Evaluation of Glycosyl-Hydrolases, Phosphatases, Esterases and Proteases as Potential Biomarker for NaCl-Stress Tolerance in Solanum lycopersicum L. Varieties
Abstract
:1. Introduction
2. Results
2.1. First Experiment
2.1.1. Proline Content
2.1.2. Peroxidase Activity
2.2. Second Experiment
2.2.1. Semi-Quantitative Enzymatic Activity
Canonical Discriminant Analysis
Cluster Analysis
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Ethics Statements
4.3. First Experiment
4.3.1. Plant Material and Experimental Conditions
4.3.2. Proline Content
4.3.3. Peroxidase Specific Activity
4.3.4. Experimental Design
4.3.5. Statistical Analysis
4.4. Second Experiment
4.4.1. Germination Test
4.4.2. Experimental Design
4.4.3. Semi-Quantitative Enzymes
4.4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization). The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW)-Managing Systems at Risk; Food and Agriculture Organization of the United Nations: Rome, Italy; London, UK, 2011; Available online: http://www.zaragoza.es/contenidos/medioambiente/onu/869-eng.pdf (accessed on 15 May 2019).
- Wang, W.B.; Kim, Y.H.; Lee, H.S.; Kim, K.Y.; Kwask, S.S. Analysis of antioxidant enzymes activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem. 2009, 47, 570–577. [Google Scholar] [CrossRef]
- FAO (Food and Agricultural Organization). Statistics; Food and Agricultural Organization: Rome, Italy, 2002; Available online: http://www.fao.org/ (accessed on 22 June 2019).
- Yurtseven, E.; Kesmez, G.D.; Ünlükara, F.A. The effects of water salinity and potassium levels on yield, fruit quality and water consumption of a native central Anatolian tomato species (Lycopersicon esculentum). Agric. Water Manag. 2005, 78, 128–135. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Foolad, M.R. Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult. 2004, 76, 101–119. [Google Scholar] [CrossRef]
- Foolad, M.R. Genome mapping and molecular breeding of tomato. Int. J. Plant Genom. 2007, 2007, 64358. [Google Scholar] [CrossRef]
- Ciobanu, I.P.; Sumalan, R. The effects of the salinity Stress on the growing rates and physiological characteristics to the Lycopersicum esculentum specie. Bull. UASVM Horticul. 2009, 66, 616–620. [Google Scholar]
- Subbarao, G.V.; Johansen, C. Potential for genetic improvement in salinity tolerance in legumes: Pigeon pea. In Potential for Genetic Improvement in Salinity Tolerance in Legumes: Pigeon Pea; Pessarakli, M., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1994; pp. 581–595. [Google Scholar]
- Pérez-Alfocea, F.; Balibrea, M.E.; Santa Cruz, A.; Estañ, M.T. Agronomical and physiological characterization of salinity tolerance in a commercial tomato hybrid. Plant Soil. 1996, 180, 251–257. [Google Scholar] [CrossRef]
- Cuartero, J.; Fernandez-Muñoz, R. Tomato and salinity. Sci. Hort. 1999, 78, 83–125. [Google Scholar] [CrossRef]
- Gill, P.K.; Sharma, A.D.; Singh, P.; Singh Bhullar, S. Changes in germination, growth and soluble sugar contents of Sorghum bicolor (L.) Moench seeds under various abiotic stresses. Plant Growth Regul. 2003, 40, 157–162. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to environmental stresses. Plan Cell. 1995, 7, 1099–1111. [Google Scholar] [CrossRef]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [PubMed]
- Szabados, L.; Savoure, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Foyer, C.H.; Lelandais, M.; Kunert, K.J. Photooxidative stress in plants. Physiol. Plant 1994, 92, 696–717. [Google Scholar] [CrossRef]
- Choi, D.; Bostok, R.M.; Ardiushko, S.; Hildebrand, D.F. Lipid derived signals that discriminate wound-responsive and pathogen-responsive isoprenoid pathways in plants. Methyl jasmonate and the fungal elicitor arachidonic acid induced different 3-hydroxyl-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L. Proc. Natl. Acad. Sci. USA 1994, 91, 2329–2333. [Google Scholar] [PubMed]
