Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibacterial Activity of PDS Treatment
2.2. Effects on Soluble Solids Content
2.3. Effects on Color
2.4. Effects on the Water Content
2.5. Effects on the Firmness
2.6. Effects on the Sensory Indices
3. Materials and Methods
3.1. Preparation of Fresh-Cut Hami Melon
3.2. Photosensitizer and Light Source
3.3. Photosensitizer and Irradiation
3.4. Microbiological Analyses
3.5. Quality Characteristics and Sensory Evaluation
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Meng, X.; Gao, Z.; Jiang, N. Recent Progress on Processing and Preservation Techniques of Fresh-cut Fruit. Storage Process 2008, 5, 004. [Google Scholar]
- Liu, L.; Chitrampalam, P.; Zhai, W.; Chen, Y.; Zhu, W.; Shi, B. Efficient plant regeneration in three cultivars of Hami melon [Cucumis melo L. ssp. melo convar. ameri (Pang.) Greb] via organogenesis. J. Jpn. Soc. Hortic. Sci. 2013, 88, 415–420. [Google Scholar]
- Rawat, S. Food Spoilage: Microorganisms and their prevention. Asian. J. Plant. Sci. Res. 2015, 5, 47–56. [Google Scholar]
- Toivonen, P.M.; Brummell, D.A. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Boil. Technol. 2008, 48, 1–14. [Google Scholar] [CrossRef]
- Olivas, G.I.; Barbosa-Cánovas, G.V. Edible Coatings for Fresh-Cut Fruits. Crit. Rev. Food Sci. Nutr. 2005, 45, 657–670. [Google Scholar] [CrossRef]
- Pan, Y.-G.; Zu, H. Effect of UV-C Radiation on the Quality of Fresh-cut Pineapples. Procedia Eng. 2012, 37, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.-J.; Bang, W.S.; Yuk, H.-G. 405 ± 5 nm light emitting diode illumination causes photodynamic inactivation of Salmonella spp. on fresh-cut papaya without deterioration. Food Microbiol. 2017, 62, 124–132. [Google Scholar] [CrossRef]
- MacLean, M.; McKenzie, K.; Anderson, J.; Gettinby, G.; MacGregor, S. 405 nm light technology for the inactivation of pathogens and its potential role for environmental disinfection and infection control. J. Hosp. Infect. 2014, 88, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, P.; Oliveira, F.; Montanez, J.; Frias, J. Development of user-friendly software for design of modified atmosphere packaging for fresh and fresh-cut produce. Innov. Food Sci. Emerg. Technol. 2007, 8, 84–92. [Google Scholar] [CrossRef]
- Guo, Q.; Lv, X.; Xu, F.; Zhang, Y.; Wang, J.; Lin, H.; Wu, B. Chlorine dioxide treatment decreases respiration and ethylene synthesis in fresh-cut ‘H ami’melon fruit. Int. J. Food. Sci. Tech. 2013, 48, 1775–1782. [Google Scholar] [CrossRef]
- Vega-Mercado, H.; Pothakamury, U.R.; Chang, F.-J.; Barbosa-Cánovas, G.V.; Swanson, B.G. Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles. Food Res. Int. 1996, 29, 117–121. [Google Scholar] [CrossRef]
- Brown, S.B.; A Brown, E.; Walker, I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol. 2004, 5, 497–508. [Google Scholar] [CrossRef]
- Hamblin, M.R.; Hasan, T. Photodynamic therapy: A new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 2004, 3, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Sahyon, H.B.S.; da Silva, P.P.; de Oliveira, M.S.; Cintra, L.T.A.; Dezan-Júnior, E.; Gomes-Filho, J.E.; de Castilho Jacinto, R.; dos Santos, P.H.; Sivieri-Araujo, G. Influence of curcumin photosensitizer in photodynamic therapy on the mechanical properties and push-out bond strength of glass-fiber posts to intraradicular dentin. Photodiagn. Photodyn. 2019, 25, 376–381. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, M. The emerging chemistry of blood product disinfection. Chem. Soc. Rev. 2002, 31, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Maisch, T. Anti-microbial photodynamic therapy: Useful in the future? Chem. Soc. Rev. 2007, 22, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Penha, C.B.; Bonin, E.; Da Silva, A.F.; Hioka, N.; Zanqueta, É.B.; Nakamura, T.U.; Filho, B.A.D.A.; Campanerut-Sá, P.A.Z.; Mikcha, J.M.G. Photodynamic inactivation of foodborne and food spoilage bacteria by curcumin. LWT 2017, 76, 198–202. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef] [Green Version]
