A Mass Spectrometric Study on Tannin Degradation within Dyed Woolen Yarns
Abstract
:1. Introduction
2. Results
2.1. Oak Gallnuts
2.2. Acacia catechu
2.3. Juglans regia
2.4. Historical Samples
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Reference Samples
4.3. Historical Samples
4.4. Sample Pretreatment
4.5. High-Performance Liquid Chromatography-Tandem Mass Spectrometry (HPLC-MS2)
4.6. Data Processing
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef]
- Hemingway, R.W.; Karchesy, J.J. Chemistry and Significance of Condensed Tannins, 1st ed.; Hemingway, R.W., Karchesy, J.J., Eds.; Springer Science & Business Media: New York, NY, USA, 2012; pp. 23–46. [Google Scholar]
- Haslam, E. Plant Polyphenols 2: Chemistry, Biology, Pharmacology, Ecology, 1st ed.; Gross, G.G., Hemingway, R.W., Eds.; Springer Science & Business Media: New York, NY, USA, 2012; pp. 15–40. [Google Scholar]
- Russell, A. The Natural Tannins. Chem. Rev. 1935, 17, 155–186. [Google Scholar] [CrossRef]
- Muccilli, V.; Cardullo, N.; Spatafora, C.; Cunsolo, V.; Tringali, C. α-Glucosidase inhibition and antioxidant activity of an oenological commercial tannin. Extraction, fractionation and analysis by HPLC/ESI-MS/MS and 1H NMR. Food Chem. 2017, 215, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Zillich, O.V.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M.; Schweiggert-Weisz, U. Polyphenols as active ingredients for cosmetic products. Int. J. Cosmet. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef] [PubMed]
- Anunciato, T.P.; Filho, P.A.D.R. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 2012, 11, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Bechtold, T.; Mussak, R. Handbook of Natural Colorants; Bechtold, T., Mussak, K., Eds.; John Wiley and Sons: Chichester, UK, 2009; pp. 201–219. [Google Scholar]
- Otłowska, O.; Slebioda, M.; Kot-Wasik, A.; Karczewski, J.; Sliwka-Kaszynska, M. Chromatographic and Spectroscopic Identification and Recognition of Natural Dyes, Uncommon Dyestuff Components, and Mordants: Case Study of a 16th Century Carpet with Chintamani Motifs. Molecules 2018, 23, 339. [Google Scholar]
- Hofmann-de Keijzer, R.; van Bommel, M.R.; de Keijzer, M. Coptic textiles: Dyes, dyeing techniques and dyestuff analysis of two textile fragments of the MAK Vienna. In Methods of Dating Ancient Textiles of the 1st Millennium AD from Egypt and Neighbouring Countries, Proceedings of the 4th Meeting of the Study Group ‘Textiles, Nile Valley’, Antwerp, 16–17 April 2005; Lannoo Publisherspp: Tielt, Belgium, 2007; pp. 214–228. [Google Scholar]
- Han, J.; Wanrooij, J.; van Bommel, M.R.; Quye, A. Characterisation of chemical components for identifying historical Chinese textile dyes by ultra high performance liquid chromatography–photodiode array–electrospray ionisation mass spectrometer. J. Chromatogr. A 2017, 1479, 87–96. [Google Scholar] [CrossRef]
- Carò, F.; Chiostrini, G.; Cleland, E.; Shibayama, N. Redeeming Pieter Coecke van Aelst’s Gluttony Tapestry: Learning from Scientific Analysis. Metrop. Mus. J. 2014, 49, 151–164. [Google Scholar] [CrossRef]
- Hacke, M. Weighted silk: History, analysis and conservation. Stud. Conserv. 2008, 53, 3–15. [Google Scholar] [CrossRef]