- Inzé, D.; Van Montagu, M. Oxidative stress in plants. Curr. Opin. Biotechnol. 1995, 6, 153–158. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamaguchi-Shinozaki, K. Gene expression and signal transduction in water-stress response. Plant Physiol. 1997, 115, 327–334. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Wang, Z.; Zhu, Q. Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. J. Exp. Bot. 2001, 52, 2169–2179. [Google Scholar] [CrossRef]
- Ehsanpour, A.A.; Amini, F. Effect of salt and drought stress on acid phosphatase activities in alfalfa (Medicago sativa L.) explants under in vitro culture. Afr. J. Biotechnol. 2003, 2, 133–135. [Google Scholar]
- Thiyagarajah, M.; Fry, S.C.; Yeo, A.R. In vitro salt tolerance of cell wall enzymes from halophytes and glycophytes. J. Exp. Bot. 1996, 47, 1717–1724. [Google Scholar] [CrossRef]
- Hassanein, A.M. Alternations in proteins and esterase patterns of peanut in response to salinity stress. Biol. Plant 1999, 42, 241–248. [Google Scholar] [CrossRef]
- Swapna, T.S. Salt stress Induced changes on enzyme activities during different developmental stages of rice (Oryza sativa Linn.). lndian J. Biotechnol. 2003, 2, 251–258. [Google Scholar]
- Radic, S.; Pevalek-Kozlina, B. Differential esterase activity in leaves and roots of Centaurea ragusina L. as a consequence of salinity. Periodicum Biologorum. 2010, 112, 253–258. [Google Scholar]
- Dasgupta, N.; Nandy, P.D.; Tiwari, C.; Das, S. Salinity-imposed changes of some isozymes and total leaf protein expres-sion in five mangroves from two different habitats. J. Plant Interac. 2010, 5, 211–221. [Google Scholar] [CrossRef]
- Ashgan Abou Gabal, A.; Abed Elsalam, A.; El Wakeel, H.; Zaitoun, A.; Nader, R. A comparative study of salt tolerance parameters in three Egyptian ecotypes of Alhagi maurorum “camel thorn”. In Proceedings of the 2nd International Conference on Environment, Energy and Biotechnology ICEEB, Kuala Lumpur, Malaysia, 8–9 June 2013; IACSIT Press: Singapore; Volume 51, pp. 105–111. [Google Scholar] [CrossRef]
- Ourry, A.; Mesle, S.; Boucaud, J. Effects of osmotic stress on nitrate uptake, translocation, storage a reduction in ryegrass (Lolium perenne L.). New Phytol. 1992, 120, 275–280. [Google Scholar] [CrossRef]
- De Leo, P.; Sacher, J.A. Control of ribonuclease and phosphatase by auxin and abscisic acid during senescence of Rhoes leaf sections. Plant Physiol. 1970, 46, 806–811. [Google Scholar] [CrossRef]
- Olmos, E.; Hellin, E. Cytochemical localization of ATpase plasma membrane and acid phosphatase by cerium based in a salt-adapted cell line of Pisum sativum. J. Exp. Bot. 1997, 48, 1529–1535. [Google Scholar] [CrossRef]
- Barret-Lennard, E.D.; Robson, A.D.; Greenway, H. Effect of phosphorus deficiency and water deification phosphatase activity from wheat leaves. J. Exp. Bot. 1982, 33, 682–693. [Google Scholar] [CrossRef]
- Fincher, GB. Molecular and cellular biology association with endosperm mobilization in germinating cereal grains. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 305–346. [Google Scholar] [CrossRef]
- Lefebvre, D.D.; Duff, S.M.G.; Fife, C.; Julien-Inalsingh, C.; Plaxton, W.C. Response to phosphate deprivation in Brassica nigra suspension cells. Enhancement of intracellular, cell surface and selected phosphatase activities compared to increase in Pi-absorption rate. Plant Physiol. 1990, 93, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Hussain, Y.; Rai, R.C. Studies on nitrogen and phosphorous metabolism and the photosynthetic electron transport system of Nostoc linckia under cadmium stress. J. Plant Physiol. 1991, 138, 429–435. [Google Scholar] [CrossRef]