- Rahamathullah, R.; Khairul, W.M.; Bulat, K.K.; Hussin, Z. Influence of curcumin as a natural photosensitizer in the conductive thin film of alkoxy cinnamoyl substituted thiourea. Main Group Chem. 2015, 14, 185–198. [Google Scholar] [CrossRef]
- Hosseinzadeh, R.; Khorsandi, K. Methylene blue, curcumin and ion pairing nanoparticles effects on photodynamic therapy of MDA-MB-231 breast cancer cell. Photodiagnosis Photodyn. Ther. 2017, 18, 284–294. [Google Scholar] [CrossRef]
- Singh, S.P.; Sharma, M.; Gupta, P.K. Enhancement of phototoxicity of curcumin in human oral cancer cells using silica nanoparticles as delivery vehicle. Laser. Med. Sci. 2014, 29, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Jia, L.; Zhou, H.-M.; Liu, Y.; Zhong, L.-F. Mitochondrial and Nuclear DNA Damage Induced by Curcumin in Human Hepatoma G2 Cells. Toxicol. Sci. 2006, 91, 476–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, J.; Lin, S.; Tan, B.K.; Hamzah, S.S.; Lin, Y.; Kong, Z.; Zhang, Y.; Zheng, B.; Zeng, S. Photodynamic inactivation of Burkholderia cepacia by curcumin in combination with EDTA. Food Res. Int. 2018, 111, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, P.; Singh, M.; Kumari, H.; Kumari, A.; Mukhopadhyay, K. Bactericidal Activity of Curcumin I Is Associated with Damaging of Bacterial Membrane. PLOS ONE 2015, 10, e0121313. [Google Scholar] [CrossRef] [PubMed]
- Gunes, H.; Gulen, D.; Mutlu, R.; Gumus, A.; Tas, T.; Topkaya, A.E. Antibacterial effects of curcumin: An in vitro minimum inhibitory concentration study. Toxicol. Ind. Health. 2016, 32, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Hou, W.; Cao, B.; Zuo, T.; Xue, C.; Leung, A.W.; Xu, C.; Tang, Q.-J. Virucidal efficacy of treatment with photodynamically activated curcumin on murine norovirus bio-accumulated in oysters. Photodiagnosis Photodyn. Ther. 2015, 12, 385–392. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, F.; Juantang, Q.-; Xu, C.-S.; Ni, Z.-J.; Meng, X.-H. Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chem. 2019, 274, 415–421. [Google Scholar] [CrossRef]
- Thakuri, P.S.; Joshi, R.; Basnet, S.; Pandey, S.; Taujale, S.D.; Mishra, N. Antibacterial photodynamic therapy on Staphylococcus aureus and Pseudomonas aeruginosa in-vitro. Nepal Med Coll. J.: NMCJ 2011, 13, 281–284. [Google Scholar]
- Mitcham, B.; Cantwell, M.; Kader, A. Methods for determining quality of fresh commodities. Perish. Handl. Newsl. 1996, 85, 1–5. [Google Scholar]
- Kaddumukasa, P.P.; Imathiu, S.M.; Mathara, J.M.; Nakavuma, J.L. Influence of physicochemical parameters on storage stability: Microbiological quality of fresh unpasteurized fruit juices. Food Sci. Nutr. 2017, 5, 1098–1105. [Google Scholar] [CrossRef] [Green Version]
- Alikhani, M. Enhancing safety and shelf life of fresh-cut mango by application of edible coatings and microencapsulation technique. Food Sci. Nutr. 2014, 2, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Ghavidel, R.A.; Davoodi, M.G.; Asl, A.F.A.; Tanoori, T.; Sheykholeslami, Z.; Sciences, C. Effect of selected edible coatings to extend shelf-life of fresh-cut apples. Int. J. Agric. Biol. 2013, 6, 1171. [Google Scholar]
- Paniagua, C.; Posé, S.; Morris, V.J.; Kirby, A.R.; Quesada, M.A.; Mercado, J.A. Fruit softening and pectin disassembly: an overview of nanostructural pectin modifications assessed by atomic force microscopy. Ann. Bot. 2014, 114, 1375–1383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subedi, P.; Walsh, K. Assessment of sugar and starch in intact banana and mango fruit by SWNIR spectroscopy. Postharvest Boil. Technol. 2011, 62, 238–245. [Google Scholar] [CrossRef]