- Ferreira, E.S.B.; Hulme, A.N.; McNab, H.; Quye, A. The Natural Constituents of Historical Textile Dyes. Chem. Soc. Rev. 2004, 33, 329–336. [Google Scholar] [CrossRef]
- Zajácz, Á.; Gyémánt, G.; Vittori, N.; Kandra, L. Aleppo tannin: Structural analysis and salivary amylase inhibition. Carbohydr. Res. 2007, 342, 717–723. [Google Scholar] [CrossRef] [PubMed]
- Pliny the Elder. Naturalis Historia; Teubner: Lipsiae, Germany, 1906. [Google Scholar]
- Patel, J.D.; Kumar, V.; Bhatt, S.A. Antimicrobial screening and phytochemical analysis of the resin part of Acacia catechu. Pharm. Boil. 2009, 47, 34–37. [Google Scholar] [CrossRef]
- Sze-Tao, K.W.C.; E Schrimpf, J.; Teuber, S.S.; Roux, K.H.; Sathe, S.K.; Sze-Tao, K.W.C. Effects of processing and storage on walnut (Juglans regia L.) tannins. J. Sci. Food Agric. 2001, 81, 1215–1222. [Google Scholar] [CrossRef]
- Hofenk de Graaff, J.H.; Roelof, W.; van Bommel, M.R. The Colourful Past: Origins, Chemistry and Identification of Natural Dyestuffs, 1st ed.; Archetype Publications Ltd: London, UK, 2004. [Google Scholar]
- Wilson, H.; Carr, C.; Hacke, M. Production and validation of model iron-tannate dyed textiles for use as historic textile substitutes in stabilisation treatment studies. Chem. Cent. J. 2012, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Degano, I.; Tognotti, P.; Kunzelman, D.; Modugno, F. HPLC-DAD and HPLC-ESI-Q-ToF characterisation of early 20th century lake and organic pigments from Lefranc archives. Herit. Sci. 2017, 5, 396. [Google Scholar] [CrossRef]
- Kramell, A.E.; Wertmann, P.; Hosner, D.; Kluge, R.; Oehler, F.; Wunderlich, C.-H.; Tarasov, P.E.; Wagner, M.; Csuk, R. A multi-analytical techniques based approach to study the colorful clothes and accessories from mummies of Eastern Central Asia. J. Archaeol. Sci. Rep. 2016, 10, 464–473. [Google Scholar] [CrossRef]
- Valianou, L.; Karapanagiotis, I.; Chryssoulakis, Y. Comparison of extraction methods for the analysis of natural dyes in historical textiles by high-performance liquid chromatography. Anal. Bioanal. Chem. 2009, 395, 2175–2189. [Google Scholar] [CrossRef]
- Restivo, A.; Degano, I.; Ribechini, E.; Colombini, M.P. Development and optimisation of an HPLC-DAD-ESI-Q-TOF method for the determination of phenolic acids and derivatives. PLoS ONE 2014, 9, e88762. [Google Scholar] [CrossRef]
- Mattonai, M.; Parri, E.; Querci, D.; Degano, I.; Ribechini, E. Development and validation of an HPLC-DAD and HPLC/ESI-MS 2 method for the determination of polyphenols in monofloral honeys from Tuscany (Italy). Microchem. J. 2016, 126, 220–229. [Google Scholar] [CrossRef]
- Verzele, M.; Delahaye, P. Analysis of tannic acids by high-performance liquid chromatography. J. Chromatogr. A 1983, 268, 469–476. [Google Scholar] [CrossRef]
- Ferreira, E.S.; Quye, A.; McNab, H.; Hulme, A.N. Photo-oxidation products of quercetin and morin as markers for the characterisation of natural flavonoid yellow dyes in ancient textiles. Dyes Hist. Archaeol. 2002, 18, 63–72. [Google Scholar]