- Chiung-Yueh, S.; Ching-Hvei, K. Induction of acid phosphatase in detached rice leaves under stress conditions. Bot. Bull. Head Sin. 1998, 39, 29–32. [Google Scholar]
- Ahmad, B.; Ebrahimian, E. Effect of salinity stress on activity involved in nitrogen and phosphorous metabolism case study: Canola (Brassica napus L.). Asian J. Agric. Res. 2011, 5, 208–214. [Google Scholar]
- Nasri, N.; Kaddour, R.; Rabhi, M.; Plassard, C.; Lachaâl, M. Effect of salinity on germination, phytase activity and phytate content in lettuce seedling. Acta Physiol. Plant 2011, 33, 935–942. [Google Scholar] [CrossRef]
- Salas, J.A.; Sanabria, M.E.; Pire, R. Variación en el índice y densidad estomática en plantas de tomate (Lycopersicon esculentum L. Mill.) sometidas a tratamientos salinos. Bioagro 2001, 13, 99–104. [Google Scholar]
- Dasgan, H.Y.; Aktas, H.; Abak, K.; Cakmak, I. Determination of screening techniques to salinity tolerance in tomatoes and investigation of genotype responses. Plant Sci. 2002, 163, 695–703. [Google Scholar] [CrossRef]
- Zribi, L.; Fatma, G.; Fatma, R.; Salwa, R.; Hassan, N.; Néjib, R.M. Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato Solanum lycopersicum (variety Rio Grande). Sci. Hortic. 2009, 120, 367–372. [Google Scholar] [CrossRef]
- Safdar, N.; Yasmeen, A.; Mirza, B. An insight into functional genomics of transgenic lines of tomato cv Rio Grande harbouring yeast halotolerance genes. Plant Biol. 2011, 13, 620–631. [Google Scholar] [CrossRef]
- Raza, M.A.; Saeed, A.; Munir, H.; Ziaf, K.; Shakeel, A.; Saeed, N.; Munawar, A.; Rehman, F. Screening of tomato genotypes for salinity tolerance based on early growth attributes and leaf inorganic osmolytes. Arch. Agron. Soil Sci. 2017, 63, 501–512. [Google Scholar] [CrossRef]
- Johnson, D.E. Applied Multivariate Methods for Data Analysis, 1st ed; Wadsworth Publishing Co Inc.: Belmont, CA, USA, 1998; p. 581. [Google Scholar]
- Nouck, A.E.; Taffouo, V.D.; Tsoata, E.; Dibong, D.S.; Nguemezi, S.T.; Gouado, I.; Youmbi, E. Growth, biochemical constituents, micronutrient uptake and yield response of six tomato (Lycopersicum esculentum L.) cultivars grown under salinity stress. J. Agron. 2016, 15, 58–67. [Google Scholar]
- Sudhakar, C.; Reddy, P.S.; Veeranjaneyulu, K. Effect of salt stress on the enzymes of proline synthesis and oxidation in greengram (Phaseolus aureus Roxb.) seedlings. J. Plant Physiol. 1993, 141, 621–623. [Google Scholar] [CrossRef]
- Silva-Ortega, C.O.; Ochoa-Alfaro, A.E.; Reyes-Agüero, J.A.; Aguado-Santacruz, G.A.; Jiménez-Bremont, J.F. Salt stress increases the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiol. Biochem. 2008, 46, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Dobrá, J.; Vanková, R.; Havlová, M.; Burman, A.J.; Libus, J.; Štorchová, H. Tobacco leaves and roots differ in the expression of proline metabolism-related genes in the course of drought stress and subsequent recovery. J. Plant Physiol. 2011, 168, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Bolarin, M.C.; Santa-Cruz, A.; Cayuela, E.; Pérez-Alfocea, F. Short-term solute changes in leaves and roots of cultivated and wild tomato seedlings under salinity. J. Plant Physiol. 1995, 147, 463–468. [Google Scholar] [CrossRef]
- Storey, R.; Wyn Jones, R.G. Betaine and choline levels in plants and their relationship to NaCl stress. Plant Sci. Lett. 1975, 4, 161–168. [Google Scholar] [CrossRef]
- Santa-Cruz, A.; Acosta, M.; Rus, A.; Bolarin, M.C. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physiol. Biochem. 1999, 37, 65–71. [Google Scholar] [CrossRef]
- Hayat, S.; Yadav, S.; Wani, A.S.; Irfan, M.; Alyemini, M.N.; Ahmad, A. Impact of sodium nitroprusside on nitrate reductase, proline content, and antioxidant system in tomato under salinity stress. Hortic. Environ. Biotechnol. 2012, 53, 362–367. [Google Scholar] [CrossRef]
