Novel Cobalt Dichloride Complexes with Hindered Diphenylphosphine Ligands: Synthesis, Characterization, and Behavior in the Polymerization of Butadiene
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Cobalt Complexes
2.2. Polymerization of 1,3-Butadiene
3. Materials and Methods
3.1. General Procedure and Materials
3.2. Synthesis of Cobalt Phosphine Complexes
3.2.1. CoCl2(PtBuPh2) (1)
3.2.2. CoCl2[PPh2(NMDPP)]2 (2)
3.3. X-ray Crystallographic Studies
3.4. Polymerization
3.5. Polymer Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Porri, L.; Giarrusso, A. Conjugated Diene Polymerization. In Comprehensive Polymer Science; Eastmond, G., Edwith, A., Russo, S., Sigwalt, P., Eds.; Pergamon Press Ltd.: Oxford, UK, 1989; Volume 4, p. 53. [Google Scholar]
- Thiele, S.K.H.; Wilson, D.R. Alternate Transition Metal Complex Based Diene Polymerization. J. Macromol. Sci. Part C 2003, 43, 581–628. [Google Scholar] [CrossRef]
- Osakada, K.; Takeuchi, D. Coordination Polymerization of Dienes, Allenes, and Methylcycloalkanes. Adv. Polym. Sci. 2004, 171, 137–194. [Google Scholar]
- Ricci, G.; Masi, F.; Boglia, A.; Sommazzi, A.; Ricci, M. Cobalt phosphine complexes for the polymerization of 1,3-dienes. Influence of the phosphine ligand on the polymerization chemo- and stereoselectivity. In Advances in Organometallic Chemistry Research; Yamamoto, K., Ed.; Nova Science Publisher, Inc.: Hauppauge, NY, USA, 2007; pp. 1–36. [Google Scholar]
- Ricci, G.; Leone, G.; Boglia, A.; Masi, F.; Sommazzi, A. Cobalt compounds based catalysts for the stereospecific polymerization of olefins, cycloolefins and conjugated diolefins. In Cobalt: Characteristics, Compounds, and Applications; Lucas, J., Ed.; Nova Science Publisher, Inc.: Hauppauge, NY, USA, 2011; pp. 39–81. [Google Scholar]
- Friebe, L.; Nuyken, O.; Obrecht, W. Neodymium-Based Ziegler/Natta Catalysts and their Application in Diene Polymerization. Adv. Polym. Sci. 2006, 204, 1–154. [Google Scholar]
- Takeuchi, M.; Shiono, T.; Soga, K. Polymerization of 1,3-butadiene with the catalyst system composed of a cobalt compound and methylaluminoxane. Polym. Int. 1992, 29, 209–212. [Google Scholar] [CrossRef]
- Ricci, G.; Forni, A.; Boglia, A.; Motta, T.; Zannoni, G.; Canetti, M.; Bertini, F. Synthesis and X-Ray structure of CoCl2(PiPrPh2)2. A new highly active and stereospecific catalyst for 1,2 polymerization of conjugated dienes when used associated with MAO. Macromolecules 2005, 38, 1064–1070. [Google Scholar] [CrossRef]
- Ricci, G.; Forni, A.; Boglia, A.; Sommazzi, A.; Masi, F. Synthesis, structure and butadiene polymerization behavior of CoCl2(PRxPh3-x)2 (R = methyl, ethyl, propyl, allyl, isopropyl, cyclohexyl; x = 1,2). Influence of the phosphorous ligand on polymerization stereoselectivity. J. Organomet. Chem. 2005, 690, 1845–1854. [Google Scholar] [CrossRef]
- Ricci, G.; Leone, G.; Boglia, A.; Bertini, F.; Boccia, A.C.; Zetta, L. Synthesis and Characterization of Isotactic 1,2-Poly(E-3-methyl-1,3-pentadiene). Some Remarks about the Influence of Monomer Structure on Polymerization Stereoselectivity. Macromolecules 2009, 42, 3048–3056. [Google Scholar] [CrossRef]
- Boccia, A.C.; Leone, G.; Boglia, A.; Ricci, G. Novel Stereoregular cis-1,4 and trans-1,2 Poly(diene)s: Synthesis, Characterization, and Mechanistic Considerations. Polymer 2013, 54, 3492–3503. [Google Scholar] [CrossRef]
- Porri, L.; Giarrusso, A.; Ricci, G. Recent views on the mechanism of diolefin polymerization with transition metal initiator systems. Prog. Polym. Sci. 1991, 16, 405–441. [Google Scholar]