- Restivo, A.; Degano, I.; Ribechini, E.; Pérez-Arantegui, J.; Colombini, M.P. Field-Emission Scanning Electron Microscopy and Energy-Dispersive X-Ray Analysis to Understand the Role of Tannin-Based Dyes in the Degradation of Historical Wool Textiles. Microsc. Microanal. 2014, 20, 1534–1543. [Google Scholar] [CrossRef] [PubMed]
- Dilillo, M.; Restivo, A.; Degano, I.; Ribechini, E.; Colombini, M.P. GC/MS investigations of the total lipid fraction of wool: A new approach for modelling the ageing processes induced by iron-gallic dyestuffs on historical and archaeological textiles. Microchem. J. 2015, 118, 131–140. [Google Scholar] [CrossRef]
- Li, X.-C.; Liu, C.; Yang, L.-X.; Chen, R.-Y. Phenolic compounds from the aqueous extract of Acacia catechu. J. Asian Nat. Prod. Res. 2011, 13, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Duval, A.; Avérous, L. Characterization and Physicochemical Properties of Condensed Tannins from Acacia catechu. J. Agric. Food Chem. 2016, 64, 1751–1760. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Wu, Q.; Wang, M.; Yang, Y.; Lavoie, E.J.; Simon, J.E. Determination of the Predominant Catechins in Acacia catechu by Liquid Chromatography/Electrospray Ionization−Mass Spectrometry. J. Agric. Food Chem. 2006, 54, 3219–3224. [Google Scholar] [CrossRef]
- Hosseinzadeh, H.; Zarei, H.; Taghiabadi, E. Antinociceptive, Anti-Inflammatory and Acute Toxicity Effects of Juglans regia L. Leaves in Mice. Iran. Red Crescent Med J. 2011, 13, 27–33. [Google Scholar]
- Zhang, Z.; Liao, L.; Moore, J.; Wu, T.; Wang, Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009, 113, 160–165. [Google Scholar] [CrossRef]
- Amaral, J.S.; Seabra, R.M.; Andrade, P.B.; Valentão, P.; Pereira, J.A.; Ferreres, F. Phenolic profile in the quality control of walnut (Juglans regia L.) leaves. Food Chem. 2004, 88, 373–379. [Google Scholar] [CrossRef]
- Gîrzu, M.; Carnat, A.-P.; Privat, A.-M.; Fialip, J.; Lamaison, J.-L. Sedative Effect of Walnut Leaf Extract and Juglone, an Isolated Constituent. Pharm. Boil. 1998, 36, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Anderson, K.J.; Teuber, S.S.; Gobeille, A.; Cremin, P.; Waterhouse, A.L.; Steinberg, F.M. Walnut Polyphenolics Inhibit In Vitro Human Plasma and LDL Oxidation. J. Nutr. 2001, 131, 2837–2842. [Google Scholar] [CrossRef] [PubMed]
- Brockmann, H.; Laatsch, H. Dimerization and cyclotrimerization of juglone and 7-methyljuglone. Chem. Informationsdienst 1978, 9. [Google Scholar]
- Lattanzio, V.; Kroon, P.A.; Quideau, S.; Treutter, D. Chapter 1. Plant Phenolics—Secondary Metabolites with Diverse Functions. In Recent Advances in Polyphenol Research; Daayf, F., Lattanzio, V., Eds.; John Wiley & Sons: Chichester, UK, 2009; Volume 1, pp. 1–35. [Google Scholar]
- Degano, I.; Ribechini, E.; Modugno, F.; Colombini, M.P. Analytical Methods for the Characterization of Organic Dyes in Artworks and in Historical Textiles. Appl. Spectrosc. Rev. 2009, 44, 363–410. [Google Scholar] [CrossRef]
- Colombini, M.P.; Carmignani, A.; Modugno, F.; Frezzato, F.; Olchini, A.; Brecoulaki, H.; Vassilopoulou, V.; Karkanas, P. Integrated analytical techniques for the study of ancient Greek polychromy. Talanta 2004, 63, 839–848. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of all reference materials are available from the authors. |