- Tuna, A.L. Influence of foliarly applied different triazole compounds on growth, nutrition, and antioxidant enzyme activities in tomato (Solanum lycopersicum L.) under salt stress. Aust. J. Crop Sci. 2014, 8, 71–79. [Google Scholar]
- Manaa, A.; Gharbi, E.; Mimouni, H.; Wasti, S.; Aschi-Smiti, S.; Lutts, S.; Ben Ahmed, H. Simultaneous application of salicylic acid and calcium improves salt tolerance in two contrasting tomato (Solanum lycopersicum) cultivars. S. Afr. J. Bot. 2014, 95, 32–39. [Google Scholar] [CrossRef]
- Işeri, O.D.; Sahin, F.I.; Haberal, M. Sodium chloride priming improves salinity response of tomato at seedling stage (2014). J. Plant Nutr. 2014, 37, 374–392. [Google Scholar] [CrossRef]
- Kahlaoui, B.; Hachicha, M.; Rejeb, S.; Rejeb, M.N.; Hanchi, B.; Misle, E. Response of two tomato cultivars to field-applied proline under irrigation with saline water: Growth, chlorophyll fluorescence and nutritional aspects. Photosynthetica 2014, 52, 421–429. [Google Scholar] [CrossRef]
- Jannesari, M.; Ghehsareh, A.M.; Fallahzade, J. Response of tomato plant towards amino acid under salt stress in a greenhouse system. J. Environ. Sci. Technol. 2016, 9, 131–139. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Güneş, A.; Alpaslan, M.; Atikmen, N.C. Comparative physiological and growth responses of tomato and pepper plants to fertilizer induced salinity and salt stress. Fresen. Environ. Bull. 2015, 24, 1774–1778. [Google Scholar]
- Esteban, W.; Pacheco, P.; Tapia, L.; Bastías, E. Remediation of salt and boron-affected soil by addition of organic matter: An investigation into improving tomato plant productivity. Idesia 2016, 34, 25–32. [Google Scholar] [CrossRef]
- Karakas, S.; Ali Cullu, M.; Kaya, C.; Dikilitas, M. Halophytic companion plants improve growth and physiological parameters of tomato plants grown under salinity. Pak. J. Bot. 2016, 48, 21–28. [Google Scholar]
- Halo, B.A.; Khan, A.L.; Waqas, M.; Al-Harrasi, A.; Hussain, J.; Ali, L.; Adnan, M.; Lee, I.J. Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve solanum lycopersicum growth and oxidative stress under salinity. J. Plant Interact. 2015, 10, 117–125. [Google Scholar] [CrossRef]
- Kanokwan, S.; Tanatorn, S.; Aphichart, K. Effect of salinity stress on antioxidative enzyme activities in tomato cultured in vitro. Pak. J. Bot. 2015, 47, 1–10. [Google Scholar]
- Tari, I.; Csiszár, J.; Horváth, E.; Poór, P.; Takács, Z.; Szepesi, Á. The alleviation of the adverse effects of salt stress in the tomato plant by salicylic acid shows a time and organ-specific antioxidant response. Acta Biol. Cracov. Bot. 2015, 57, 21–30. [Google Scholar] [CrossRef]
- Shalata, A.; Tal, M. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt tolerant relative Lycopersicon pennellii. Physiol. Plant. 1998, 104, 169–174. [Google Scholar] [CrossRef]
- Mittova, V.; Volokita, M.; Guy, M.; Tal, M. Activities of SOD and the ascorbate-glutathione cycle enzymes in subcellular compartments in leaves and roots of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii. Physiol. Plant. 2000, 110, 42–51. [Google Scholar] [CrossRef]
- Mittova, V.; Guy, M.; Tal, M.; Volokita, M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: Increased activities of antioxidant enzymes in root plastids. Free Radic. Res. 2002, 36, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Martínez, J.P.; Antúnez, A.; Araya, H.; Pertuzé, R.; Fuentes, L.; Lizana, X.C.; Lutts, S. Salt stress differently affects growth, water status and antioxidant enzyme activities in Solanum lycopersicum and its wild relative Solanum chilense. Aust. J. Bot. 2014, 62, 359–368. [Google Scholar] [CrossRef]