- Ricci, G.; Sommazzi, A.; Masi, F.; Ricci, M.; Boglia, A.; Leone, G. Well Defined Transition Metal Complexes with Phosphorus and Nitrogen Ligands for 1,3-Dienes Polymerization. Coord. Chem. Rev. 2010, 254, 661–676. [Google Scholar] [CrossRef]
- Ricci, G.; Leone, G. Recent progresses in the polymerization of butadiene over the last decade. Polyolefins J. 2014, 1, 43–60. [Google Scholar]
- Ricci, G.; Leone, G. Polymerization of 1,3-butadiene with organometallic complexes-based catalysts In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes, 3rd ed.; Cornils, B., Hermann, W.A., Beller, M., Paciello, R., Eds.; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2017; Volume 1, pp. 251–273. [Google Scholar]
- Ricci, G.; Boccia, A.C.; Leone, G.; Forni, A. Novel Allyl Cobalt Phosphine Complexes: Synthesis, Characterization, and Behavior in the Polymerization of Allene and 1,3-Dienes. Catalysts 2017, 7, 381. [Google Scholar] [CrossRef]
- Furukawa, J.; Haga, K.; Kobayashi, E.; Iseda, Y.; Yoshimoto, T.; Sakamoto, K. cis-Vinyl-1:1 Polymer of Butadiene. Polym. J. 1971, 2, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Ashitaka, H.; Ishikawa, H.; Ueno, H.J. Syndiotactic 1,2-Polybutadiene with Co-CS2 catalyst System. I. Pteparation, Properties, and Application of Highly Crystalline Syndiotactic 1,2-Polybutadiene. Polym. Sci. Polym. Chem. Ed. 1983, 21, 1853–1860. [Google Scholar] [CrossRef]
- Ashitaka, H.; Jinda, K.; Ueno, H. Syndiotactic 1,2-Polybutadiene with Co-CS2 Catalyst System. II Catalysts for Stereospecific Polymerization of Butadiene to Syndiotactic 1,2-Polybutadiene. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 1951–1972. [Google Scholar] [CrossRef]
- Ashitaka, H.; Inaishi, K.; Ueno, H. Synditactic 1,2-Polybutadiene with Co-CS2 Catalyst System. III. 1H- and 13C-NMR Study of Highly Syndiotactic 1,2-Polybutadiene. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 1973–1988. [Google Scholar] [CrossRef]
- Ashitaka, H.; Jinda, K.; Ueno, H. Syndiotactic 1,2-Polybutadiene with Co-CS2 Catalyst System. IV. Mechanism of Syndiotactic Polymerization of Butadiene with Cobalt Compounds-Organoaluminum-CS2. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 1989–1995. [Google Scholar] [CrossRef]
- Ricci, G.; Italia, S.; Porri, L. Polymerization of butadiene to 1,2-syndiotactic polymer with (η3-C8H13)(C4H6)Co. Some observations on the factors that determine the stereospecificity. Polym. Commun. 1988, 29, 305–307. [Google Scholar]
- Chatt, J.; Shaw, B.L. Alkyls and aryls of transition metals. Part IV. Cobalt(II) and iron(II) derivatives. J. Chem. Soc. 1961, 285–290. [Google Scholar] [CrossRef]
- Bruker. Smart, Saint and Sadabs; Bruker AXS Inc.: Madison, WI, USA, 1997. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. Sect. A Found. Crystallogr. 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Burnett, M.N.; Johnson, C.K. ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895. Acta Crystallogr. Sect. A Found. Crystallogr. 1996, 52, C93. [Google Scholar] [CrossRef]
- Mochel, V.D. Carbon-13 NMR of polybutadiene. J. Polym. Sci. Part A-1 Polym. Chem. 1972, 10, 1009–1018. [Google Scholar] [CrossRef]
- Elgert, K.F.; Quack, G.; Stutzel, B. Zur struktur des polybutadiens, 2. Das 13C-NMR-Spektrum des 1,2-polybutadiens. Makromol. Chem. 1974, 175, 1955–1960. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Bond Lengths | Bond Angles | ||