Compound | Formula | MW (a.m.u.) | m/z | G | J | C | Ger1 | Ger2 | Ger3 | Ger4 | Ger5 | Ger6 | Ger7 | Ger8 | Abb1 | Abb2 | Gia | Giu1 | Giu2 | Giu3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | C7H6O5 | 170.12 | 169.014 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||
Vanillic acid | C8H8O4 | 168.14 | 167.023 | x | x | x | x | |||||||||||||
3,4-dihydroxybenzoic acid | C7H6O4 | 154.12 | 153.019 | x | x | x | x | x | x | x | x | x | ||||||||
3,5-dihydroxybenzoic acid | C7H6O4 | 154.12 | 153.019 | x | x | x | x | x | x | x | x | x | x | x | x | |||||
4-hydroxybenzoic acid | C7H6O3 | 138.12 | 137.017 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |
3-hydroxybenzoic acid | C7H6O3 | 138.12 | 137.017 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |
3,4-dimethoxycinnamic acid | C11H12O4 | 208.07 | 207.055 | x | ||||||||||||||||
Caffeic acid | C9H8O4 | 180.16 | 179.081 | x | ||||||||||||||||
p-galloylgallate | C14H10O9 | 322.03 | 321.016 | x | x | |||||||||||||||
Ethyl gallate | C9H10O5 | 198.17 | 197.045 | x | ||||||||||||||||
Catechin | C15H14O6 | 290.26 | 289.06 | x | ||||||||||||||||
Digalloyl-glucose | C20H20O14 | 484.18 | 483.065 | x | x | |||||||||||||||
Gallocatechin | C15H14O7 | 306.07 | 305.053 | x | ||||||||||||||||
Profisetidin | C15H14O5 | 274.08 | 273.064 | x | ||||||||||||||||
p-coumaroylquinic acid | C16H18O8 | 338.31 | 337.078 | x | ||||||||||||||||
m-galloylgallate | C14H10O9 | 322.03 | 321.01 | x | x | |||||||||||||||
Epicatechin | C15H14O6 | 290.26 | 289.06 | x | ||||||||||||||||
p-coumaric acid | C9H8O3 | 164.04 | 163.029 | x | ||||||||||||||||
3,5,7,4′-Trihydroxyflavan | C15H14O5 | 274.08 | 273.064 | x | ||||||||||||||||
Trigalloyl-glucose | C27H24O18 | 636.28 | 635.076 | x | ||||||||||||||||
Catechin-3-O-gallate | C22H18O10 | 442. 37 | 441.07 | x | ||||||||||||||||
Taxifolin | C12H12O7 | 304.25 | 303.039 | x | ||||||||||||||||
Tetragalloyl-glucose | C34H28O22 | 788.39 | 787.080 | x | ||||||||||||||||
Quercetin 3-galactoside | C21H20O12 | 464.38 | 463.072 | x | ||||||||||||||||
Ellagic acid | C14H6O8 | 302.2 | 300.987 | x | x | x | x | x | x | x | x | x | x | x | x | |||||
Eriodictyol | C15H12O6 | 288.25 | 287.043 | x | ||||||||||||||||
Quercitin 3-pentoside | C20H18O11 | 434.35 | 433.061 | x | ||||||||||||||||
Kaempferide | C16H12O6 | 300.26 | 299.042 | x | ||||||||||||||||
Quercetin 3-hexoside | C21H20O11 | 448.38 | 447.077 | x | ||||||||||||||||
Pentagalloyl-glucose | C41H32O26 | 940.49 | 939.091 | x | ||||||||||||||||
3-O-caffeoylquinic acids | C16H18O9 | 354.31 | 353.089 | x | ||||||||||||||||
Hexagalloyl-glucose | C48H36O30 | 1092.58 | 1091.096 | x | ||||||||||||||||
Eptagalloyl-glucose | C55H40O34 | 1244.7 | 1243.102 | x | ||||||||||||||||
5-O-caffeoylquinic acids | C16H18O10 | 354.31 | 353.089 | x | ||||||||||||||||
Quercetin | C15H10O7 | 302.24 | 301.023 | x | x | |||||||||||||||
Rhamnetin | C16H12O7 | 316.26 | 315.039 | x | ||||||||||||||||
Juglone dimer (tentative attribution) | C20H14O6 | 350.07 | 349.056 | x |
Integrated and Normalized Areas (106) | ||||||||
---|---|---|---|---|---|---|---|---|
