Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Lipophilicity
2.3. pH-Dependent Stability
2.4. Light Activation of Complex 1f
2.5. Biological Activity and Cellular Accumulation Studies
3. Materials and Methods
3.1. Materials
3.2. General Ligand Exchange Procedure
3.3. Synthesis of Complexes 1b–g
3.4. Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Durig, J.R.; Danneman, J.; Behnke, W.D.; Mercer, E.E. The Induction of Filamentous Growth in Escherichia Coli by Ruthenium and Palladium Complexes. Chem. Biol. Interact. 1976, 13, 287–294. [Google Scholar] [CrossRef]
- Alessio, E. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective: Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017, 2017, 1549–1560. [Google Scholar] [CrossRef]
- Trondl, R.; Heffeter, P.; Kowol, C.R.; Jakupec, M.A.; Berger, W.; Keppler, B.K. NKP-1339, the First Ruthenium-Based Anticancer Drug on the Edge to Clinical Application. Chem Sci 2014, 5, 2925–2932. [Google Scholar] [CrossRef]
- Bergamo, A.; Gaiddon, C.; Schellens, J.H.M.; Beijnen, J.H.; Sava, G. Approaching Tumour Therapy beyond Platinum Drugs. J. Inorg. Biochem. 2012, 106, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Renfrew, A. Ruthenium(II) Arene Compounds as Versatile Anticancer Agents. Chim. Int. J. Chem. 2009, 63, 217–219. [Google Scholar] [CrossRef]
- Bergamo, A.; Masi, A.; Peacock, A.F.A.; Habtemariam, A.; Sadler, P.J.; Sava, G. In Vivo Tumour and Metastasis Reduction and in Vitro Effects on Invasion Assays of the Ruthenium RM175 and Osmium AFAP51 Organometallics in the Mammary Cancer Model. J. Inorg. Biochem. 2010, 104, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Kubanik, M.; Kandioller, W.; Kim, K.; Anderson, R.F.; Klapproth, E.; Jakupec, M.A.; Roller, A.; Söhnel, T.; Keppler, B.K.; Hartinger, C.G. Towards Targeting Anticancer Drugs: Ruthenium(ii)–Arene Complexes with Biologically Active Naphthoquinone-Derived Ligand Systems. Dalton Trans. 2016, 45, 13091–13103. [Google Scholar] [CrossRef]
- Kurzwernhart, A.; Kandioller, W.; Bartel, C.; Bächler, S.; Trondl, R.; Mühlgassner, G.; Jakupec, M.A.; Arion, V.B.; Marko, D.; Keppler, B.K.; et al. Targeting the DNA-Topoisomerase Complex in a Double-Strike Approach with a Topoisomerase Inhibiting Moiety and Covalent DNA Binder. Chem. Commun. 2012, 48, 4839. [Google Scholar] [CrossRef]
- Filak, L.K.; Kalinowski, D.S.; Bauer, T.J.; Richardson, D.R.; Arion, V.B. Effect of the Piperazine Unit and Metal-Binding Site Position on the Solubility and Anti-Proliferative Activity of Ruthenium(II)- and Osmium(II)- Arene Complexes of Isomeric Indolo[3,2- c ]Quinoline—Piperazine Hybrids. Inorg. Chem. 2014, 53, 6934–6943. [Google Scholar] [CrossRef]
- Hanif, M.; Schaaf, P.; Kandioller, W.; Hejl, M.; Jakupec, M.A.; Roller, A.; Keppler, B.K.; Hartinger, C.G. Influence of the Arene Ligand and the Leaving Group on the Anticancer Activity of (Thio)Maltol Ruthenium(II)–(Η6-Arene) Complexes. Aust. J. Chem. 2010, 63, 1521. [Google Scholar] [CrossRef]
