The Influence of Solution pH on the Kinetics of Resorcinol Electrooxidation (Degradation) on Polycrystalline Platinum
Abstract
:1. Introduction
2. Results and Discussion
2.1. EDX Characterization of Polycrystalline Platinum
2.2. Electrochemical Characterization of the Resorcinol Oxidation Reaction
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lynch, B.S.; Delzell, E.S.; Bechtel, D.H. Toxicology review and risk assessment of resorcinol: thyroid effects. Regul. Toxicol. Pharm. 2002, 36, 198–210. [Google Scholar] [CrossRef]
- Gad, N.S.; Saad, A.S. Effect of environmental pollution by phenol on some physiological parameters of Oreochromisniloticus. Global Veterinaria 2008, 2, 312–319. [Google Scholar]
- Lopez, H.A.B.; Lopesa, G.H.; Teixeira, A.C.S.C.; Barreda, C.E.F.; Pantoja, P.A. Optimal conditions for oxidizing phenol in water by fenton and Photo-Fenton processes. Rev. Soc. Quím. Perú 2017, 83, 437–441. [Google Scholar]
- Bruce, R.M.; Santodonato, J.; Neal, M.W. Summary review of the health effects associated with phenol. Toxicol. Ind. Health 1987, 3, 535–568. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.A.; Torres, W.; Peringer, P.; Pulgarin, C. Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure—reactivity relationship assessment. Chemosphere 2003, 50, 97–104. [Google Scholar] [CrossRef]
- Rajkumar, D.; Palanivelu, K. Electrochemical treatment of industrial wastewater. J. Hazard. Mater. 2004, B113, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Lv, G.; Wu, D.; Fu, R. Performance of carbon aerogels particle electrodes for the aqueous phase electro-catalytic oxidation of simulated phenol wastewaters. J. Hazard. Mater. 2009, 165, 961–966. [Google Scholar] [CrossRef]
- Yang, X.; Kirsch, J.; Fergus, J.; Simonian, A. Modeling analysis of electrode fouling during electrolysis of phenolic compounds. Electrochim. Acta. 2013, 94, 259–268. [Google Scholar] [CrossRef]
- Li, X.; Cui, Y.; Feng, Y.; Xie, Z.; Gu, J. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 2005, 39, 1972–1981. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.; Zhang, X.; Ma, Q.; Wang, B. Electrochemical catalytic treatment of phenol wastewater. J. Hazard. Mater. 2009, 165, 475–480. [Google Scholar] [CrossRef]
- Hassani, A.; Borghei, S.; Samadyar, H.; Mirbagheri, S.; Javid, A. Treatment of waste water containing ethylene glycol using ozonation: Kinetic and performance study. Bull. Environ. Pharmacol. Life Sci. 2013, 2, 78–82. [Google Scholar]
- Soleto, J.L.; Beltrán, F.J.; Gonzalez, M. Ozonation of aqueous solutions of resorcinol and phloroglucinol. 1. Stoichiometry and absorption kinetic regime. Ind. Eng. Chem. Res. 1990, 29, 2358–2367. [Google Scholar] [CrossRef]
- Parisheva, Z.; Demirev, A. Ozonation of aqueous solution of resorcinol and catechol. Environ. Prot. Eng. 2001, 27, 17–25. [Google Scholar]
- Liu, Y.; Zhou, S.; Yang, F.; Qin, H.; Kong, Y. Degradation of phenol in industrial wastewater over the F-Fe/TiO2 photocatalysts under visible light illumination. Chin. J. Chem. Eng. 2016, 24, 1712–1718. [Google Scholar] [CrossRef]
- Nickheslat, A.; Amin, M.M.; Izanloo, H.; Fatehizadeh, A.; Mousavi, S.M. Phenol photocatalytic degradation by advanced oxidation process under ultravioler radiation using titanium dioxide. J. Environ. Public Health 2013, 4, 815310–815319. [Google Scholar] [CrossRef]