Ageing Time (h) | 0 | 0 (HCl) | 75 | 123 | 232 | 355 | 500 | |
No mordant | hydroxybenzoic acids | 2 | 0 | 23 | 10 | 12 | 16 | 19 |
gallic acid | 586 | 308 | 311 | 265 | 468 | 379 | 295 | |
galloyl-gallate | 322 | 62 | 303 | 237 | 226 | 201 | 161 | |
digalloyl-glucose | 174 | 273 | 173 | 175 | 150 | 112 | 87 | |
trigalloyl-glucose | 305 | 274 | 295 | 319 | 163 | 212 | 148 | |
tetragalloyl-glucose | 374 | 395 | 324 | 355 | 246 | 243 | 138 | |
pentagalloyl-glucose | 466 | 469 | 315 | 374 | 289 | 209 | 129 | |
hexagalloyl-glucose | 102 | 149 | 74 | 70 | 68 | 46 | 33 | |
heptagalloyl-glucose | 15 | 27 | 0 | 11 | 9 | 6 | 4 | |
Total gallotannins | 2344 | 1957 | 1795 | 1806 | 1619 | 1408 | 995 | |
Free gallic acid (% of TOT) | 25.0 | 15.7 | 17.3 | 14.7 | 28.9 | 26.9 | 29.6 | |
Iron mordant | hydroxybenzoic acids | 0 | 0 | 0 | 0 | 2 | 2 | 2 |
gallic acid | 153 | 108 | 114 | 72 | 86 | 84 | 72 | |
galloyl-gallate | 58 | 2 | 49 | 44 | 42 | 50 | 45 | |
digalloyl-glucose | 12 | 92 | 14 | 7 | 12 | 10 | 11 | |
trigalloyl-glucose | 24 | 21 | 30 | 16 | 24 | 20 | 17 | |
tetragalloyl-glucose | 36 | 31 | 51 | 20 | 31 | 26 | 21 | |
pentagalloyl-glucose | 54 | 52 | 59 | 31 | 35 | 34 | 23 | |
hexagalloyl-glucose | 21 | 0 | 25 | 15 | 16 | 21 | 10 | |
eptagalloyl-glucose | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Total gallotannins | 358 | 305 | 342 | 206 | 246 | 245 | 200 | |
Free gallic acid (% of TOT) | 42.6 | 35.3 | 33.3 | 35.1 | 35.1 | 34.3 | 36.1 |
No dye | ||
No mordant | Unaged | W0 |
Aged 500 h | W5 | |
Aluminium | Unaged | WA0 |
Aged 500 h | WA5 | |
Iron | Unaged | WI0 |
Aged 500 h | WI5 | |
Oak gallnuts | ||
No mordant | Unaged | WG0 |
Aged 75 h | WG1 | |
Aged 123 h | WG2 | |
Aged 232 h | WG3 | |
Aged 355 h | WG4 | |
Aged 500 h | WG5 | |
Aluminium | Unaged | WAG0 |
Aged 500 h | WAG5 | |
Iron | Unaged | WIG0 |
Aged 75 h | WIG1 | |
Aged 123 h | WIG2 | |
Aged 232 h | WIG3 | |
Aged 355 h | WIG4 | |
Aged 500 h | WIG5 | |
Catechu (Acacia catechu) | ||
No mordant | Unaged | WC0 |
Aged 500 h | WC5 | |
Aluminium | Unaged | WAC0 |
Aged 500 h | WAC5 | |
Iron | Unaged | WIC0 |
Aged 500 h | WIC5 | |
Walnut (Juglans regia) | ||
No mordant | Unaged | WJ0 |
Aged 500 h | WJ5 | |
Aluminium | Unaged | WAJ0 |
Aged 500 h | WAJ5 | |
Iron | Unaged | WIJ0 |
Aged 500 h | WIJ5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Degano, I.; Mattonai, M.; Sabatini, F.; Colombini, M.P. A Mass Spectrometric Study on Tannin Degradation within Dyed Woolen Yarns. Molecules 2019, 24, 2318. https://doi.org/10.3390/molecules24122318
Degano I, Mattonai M, Sabatini F, Colombini MP. A Mass Spectrometric Study on Tannin Degradation within Dyed Woolen Yarns. Molecules. 2019; 24(12):2318. https://doi.org/10.3390/molecules24122318
Chicago/Turabian StyleDegano, Ilaria, Marco Mattonai, Francesca Sabatini, and Maria Perla Colombini. 2019. "A Mass Spectrometric Study on Tannin Degradation within Dyed Woolen Yarns" Molecules 24, no. 12: 2318. https://doi.org/10.3390/molecules24122318
APA StyleDegano, I., Mattonai, M., Sabatini, F., & Colombini, M. P. (2019). A Mass Spectrometric Study on Tannin Degradation within Dyed Woolen Yarns. Molecules, 24(12), 2318. https://doi.org/10.3390/molecules24122318