- Hackl, C.M.; Legina, M.S.; Pichler, V.; Schmidlehner, M.; Roller, A.; Dömötör, O.; Enyedy, E.A.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K. Thiomaltol-Based Organometallic Complexes with 1-Methylimidazole as Leaving Group: Synthesis, Stability, and Biological Behavior. Chem. -Eur. J. 2016, 22, 17269–17281. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Chen, C.; Li, Y.; Zhao, J.; Zhu, T. Hydroxyl Radical Generation Mechanism During the Redox Cycling Process of 1,4-Naphthoquinone. Environ. Sci. Technol. 2012, 46, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- Minderman, H.; Wrzosek, C.; Cao, S.; Utsugi, T.; Kobunai, T.; Yamada, Y.; Rustum, Y.M. Mechanism of Action of the Dual Topoisomerase-I and -II Inhibitor TAS-103 and Activity against (Multi)Drug Resistant Cells. Cancer Chemother. Pharmacol. 2000, 45, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-K.; Ryu, J.; Yang, S.-I.; Cho, J.; Lee, H. Synthesis Andin Vitro Cytotoxicity of 1,3-Dioxoindan-2-Carboxylic Acid Arylamides. Arch. Pharm. Res. 2004, 27, 997. [Google Scholar] [CrossRef] [PubMed]
- Schmidlehner, M.; Kuhn, P.-S.; Hackl, C.M.; Roller, A.; Kandioller, W.; Keppler, B.K. Microwave-Assisted Synthesis of N-Heterocycle-Based Organometallics. J. Organomet. Chem. 2014, 772–773, 93–99. [Google Scholar] [CrossRef]
- Schuecker, R.; John, R.O.; Jakupec, M.A.; Arion, V.B.; Keppler, B.K. Water-Soluble Mixed-Ligand Ruthenium(II) and Osmium(II) Arene Complexes with High Antiproliferative Activity. Organometallics 2008, 27, 6587–6595. [Google Scholar] [CrossRef]
- Dougan, S.J.; Sadler, P.J. The Design of Organometallic Ruthenium Arene Anticancer Agents. Chim. Int. J. Chem. 2007, 61, 704–715. [Google Scholar] [CrossRef]
- Gillies, R.J.; Liu, Z.; Bhujwalla, Z. 31P-MRS Measurements of Extracellular PH of Tumors Using 3-Aminopropylphosphonate. Am. J. Physiol.-Cell Physiol. 1994, 267, C195–C203. [Google Scholar] [CrossRef] [PubMed]
- Vock, C.A.; Scolaro, C.; Phillips, A.D.; Scopelliti, R.; Sava, G.; Dyson, P.J. Synthesis, Characterization, and in Vitro Evaluation of Novel Ruthenium(II) Η6-Arene Imidazole Complexes. J. Med. Chem. 2006, 49, 5552–5561. [Google Scholar] [CrossRef]
- Vančo, J.; Šindelář, Z.; Dvořák, Z.; Trávníček, Z. Iron-Salophen Complexes Involving Azole-Derived Ligands: A New Group of Compounds with High-Level and Broad-Spectrum in Vitro Antitumor Activity. J. Inorg. Biochem. 2015, 142, 92–100. [Google Scholar] [CrossRef]
- Egger, A.; Cebrián-Losantos, B.; Stepanenko, I.N.; Krokhin, A.A.; Eichinger, R.; Jakupec, M.A.; Arion, V.B.; Keppler, B.K. Hydrolysis and Cytotoxic Properties of Osmium(II)/(III)-DMSO-Azole Complexes. Short Communication. Chem. Biodivers. 2008, 5, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Van Zutphen, S.; Pantoja, E.; Soriano, R.; Soro, C.; Tooke, D.M.; Spek, A.L.; den Dulk, H.; Brouwer, J.; Reedijk, J. New Antitumour Active Platinum Compounds Containing Carboxylate Ligands in Trans Geometry: Synthesis, Crystal Structure and Biological Activity. Dalton Trans 2006, 8, 1020–1023. [Google Scholar] [CrossRef] [PubMed]
