New Insights into the Cystine-Sulfite Reaction
Abstract
:1. Introduction
2. Results
2.1. Intermediates and Mechanism Postulation
2.1.1. Initial NMR Observations
2.1.2. Synthesis of Cystine Derivatives for Reaction with Sulfite
2.1.3. Reaction of Cystine Derivatives with Sulfite
2.2. Optimising the Yield of SSC
2.2.1. O2 Concentration
2.2.2. pH
2.2.3. Concentration Ratio Sulfite/Cystine
2.2.4. UV Irradiation
2.2.5. Acid Cycling
2.2.6. Temperature
3. Discussion
3.1. Mechanism
3.2. SSC Generation
4. Materials and Methods
4.1. General Experimental
4.1.1. O2
4.1.2. pH
4.1.3. Concentrations
4.1.4. UV
4.1.5. Acid Cycling
4.1.6. Temperature
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hannah-Shmounia, F.; MacNeil, L. Severe cystic degeneration and intractable seizures in a newborn with molybdenum cofactor deficiency type B. Mol. Genet. Metab. Rep. 2019, 18, 11–13. [Google Scholar] [CrossRef] [PubMed]
- Segel, I.H.; Johnson, M.J. Synthesis and Characterization of Sodium Cysteine-S-sulfate Monohydrate. Anal. Biochem. 1963, 5, 330–337. [Google Scholar] [CrossRef]
- Hohowitz, N.H. Biochemical Geenetics of Neurospora. Adv. Genet. 1950, 3, 33–71. [Google Scholar]
- Hockenhull, D.J.D. The sulphur metabolism of mould fungi: The use of “biochemical mutant” strains of Aspergillus nidulans in elucidating the biosynthesis of cystine. Biochim. Biophys. Acta 1949, 3, 326–335. [Google Scholar] [CrossRef]
- Nakamura, T.; Sato, R. Cysteine-S-sulphonate as an Intermediate in Microbial Synthesis of Cysteine. Nature 1960, 185, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Kassell, B.; Brand, E. Phosphotungstic acid related compounds with cysteine, ascorbic acid, and the photometric determination of cystine. J. Biol. Chem. 1938, 125, 115–129. [Google Scholar]
- Clarke, H.T. The action of sulfite upon cystine. J. Biol. Chem. 1932, 97, 235–248. [Google Scholar]
- Goto, K.; Holler, M.; Okazaki, R. Synthesis, Structure, and Reactions of a Sulfenic Acid Bearing a Novel Bowl-Type Substituent: The First Synthesis of a Stable Sulfenic Acid by Direct Oxidation of a Thiol. J. Am. Chem. Soc. 1997, 119, 1460–1461. [Google Scholar] [CrossRef]
- Le Gresley, A.; Simpson, E.; Sinclair, A.; Williams, N.; Burnett, G.; Bradshaw, D.; Lucas, R. The application of high resolution diffusion NMR for the characterisation and quantification of small molecules in saliva/dentifrice slurries. Anal. Methods 2015, 7, 2323. [Google Scholar] [CrossRef]
- Amtul, Z.; Kausar, N.; Follmer, C.; Rozmahel, R.F.; Atta-Ur-Rahman; Kazmi, S.A.; Shekhani, M.S.; Eriksen, J.L.; Khan, K.M.; Choudhary, M.I. Cysteine based novel noncompetitive inhibitors of urease (s)—Distinctive inhibition susceptibility of microbial and plant ureases. Bioorg. Med. Chem. 2006, 14, 6737–6744. [Google Scholar] [CrossRef] [PubMed]
- Busnel, O.; Carreaux, F.; Carboni, B.; Pethe, S.; Vadon-Le Goff, S.; Mansuy, D.; Boucher, J.L. Synthesis and evaluation of new ω-borono-α-amino acids as rat liver arginase inhibitors. Bioorg. Med. Chem. 2005, 13, 2373–2379. [Google Scholar] [CrossRef] [PubMed]
- Man, M.; Bryant, R.G. Reactions of thiosulfate and sulfite ions with DTNB: Interference in sulfhydryl group analysis. Anal. Biochem. 1974, 57, 429–431. [Google Scholar] [CrossRef]
- Weitzmann, P.D.J. A critical reexamination of the reaction of sulfite with DTNB. Anal. Biochem. 1975, 64, 628–630. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Entry | Diff.coeff | MW | logMW | MW | logMW |
---|---|---|---|---|---|
Cystine | 9.646 | 240 | 2.380 | 240 | 2.380 |
SSC | 9.577 | 200 | 2.301 | 200 | 2.301 |
l-Ala-Me ester | 9.331 | 102 | 2.009 | 102 | 2.009 |
Intermediate | 9.452 | 142.9 α | 2.155 | 137 β | 2.137 |
Conc. | Blank | <5′ | 4 h | 20 h | 2 d | 3 d | |
---|---|---|---|---|---|---|---|
H2O-distilled | n/a | 7.65 | n/a | n/a | n/a | n/a | n/a |
H2O-degassed (N2-30/60 min) | n/a | 2.50 | n/a | n/a | n/a | n/a | n/a |
Na2SO3 | 0.01 M | 7.59 | 4.92 | 0.00 | n/a | n/a | n/a |
Cystine | 0.01 M | 7.29 | 7.36 | 7.38 | |||
Cysteine | 0.1 M | 7.04 | 7.13 | / | 7.12 | 4.95 | 1.65 |
Cystine:Sulfite = 1:2 | 0.2 M | 7.14 | 7.55 | / | 3.18 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zecchini, M.; Lucas, R.; Le Gresley, A. New Insights into the Cystine-Sulfite Reaction. Molecules 2019, 24, 2377. https://doi.org/10.3390/molecules24132377
Zecchini M, Lucas R, Le Gresley A. New Insights into the Cystine-Sulfite Reaction. Molecules. 2019; 24(13):2377. https://doi.org/10.3390/molecules24132377
Chicago/Turabian StyleZecchini, Matteo, Robert Lucas, and Adam Le Gresley. 2019. "New Insights into the Cystine-Sulfite Reaction" Molecules 24, no. 13: 2377. https://doi.org/10.3390/molecules24132377
APA StyleZecchini, M., Lucas, R., & Le Gresley, A. (2019). New Insights into the Cystine-Sulfite Reaction. Molecules, 24(13), 2377. https://doi.org/10.3390/molecules24132377