- Das, L.; Dutta, M.; Basu, J.K. Photocatalytic degradation of phenol from industrial effluent using titania-zirconia nonocomposite catalyst. Int. J. Environ. Sci. 2013, 4, 415–431. [Google Scholar] [CrossRef]
- Laoufi, N.; Tassalit, D.; Bentahar, F. The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor. Global NEST J. 2008, 10, 404–418. [Google Scholar]
- Vorontsov, A.V. Advancing Fenton and photo-Fenton water treatment through the catalyst design. J. Hazard. Mater. 2019, 15, 103–112. [Google Scholar] [CrossRef]
- Koppenol, W.H. The Haber-Weiss cycle—70 years later. Redox Rep. 2001, 6, 229–234. [Google Scholar] [CrossRef]
- Barbusinski, K. Fenton reaction—Controversy concerning the chemistry. Ecol. Chem. Eng. S. 2009, 16, 347–358. [Google Scholar]
- Brillas, E.; Sirés, I.; Oturan, M.A. Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem. Rev. 2009, 109, 6570–6631. [Google Scholar] [CrossRef]
- Elboughdiri, N.; Mahjoubi, A.; Shawabkeh, A.; Khasawneh, H.E.; Jamoussi, B. Optimization of the degradation of hydroquinone, resorcinol and catechol using response surface methodology. Adv. Chem. Engineer. Sci. 2015, 5, 111–120. [Google Scholar] [CrossRef]
- González-Bahamón, L.F.; Mazille, F.; Benítez, L.N.; Pulgarín, C. Photo-Fenton degradation of resorcinol mediated by catalysts based on iron species supported on polymers. J. Photoch. Photobio. A 2011, 217, 201–206. [Google Scholar] [CrossRef]
- Benatti, C.T.; Granhen Tavares, C.R. Organic Pollutants Ten Years After the Stockholm Convention; Environmental and Analytical Update: London, UK, 2012; pp. 247–271. [Google Scholar]
- Kulkarni, S.J.; Tapre, R.W.; Patil, S.V.; Sawarkar, M.B. Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon. Procedia Eng. 2013, 51, 300–307. [Google Scholar] [CrossRef]
- Ahmaruzzzaman, M.; Sharma, D.K. Adsorption of phenols from wastewater. J. Colloid Interface Sci. 2005, 287, 14–24. [Google Scholar] [CrossRef]
- Girish, C.R.; Singh, P.; Goyal, A.K. Removal of phenol from wastewater using tea waste and optimization of conditions using response surface methodology. Int. J. Appl. Eng. Res. 2017, 12, 3857–3863. [Google Scholar]
- Mu’azu, N.D.; Jarrah, N.; Zubair, M.; Alagha, O. Removal of Phenolic Compounds from Water Using Sewage Sludge-Based Activated Carbon Adsorption: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1094. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notranicola, M. Characteristic and adsorption capacities of low-cost sorbents for wastewater treatments: A review. Sustainable Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef]
- Korbahti, B.K.; Demirbuken, P. Electrochemical oxidation of resorcinol in aqueous medium using boron-doped diamond anode: reaction kinetics and process optimization with response surface methodology. Front Chem. 2017, 5, 1–14. [Google Scholar] [CrossRef]
- Rajkumar, D.; Palanivelu, K.; Mohan, N. Electrochemical oxidation of resorcinol for wastewater treatment—A kinetic study. Indian J. Chem. Technol. 2003, 10, 396–401. [Google Scholar]