- Stevens, H.C.; Calvan, M.; Lee, K.; Siegel, B.Z.; Siegel, S.M. Peroxidase activity as a screening parameter for salt stress in Brassica species. Phytochemistry 1978, 17, 1521–1525. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Jensen, R.G. Strategies for engineering water stress tolerance in plants. Trends Biotechnol. 1996, 14, 89–97. [Google Scholar] [CrossRef]
- Manan, A.; Ayyub, C.M.; Pervez, M.A.; Ahmad, R. Methyl jasmonate brings about resistance against salinity stressed tomato plants by altering biochemical and physiological processes. Pak. J. Agric. Sci. 2016, 53, 35–41. [Google Scholar] [CrossRef]
- Murillo-Amador, B.; Reyes-Pérez, J.J.; Hernández-Montiel, L.-G.; Rueda-Puente, E.O.; De Lucia, B.; Beltrán-Morales, A.; Ruiz-Espinoza, F.H. Physiological responses to salinity in Solanum lycopersicum L. varieties. Pak. J. Bot. 2017, 49, 809–818. [Google Scholar]
- Siegal, S.M.; Chen, J.; Kottenmeier, W.; Clark, K.; Siegel, B.Z.; Chang, H. Reduction in peroxidase in Cucumis, Brassica and other seedlings cultured in saline waters. Phytochemistry 1982, 21, 539–542. [Google Scholar] [CrossRef]
- Arbona, V.; Flors, V.; Jacas, J.; Garcia-Agustin, P.; Gómez-Cadenas, A. Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol. 2003, 44, 388–394. [Google Scholar] [CrossRef]
- Dionisiosese, M.L.; Tobita, S. Antioxidant response of rice seedlings to salinity stress. Plant Sci. 1998, 135, 1–9. [Google Scholar] [CrossRef]
- El-Baz, F.K.; Mohamed, A.A.; Aly, A.A. Development of biochemical markers for salt stress tolerance in cucumber plants. Pak. J. Biol. Sci. 2003, 6, 16–22. [Google Scholar]
- Vardhini, B.V.; Rao, S.S.R. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 2003, 41, 25–31. [Google Scholar] [CrossRef]
- Garratt, L.C.; Jajagoundar, B.S.; Lowe, K.C.; Anthony, P.; Power, J.B.; Davey, M.R. Salinity tolerance and antioxidant status in cotton cultures. Free Radic. Biol. Med. 2002, 33, 502–511. [Google Scholar] [CrossRef]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Mohamed, H.I.; Mohammed, A.H.M.A.; Zaki, L.M.; Mogazy, A.M. Physiological and biochemical effects of γ-Irradiation on cowpea plants (Vigna sinensis) under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2013, 41, 104–114. [Google Scholar] [CrossRef]
- Jain, A.; Sharma, A.D.; Singh, K. Plant growth hormones and salt stress-mediated changes in acid and alkaline phosphatase activities in the pearl millet seeds. Int. J. Agric. Biol. 2004, 6, 960–963. [Google Scholar]
- Sharma, A.D.; Thakur, M.; Rana, M.; Singh, K. Effect of plant growth hormones and abiotic stresses on germination, growth and phosphatase activities in Sorghum bicolor L. Moench seeds. Afr. J. Biotechnol. 2004, 3, 308–312. [Google Scholar]
- Rabie, G.H.; Aboul-Nasr, M.B.; Al-Humiany, A. Increased salinity tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungus Glomus clarum and a nitrogen-fixer Azospirillum brasilense. Mycobiology 2005, 33, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Dombrowski, J.E. Sodium chloride stress activation of wound related genes in tomato plants. Plant Physiol. 2003, 132, 2098–2107. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, B.; Xiong, L. Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice. Planta 2007, 226, 73–85. [Google Scholar] [CrossRef]
- Tiwari, L.D.; Mittal, D.; Chandra Mishra, A.R. Grover, Constitutive overexpression of rice chymotrypsin protease inhibitor gene OCPI2 results in enhanced growth, salinity and osmotic stress tolerance of the transgenic Arabidopsis plants. Plant Physiol. Biochem. 2015. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.A. Two-dimensional electrophoresis of soluble proteins and profile of some isozymes isolated from maize plant in response to NaCl. Res J Agric Biol Sci. 2005, 1, 38–44. [Google Scholar]