- Betanzos-Lara, S.; Salassa, L.; Habtemariam, A.; Novakova, O.; Pizarro, A.M.; Clarkson, G.J.; Liskova, B.; Brabec, V.; Sadler, P.J. Photoactivatable Organometallic Pyridyl Ruthenium(II) Arene Complexes. Organometallics 2012, 31, 3466–3479. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, W.; Jiang, G.; Hou, Y.; Li, C.; Zhang, B.; Zhou, Q.; Wang, X. Fusion of Photodynamic Therapy and Photoactivated Chemotherapy: A Novel Ru(ii) Arene Complex with Dual Activities of Photobinding and Photocleavage toward DNA. Dalton Trans 2014, 43, 15375–15384. [Google Scholar] [CrossRef] [PubMed]
- Deacon-Price, C.; Romano, D.; Riedel, T.; Dyson, P.J.; Blom, B. Synthesis, Characterisation and Cytotoxicity Studies of Ruthenium Arene Complexes Bearing Trichlorogermyl Ligands. Inorganica Chim. Acta 2019, 484, 513–520. [Google Scholar] [CrossRef]
- Mokesch, S.; Novak, M.S.; Roller, A.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K. 1,3-Dioxoindan-2-Carboxamides as Bioactive Ligand Scaffolds for the Development of Novel Organometallic Anticancer Drugs. Organometallics 2015, 34, 848–857. [Google Scholar] [CrossRef]
- Valkó, K. Application of High-Performance Liquid Chromatography Based Measurements of Lipophilicity to Model Biological Distribution. J. Chromatogr. A 2004, 1037, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Nasal, A.; Siluk, D.; Kaliszan, R. Chromatographic Retention Parameters in Medicinal Chemistry and Molecular Pharmacology. Curr. Med. Chem. 2003, 10, 381–426. [Google Scholar] [CrossRef]
- Hartmann, T.; Schmitt, J. Lipophilicity—Beyond Octanol/Water: A Short Comparison of Modern Technologies. Drug Discov. Today Technol. 2004, 1, 431–439. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, G.; Zhang, J.; Yuan, Z.; Wang, L.; Bernards, M.; Chen, S. Surface Protonation/Deprotonation Controlled Instant Affinity Switch of Nano Drug Vehicle (NDV) for PH Triggered Tumor Cell Targeting. Biomaterials 2015, 62, 116–127. [Google Scholar] [CrossRef]
- Varbanov, H.P.; Göschl, S.; Heffeter, P.; Theiner, S.; Roller, A.; Jensen, F.; Jakupec, M.A.; Berger, W.; Galanski, M.; Keppler, B.K. A Novel Class of Bis- and Tris-Chelate Diam(m)Inebis(Dicarboxylato)Platinum(IV) Complexes as Potential Anticancer Prodrugs. J. Med. Chem. 2014, 57, 6751–6764. [Google Scholar] [CrossRef] [PubMed]
- Göschl, S.; Varbanov, H.P.; Theiner, S.; Jakupec, M.A.; Galanski, M.; Keppler, B.K. The Role of the Equatorial Ligands for the Redox Behavior, Mode of Cellular Accumulation and Cytotoxicity of Platinum(IV) Prodrugs. J. Inorg. Biochem. 2016, 160, 264–274. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SADABS; University of Göttingen: Niedersachsen, Germany, 1996. [Google Scholar]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Hübschle, C.B.; Sheldrick, G.M.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281–1284. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXS; University of Göttingen: Niedersachsen, Germany, 1996. [Google Scholar]
- Sheldrick, G.M. SHELXL; University of Göttingen: Niedersachsen, Germany, 1996. [Google Scholar]
- Spek, A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Klose, M.H.M.; Hejl, M.; Heffeter, P.; Jakupec, M.; Meier, S.M.; Berger, W.; Keppler, B.K. Post-Digestion Stabilization of Osmium Enables Quantification by ICP-MS in Cell Culture and Tissue. Analyst 2017. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 1a–g are available from the authors. |