- Nady, H.; El-Rabieci, M.M.; Abd El-Hafez, G.M. Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egypt. J. Pet. 2017, 26, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Zhao, Y.; Liu, W.; Chang, L. Investigation on electro-catalytic oxidation properties of carbon nanotube–Ce-modified PbO2 electrode and its application for degradation of m-nitrophenol. Arabian J. Chem. 2014. (In Press, Corrected Proof). [Google Scholar] [CrossRef]
- Li, M.; Feng, C.; Hu, W.; Zhang, Z.; Sugiura, N. Electrochemical degradation of phenol using electrodes of Ti/RuO(2)-Pt and Ti/IrO(2)-Pt. J. Hazard. Mater. 2009, 162, 455–462. [Google Scholar] [CrossRef]
- Andreescu, S.; Andreescu, D.; Sadik, O.A. A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes. Electrochem. Commun. 2003, 5, 681–688. [Google Scholar] [CrossRef]
- Ureta-Zanartu, M.S.; Bustos, P.; Berrios, C.; Diez, M.C.; Mora, M.L.; Gutierrez, C. Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochim. Acta 2002, 47, 2399–2406. [Google Scholar] [CrossRef]
- Alves, P.D.P.; Spagnol, M.; Tremiliosi-Filhob, G.; de Andrade, A.R. Investigation of the influence of the anode composition of DSA-type electrodes on the electrocatalytic oxidation of phenol in neutral medium. J. Braz. Chem. Soc. 2004, 15, 626–634. [Google Scholar] [CrossRef]
- Yavuz, Y.; Koparal, A.S. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode. J. Hazard. Mater. 2006, 136B, 296–302. [Google Scholar] [CrossRef]
- Scialdone, O.; Randazzo, S.; Galia, A.; Silvestri, G. Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Res. 2009, 43, 2260–2272. [Google Scholar] [CrossRef]
- Zhang, C.; Jiang, Y.; Li, Y.; Hu, Z.; Zhou, L.; Zhou, M. Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 2013, 228, 455–467. [Google Scholar] [CrossRef]
- Arslan, G.; Yazici, B.; Erbil, M. The effect of pH, temperature and concentration on electrooxidation of phenol. J. Hazard. Mater. 2005, B124, 37–43. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Liu, W.; Tu, Y.; Zhang, Y.; Han, W.; Wang, L. Electrochemical degradation of nitrobenzene by anodic oxidation on the constructed TiO2-NTs/SnO2-Sb/PbO2 electrode. Chemosphere 2014, 113, 48–55. [Google Scholar] [CrossRef]
- Mikolajczyk, T.; Pierozynski, B.; Smoczynski, L.; Wiczkowski, W. Electrodegradation of resorcinol on pure and catalyst-modified Ni foam anodes, studied under alkaline and neutral pH conditions. Molecules 2018, 23, 1293. [Google Scholar] [CrossRef]
- Zhang, H.; Bo, X.; Guo, L. Electrochemical preparation of porous graphene and its electrochemical application in the simultaneous determination of hydroquinone, catechol, and resorcinol. Sens. Actuators B 2015, 220, 919–926. [Google Scholar] [CrossRef]
- Yin, H.; Zhang, Q.; Zhou, Y.; Ma, Q.; Liu, T.; Zhu, L.; Ai, S. Electrochemical behavior of catechol, resorcinol and hydroquinone at graphene–chitosan composite film modified glassy carbon electrode and their simultaneous determination in water samples. Electrochim. Acta 2011, 56, 2748–2753. [Google Scholar] [CrossRef]
- Pierozynski, B. Reactivity of Organic Molecules at Single-crystal Surfaces of Pt Electrosorption and Surface Reactivity Molecules, Investigations; VDM Verlag Dr. Muller: Saarbrücken, Germany, 2009; pp. 88–125. [Google Scholar]
- Conway, B.E.; Pierozynski, B. Influance of acetamidine on the electrosorption oh UPD H at Pt single-crystal surfaces. J. Electroanal. Chem. 2008, 623, 102–108. [Google Scholar] [CrossRef]