- Li, X.; Cao, S.; Zheng, Y.; Sun, A. 1-MCP suppresses ethylene biosynthesis and delays softening of ‘Hami’melon during storage at ambient temperature. J. Sci. Food. Agric. 2011, 91, 2684–2688. [Google Scholar] [PubMed]
- Liu, F.; Li, Z.; Cao, B.; Wu, J.; Wang, Y.; Xue, Y.; Xu, J.; Xue, C.; Tang, Q.J. The effect of a novel photodynamic activation method mediated by curcumin on oyster shelf life and quality. Food Res. Int. 2016, 87, 204–210. [Google Scholar] [CrossRef]
- Fan, L.; Song, J. Microbial quality assessment methods for fresh-cut fruits and vegetables. Stewart Postharvest Rev. 2008, 4, 1–9. [Google Scholar]
- Lamikanra, O.; Chen, J.C.; Banks, D.; Hunter, P.A. Biochemical and Microbial Changes during the Storage of Minimally Processed Cantaloupe. J. Agric. Food Chem. 2000, 48, 5955–5961. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
Storage (day) | Bacterial Count (log CFU/g) | ||||
---|---|---|---|---|---|
Curcumin Concentration | |||||
0 μmol/L | 10 μmol/L | 20 μmol/L | 40 μmol/L | 50 μmol/L | |
1 | 3.97 ± 0.04 a | 3.76 ± 0.01 b | 3.04 ± 0.11 d | 3.26 ± 0.05 c | 2.59 ± 0.09 e |
3 | 4.99 ± 0.02 a | 4.94 ± 0.02 a | 4.91 ± 0.09 b | 4.67 ± 0.01 c | 3.81 ± 0.01 d |
5 | 5.76 ± 0.01 a | 5.38 ± 0.09 b | 5.23 ± 0.07 c | 5.00 ± 0.08 d | 4.23 ± 0.03 e |
7 | 6.48 ± 0.07 a | 5.91 ± 0.04 b | 5.75 ± 0.02 b | 5.04 ± 0.03 c | 4.77 ± 0.04 c |
9 | 6.81 ± 0.04 a | 6.20 ± 0.08 b | 5.87 ± 0.05 c | 5.11 ± 0.07 c | 4.95 ± 0.02 c |
Storage (day) | Bacterial Count (log CFU/g) | ||||
---|---|---|---|---|---|
Exposure Time | |||||
0 min | 5 min | 30 min | 60 min | 90 min | |
1 | 3.54 ± 0.03 a | 3.45 ± 0.08 b | 3.28 ± 0.01 c | 2.65 ± 0.04 d | 2.68 ± 0.06 d |
3 | 4.98 ± 0.02 a | 4.26 ± 0.01 b | 4.00 ± 0.08 c | 3.67 ± 0.02 d | 3.68 ± 0.01 d |
5 | 5.83 ± 0.05 a | 5.32 ± 0.08 b | 4.94 ± 0.12 c | 4.20 ± 0.01 c | 4.26 ± 0.09 c |
7 | 6.69 ± 0.10 a | 5.99 ± 0.11 b | 5.40 ± 0.01 c | 4.61 ± 0.07 d | 4.65 ± 0.08 d |
9 | 6.72 ± 0.07 a | 6.11 ± 0.10 b | 5.90 ± 0.01 b | 4.86 ± 0.08 c | 4.90 ± 0.01 c |
Score | Color | Flavor and Aroma | Surface | Feel |
---|---|---|---|---|
9 | Bright | Characteristic aroma | Fresh, plaque-free, and no softening. | The flesh is firm, sweet, crispy, and juicy. |
7 | Slightly | Normal | Fresh, no plaque, and no softening, slight surface water loss. | The pulp is more compact, harder, and crispy with a thicker sweetness. |
5 | Normal | Scented | Lack of freshness, obvious surface water loss, and softening. | The sweet taste is light, the pulp is soft, less juice, and not crispy. |
3 | Dim | Loss of aroma | Local diseased plaque and touch with a slimy feeling. | Not edible. |
1 | Black | Fermentative, acidic, and rotten | More plaque and more serious softening. | Not edible. |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.; Hu, J.; Li, S.; Hamzah, S.S.; Jiang, H.; Zhou, A.; Zeng, S.; Lin, S. Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon. Molecules 2019, 24, 2374. https://doi.org/10.3390/molecules24132374
Lin Y, Hu J, Li S, Hamzah SS, Jiang H, Zhou A, Zeng S, Lin S. Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon. Molecules. 2019; 24(13):2374. https://doi.org/10.3390/molecules24132374
Chicago/Turabian StyleLin, Yilin, Jiamiao Hu, Shiyang Li, Siti Sarah Hamzah, Huiqin Jiang, Arong Zhou, Shaoxiao Zeng, and Shaoling Lin. 2019. "Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon" Molecules 24, no. 13: 2374. https://doi.org/10.3390/molecules24132374
APA StyleLin, Y., Hu, J., Li, S., Hamzah, S. S., Jiang, H., Zhou, A., Zeng, S., & Lin, S. (2019). Curcumin-Based Photodynamic Sterilization for Preservation of Fresh-Cut Hami Melon. Molecules, 24(13), 2374. https://doi.org/10.3390/molecules24132374