δexp-δX-ray |
---|---|---|---|
Chrysophanol (1) | C(1)–OH | 3.03 | 8.84 |
C(8)–OH | 3.30 | 8.66 | |
C(4)–H | 5.15 | 2.56 | |
C(5)–H | 4.99 | 2.57 | |
C(3)–H | 4.99 | 2.81 | |
C(7)–H | 4.06 | 3.16 | |
C(2)–H | 4.19 | 3.19 | |
C(6)–CH3 | 2.44 | 0.95 | |
Emodin (2) | C(1)–OH | 4.66 | 7.53 |
C(8)–OH | 4.47 | 7.62 | |
C(5)–H | 5.37 | 2.13 | |
C(4)–H | 4.29 | 2.82 | |
C(7)–H | 4.89 | 2.29 | |
C(2)–H | 3.91 | 2.66 | |
C(3)–OH | 3.91 | 11.41 | |
C(6)–CH3 | −1.28 | 3.69 | |
Physcion (3) | C(1)–OH | 7.51 | 4.46 |
C(8)–OH | 6.21 | 5.96 | |
C(2)–H | 4.51 | 2.37 | |
C(4)–H | 4.84 | 2.36 | |
C(5)–H | 5.62 | 1.91 | |
C(7)–H | 4.80 | 2.4 | |
C(3)–OCH3 | 0.61 | 3.30 | |
C(6)–CH3 | −1.29 | 3.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mari, S.H.; Varras, P.C.; Atia-tul-Wahab; Choudhary, I.M.; Siskos, M.G.; Gerothanassis, I.P. Solvent-Dependent Structures of Natural Products Based on the Combined Use of DFT Calculations and 1H-NMR Chemical Shifts. Molecules 2019, 24, 2290. https://doi.org/10.3390/molecules24122290
Mari SH, Varras PC, Atia-tul-Wahab, Choudhary IM, Siskos MG, Gerothanassis IP. Solvent-Dependent Structures of Natural Products Based on the Combined Use of DFT Calculations and 1H-NMR Chemical Shifts. Molecules. 2019; 24(12):2290. https://doi.org/10.3390/molecules24122290
Chicago/Turabian StyleMari, Saima H., Panayiotis C. Varras, Atia-tul-Wahab, Iqbal M. Choudhary, Michael G. Siskos, and Ioannis P. Gerothanassis. 2019. "Solvent-Dependent Structures of Natural Products Based on the Combined Use of DFT Calculations and 1H-NMR Chemical Shifts" Molecules 24, no. 12: 2290. https://doi.org/10.3390/molecules24122290
APA StyleMari, S. H., Varras, P. C., Atia-tul-Wahab, Choudhary, I. M., Siskos, M. G., & Gerothanassis, I. P. (2019). Solvent-Dependent Structures of Natural Products Based on the Combined Use of DFT Calculations and 1H-NMR Chemical Shifts. Molecules, 24(12), 2290. https://doi.org/10.3390/molecules24122290