- Pierozynski, B.; Morin, S.; Conway, B.E. Influence of adsorption of guanidonium cations on H upd at Pt(hkl) surfaces: lattice-specific anion-mimetic effects. J. Electroanal. Chem. 1999, 7, 30–42. [Google Scholar] [CrossRef]
- Conway, B.E.; Pierozynski, B. A.c. impedance behaviour of processes involving adsorption and reactivity of guanidonium-type cations at Pt(1 0 0) surface. J. Electroanal. Chem. 2008, 622, 10–14. [Google Scholar] [CrossRef]
- Pierozynski, B.; Mikolajczyk, T.; Piotrowska, G. Electrooxidation of phenol at palladium-based catalyst materials in alkaline solution. Int. J. Electrochem. Sci. 2015, 10, 2088–2097. [Google Scholar]
- Pierozynski, B.; Mikolajczyk, T.; Piotrowska, G. Electrooxidation of phenol on PtRh and PtRu alloys in 0.1 M NaOH solution. Int. J. Electrochem. Sci. 2015, 10, 2432–2438. [Google Scholar]
- Macdonald, J.R. Impedance Spectroscopy, Emphasizing Solid Materials and Systems; John Wiley: New York, NY, USA, 1987; ISBN 0471831220. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Elements | Electrolyte | Before | After |
---|---|---|---|
Pt/% | 0.1 M H2SO4 | 92.50 | 72.54 |
0.5 M H2SO4 | 71.93 | ||
0.5 M Na2SO4 | 72.83 | ||
0.1 M NaOH | 82.73 | ||
0.5 M NaOH | 83.14 | ||
C/% | 0.1 M H2SO4 | 7.05 | 24.02 |
0.5 M H2SO4 | 24.31 | ||
0.5 M Na2SO4 | 23.22 | ||
0.1 M NaOH | 15.65 | ||
0.5 M NaOH | 15.27 | ||
O/% | 0.1 M H2SO4 | 0.45 | 3.44 |
0.5 M H2SO4 | 3.76 | ||
0.5 M Na2SO4 | 3.95 | ||
0.1 M NaOH | 1.62 | ||
0.5 M NaOH | 1.59 |
E/mV | RF/Ω cm2 | Cdl/µF cm−2sφ−1 |
---|---|---|
Pt in 0.1 M H2SO4 | ||
1200 | 5018 ± 60 | 85 ± 6 |
1250 | 6762 ± 144 | 55 ± 5 |
1300 | 7431 ± 131 | 45 ± 3 |
Pt in 0.5 M H2SO4 | ||
1150 | 2860 ± 280 | 91 ± 10 |
1200 | 3090 ± 360 | 80 ± 8 |
1250 | 3730 ± 480 | 79 ± 9 |
Pt in 0.5 M Na2SO4 | ||
1400 | 6750 ± 430 | 96 ± 8 |
1450 | 8880 ± 750 | 93 ± 6 |
1500 | 9870 ± 970 | 60 ± 8 |
Pt in 0.1 M NaOH | ||
1150 | 630 ± 80 | 100 ± 2 |
1200 | 740 ± 90 | 94 ± 2 |
1250 | 2230 ± 130 | 64 ± 2 |
Pt in 0.5 M NaOH | ||
1200 | 945 ± 14 | 99 ± 5 |
1250 | 1072 ± 34 | 82 ± 3 |
1300 | 2359 ± 49 | 75 ± 3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikolajczyk, T.; Luba, M.; Pierozynski, B.; Kowalski, I.M.; Wiczkowski, W. The Influence of Solution pH on the Kinetics of Resorcinol Electrooxidation (Degradation) on Polycrystalline Platinum. Molecules 2019, 24, 2309. https://doi.org/10.3390/molecules24122309
Mikolajczyk T, Luba M, Pierozynski B, Kowalski IM, Wiczkowski W. The Influence of Solution pH on the Kinetics of Resorcinol Electrooxidation (Degradation) on Polycrystalline Platinum. Molecules. 2019; 24(12):2309. https://doi.org/10.3390/molecules24122309
Chicago/Turabian StyleMikolajczyk, Tomasz, Mateusz Luba, Boguslaw Pierozynski, Ireneusz M. Kowalski, and Wieslaw Wiczkowski. 2019. "The Influence of Solution pH on the Kinetics of Resorcinol Electrooxidation (Degradation) on Polycrystalline Platinum" Molecules 24, no. 12: 2309. https://doi.org/10.3390/molecules24122309
APA StyleMikolajczyk, T., Luba, M., Pierozynski, B., Kowalski, I. M., & Wiczkowski, W. (2019). The Influence of Solution pH on the Kinetics of Resorcinol Electrooxidation (Degradation) on Polycrystalline Platinum. Molecules, 24(12), 2309. https://doi.org/10.3390/molecules24122309