---|---|---|---|
Co–Cl1 | 2.2415(4) | Cl1–Co–Cl2 | 112.41(2) |
Co–Cl2 | 2.2298(4) | P1–Co–P2 | 113.69(1) |
Co–P1 | 2.4368(4) | C1–P1–C5 | 104.17(6) |
Co–P2 | 2.4300(4) | C1–P1–C11 | 105.68(6) |
P1–C1 | 1.8870(13) | C17–P2–C2 | 106.34(6) |
P2–C17 | 1.8886(14) | C17–P2–C27 | 103.12(6) |
P1–C5 | 1.8258(13) | C5–P1–C11 | 108.39(6) |
P1–C11 | 1.8317(14) | C21–P2–C27 | 107.45(6) |
P2–C21 | 1.8271(14) | ||
P2–C27 | 1.8195(13) |
Run | Catalyst | Polymerization | Polymer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Co-complex (μmol) | Al/Co | solvent | T (°C) | Time (min) | Yield (%) | 1,22 (%) | rr3 (%) | Mw4 (×103) | Mw/Mn4 | m.p.5 (°C) | |
1 | CoCl2(PtBuPh2)2 (10) | 100 | toluene | 20 | 10 | 100 | 85.4 | 79.5 | 175.6 | 2.4 | 140.9 |
2 | CoCl2(PtBuPh2)2 (30) | 10 | toluene | 20 | 30 | 100 | 85.6 | 80.6 | 197.0 | 2.2 | 146.3 |
3 | CoCl2(PtBuPh2)2 (30) | 10 | heptane | 20 | 60 | 100 | 90.8 | 82.3 | 186.7 | 2.1 | 153.5 |
4 | CoCl2(PtBuPh2)2 (30) | 25 | heptane | 0 | 60 | 100 | 94.2 | 84.1 | 225.6 | 1.9 | 158.2 |
5 | CoCl2[PPh2(NMDPP)]2 (10) | 100 | toluene | 20 | 15 | 100 | 86.0 | 81.3 | 203.4 | 2.3 | 141.8 |
6 | CoCl2[PPh2(NMDPP)]2 (20) | 25 | heptane | 20 | 60 | 100 | 88.3 | 83.7 | 196.0 | 2.1 | 154.7 |
7 | CoCl2[PPh2(NMDPP)]2 (30) | 25 | heptane | 0 | 10 | 72 | 94.5 | 85.5 | 237.2 | 2.0 | 160.8 |
8 | CoCl2(PiPrPh2)2 (5) | 100 | toluene | 20 | 5 | 100 | 85.4 | 74.0 | 169.0 | 2.2 | 126.0 |
9 | CoCl2(PCyPh2)2 (5) | 100 | toluene | 20 | 5 | 75 | 84.5 | 69.0 | 172.0 | 2.4 | 109.0 |
formula, Mr | C32H38Cl2CoP2, 614.39 |
crystal system | Monoclinic |
space group, Z | P21/n, 4 |
Dcalc, g cm−3 | 1.347 |
a, Å | 11.9782(5) |
b, Å | 15.4120(6) |
c, Å | 16.7851(7) |
β, ° | 102.098(1) |
V, Å3 | 3029.8(2) |
crystal size, mm | 0.35 × 0.20 × 0.08 |
color, habit | light blue, plate |
μ, mm−1 | 0.868 |
radiation | MoKα |
T, K | 153(2) |
2θmax, ° | 63.69 |
h, k, l ranges | −17→17; −22→22; −24→24 |
intensity decay, % | 0.00 |
adsorption correction | multi-scan |
Tmin, Tmax | 0.682, 0.746 |
measured reflections | 60180 |
Rint | 0.0320 |
independent reflections | 9958 |
reflections with I > 2σ(I) | 8422 |
no. of parameters | 340 |
R, wR [F2 > 2σ( F2)] | 0.0353, 0.0900 |
goodness of fit | 1.048 |
Δρ max, Δρ min (eÅ−3) | 1.069, −0.231 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ricci, G.; Leone, G.; Pierro, I.; Zanchin, G.; Forni, A. Novel Cobalt Dichloride Complexes with Hindered Diphenylphosphine Ligands: Synthesis, Characterization, and Behavior in the Polymerization of Butadiene. Molecules 2019, 24, 2308. https://doi.org/10.3390/molecules24122308
Ricci G, Leone G, Pierro I, Zanchin G, Forni A. Novel Cobalt Dichloride Complexes with Hindered Diphenylphosphine Ligands: Synthesis, Characterization, and Behavior in the Polymerization of Butadiene. Molecules. 2019; 24(12):2308. https://doi.org/10.3390/molecules24122308
Chicago/Turabian StyleRicci, Giovanni, Giuseppe Leone, Ivana Pierro, Giorgia Zanchin, and Alessandra Forni. 2019. "Novel Cobalt Dichloride Complexes with Hindered Diphenylphosphine Ligands: Synthesis, Characterization, and Behavior in the Polymerization of Butadiene" Molecules 24, no. 12: 2308. https://doi.org/10.3390/molecules24122308
APA StyleRicci, G., Leone, G., Pierro, I., Zanchin, G., & Forni, A. (2019). Novel Cobalt Dichloride Complexes with Hindered Diphenylphosphine Ligands: Synthesis, Characterization, and Behavior in the Polymerization of Butadiene. Molecules, 24(12), 2308. https://doi.org/10.3390/molecules24122308