1a [25] | 1b (MeIm) | 1c (HPz) | 1d (BIm) | 1e (HInd) | 1f (Pyr) | |
---|---|---|---|---|---|---|
Ru-O1 | 2.107(2) | 2.086(2) 2.085(2) | 2.077(2) | 2.073(2) | 2.0751(9) | 2.0786(15) 2.0847(15) 2.0775(15) |
Ru-O2 | 2.080(2) | 2.098(2) 2.104(2) | 2.095(2) | 2.097(2) | 2.0893(9) | 2.0948(15) 2.0970(14) 2.0923(14) |
Ru-N2 (Cl) | 2.419(8) | 2.093(2) 2.091(2) | 2.099(3) | 2.124(4) | 2.0979(10) | 2.1151(18) 2.1090(18) 2.1094(18) |
O1-Ru-O2 | 90.0(8) | 88.76(8) 89.37(8) | 89.79(9) | 90.16(7) | 90.07(3) | 89.96(6) 89.71(6) 90.10(6) |
C1-O1-Ru-O2 | 8.92(2) | 1.60(5) | 4.68(2) | 3.14(9) | 7.28(6) | 7.79(2) |
Ru-Cymcentr | 1.639 | 1.654 1.656 | 1.660 | 1.657 | 1.656 | 1.657 1.657 1.657 |
C1-O1 | 1.267(3) | 1.267(3) 1.267(3) | 1.270(4) | 1.260(3) | 1.2637(15) | 1.268(3) 1.270(3) 1.263(3) |
C3-O3 | 1.222(3) | 1.234(4) 1.228(4) | 1.268(4) | 1.275(3) | 1.2328(17) | 1.227(3) 1.228(3) 1.231(3) |
Slippage | 0.032 | 0.025 0.028 | 0.024 | 0.025 | 0.017 | 0.016 0.012 0.008 |
Intercept logkw | σ | R2 | Slope S | Φ0 | |
---|---|---|---|---|---|
1a | 5.41 | 0.0747 | 0.9997 | −0.0855 | 63.19 |
1b | 5.49 | 0.0083 | 0.9996 | −0.0888 | 61.84 |
1c | 5.36 | 0.0234 | 0.9996 | −0.0841 | 63.72 |
1d | 5.55 | 0.0405 | 0.9983 | −0.0843 | 65.87 |
1e | 5.94 | 0.0220 | 0.9999 | −0.0863 | 68.88 |
1f | 5.25 | 0.0636 | 0.9994 | −0.0845 | 62.07 |
1g | 5.14 | 0.0278 | 0.9999 | –0.0860 | 59.73 |
CH1/PA-1 | SW480 | HCT116 | A549 | fg Ru or Pt/Cell | |
---|---|---|---|---|---|
1a | 12.5 ± 4.4 | 12.4 ± 0.4 | 24.8 ± 6.4 | 23.4 ± 2.5 | 8.4 ± 2.8 |
1b | 16.2 ± 2.6 | 10.9 ± 1.0 | 24.6 ± 8.5 | 21.4 ± 1.7 | 97 ± 28 |
1c | 11.5 ± 2.0 | 15.2 ± 0.6 | 22.4 ± 6.0 | 22.9 ± 3.5 | 67 ± 27 |
1d | 10.6 ± 1.8 | 8.8 ± 1.3 | 18.8 ± 5.8 | 19.0 ± 0.8 | 405 ± 128 |
1e | 11.0 ± 3.0 | 16.8 ± 3.1 | 25.1 ± 7.1 | 23.7 ± 6.4 | 114 ± 35 |
1f | 8.2 ± 2.0 | 6.3 ± 1.1 | 20.2 ± 6.4 | 22.1 ± 3.2 | 231 ± 93 |
1g | 12.2 ± 2.7 | 9.2 ± 1.8 | 23.8 ± 7.6 | 18.9 ± 1.4 | 123 ± 32 |
Cisplatin a | 0.077 ± 0.006 | 3.3 ± 0.2 | 6.2 ± 1.2 | 12 ± 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokesch, S.; Schwarz, D.; Hejl, M.; Klose, M.H.M.; Roller, A.; Jakupec, M.A.; Kandioller, W.; Keppler, B.K. Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group. Molecules 2019, 24, 2373. https://doi.org/10.3390/molecules24132373
Mokesch S, Schwarz D, Hejl M, Klose MHM, Roller A, Jakupec MA, Kandioller W, Keppler BK. Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group. Molecules. 2019; 24(13):2373. https://doi.org/10.3390/molecules24132373
Chicago/Turabian StyleMokesch, Stephan, Daniela Schwarz, Michaela Hejl, Matthias H. M. Klose, Alexander Roller, Michael A. Jakupec, Wolfgang Kandioller, and Bernhard K. Keppler. 2019. "Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group" Molecules 24, no. 13: 2373. https://doi.org/10.3390/molecules24132373
APA StyleMokesch, S., Schwarz, D., Hejl, M., Klose, M. H. M., Roller, A., Jakupec, M. A., Kandioller, W., & Keppler, B. K. (2019). Fine-Tuning the Activation Mode of an 1,3-Indandione-Based Ruthenium(II)-Cymene Half-Sandwich Complex by Variation of Its Leaving Group. Molecules, 24(13), 2373. https://doi.org/10.3390/molecules24132373