- Daldoul, S.; Guillaumie, S.; Reustle, G.M.; Krczal, G.; Ghorbel, A.; Delrot, S.; Mliki, A.; Höfer, M. Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci. 2010, 179, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Tokunaga, K.; Kuboi, T. Isolation of a drought-responsive alkaline α-galactosidase gene from New Zealand spinach. Plant Biotechnol. 2008, 25, 497–501. [Google Scholar] [CrossRef]
- Enéas-Filho, J.; Da Costa Barbosa, G.K.; Bonfim-Sudério, F.; Tarquínio-Prisco, J.; Gomes-Filho, E. Isolation and partial purification of β-galactosidases from cotyledons of two cowpea cultivars. Rev. Bras. Fisiol. Veg. 2001, 13, 251–261. [Google Scholar] [CrossRef]
- Lee, R.H.; Hsu, J.H.; Huang, H.J.; Lo, S.F.; Chen, S.C.G. Alkaline α-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New Phytol. 2009, 184, 596–606. [Google Scholar] [CrossRef]
- Gigon, A.; Matos, A.R.; Laffray, D.; Zuily-Fodil, Y.; Pham-Thi, A.T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann. Bot. 2004, 94, 345–351. [Google Scholar] [CrossRef]
- Toumi, I.; Gargouri, M.; Nouairi, I.; Moschou, P.N.; Ben Salem-Fnayou, A.; Mliki, A.; Zarrouk, M.; Ghorbel, A. Water stress induced changes in the leaf lipid composition of four grapevine genotypes with different drought tolerance. Biol. Plant. 2008, 52, 161–164. [Google Scholar] [CrossRef]
- Munnik, T.; van Himbergen, J.A.J.; Ter Riet, B.; Braun, F.J.; Irvine, R.F.; van den Ende, H.; Musgrave, A. Detailed analysis of the turnover of polyphosphoinositides and phosphatidic acid upon activation of phospholipases C and D in Chlamydomonas cells treated with non-permeabilizing concentrations of mastoparan. Planta 1998, 207, 133–145. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, R. Salt stress effects growth and cell wall bound enzymes in Arachis hypogaea L. seedlings. Int. J. Integr. Biol. 2009, 7, 117–123. [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen, 5th ed.; Instituto de Geografía, Universidad Nacional Autónoma de México: Ciudad de México, Mexico, 2004; p. 90. [Google Scholar]
- Hoagland, D.; Arnon, D.I. The Water Culture Method for Growing Plants without Soil; California Agricultural Experiment Station: Berkeley, CA, USA, 1950; p. 32. [Google Scholar]
- Samperio-Ruiz, G. Hidroponia Básica; Diana: Ciudad de México, Mexico, 1997; p. 176. [Google Scholar]
- Murillo-Amador, B.; Yamada, S.; Yamaguchi, T.; Rueda-Puente, E.; Ávila-Serrano, N.; García-Hernández, J.L.; López-Aguilar, R.; Troyo-Diéguez, E.; Nieto-Garibay, A. Influence of calcium silicate on growth, physiological parameters and mineral nutrition in two legume species under salt stress. J. Agron. Crop Sci. 2007, 193, 413–421. [Google Scholar] [CrossRef]
- Bates, L.; Waloren, R.; Teare, I. Rapid determination on free proline for water-stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Pütter, J.; Becker, R. Peroxidases. Methods of enzymatic analysis. In Enzymes 1: Oxidoreductases, Transferases, 3rd ed.; Bergmeyer, H.U., Bergmeyer, J., Grassl, M., Eds.; Verlag Chemie GmbH: Weinheim, Germany, 1983; Volume 3, pp. 286–293. [Google Scholar]
- TIBCO Software Inc. Statistica (Data Analysis Software System), Version 13; TIBCO Software Inc.: Palo Alto, CA, USA, 2018. [Google Scholar]
- Sciancalepore, V.; Colangelo, M.; Sorlini, C.; Ranalli, G. Composting of effluent from a new two-phases centrifuge olive mill. Toxicol. Environ. Chem. 1996, 55, 145–158. [Google Scholar] [CrossRef]
- Khattree, R.; Naik, D.N. Applied Multivariate Statistics with SAS® Software, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2000; p. 338. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
Proline (mg g−1) | |||||
mM NaCl | |||||
Varieties | 0 | 50 | 100 | 150 | 200 |
Missouri | 2.16 ± 1.01 e* | 4.21 ± 1.44 c | 4.26 ± 1.36 b | 11.99 ± 2.74 b | 34.81 ± 0.79 a,b |
Ace | 5.72 ± 1.48 d,e | 1.61 ± 0.19 c | 8.88 ± 2.95 b | 7.06 ± 0.50 b | 12.81 ± 4.90 c |
Yaqui | 12.70 ± 1.79 c,d,e | 31.69 ± 2.98 a,b | 35.13 ± 0.61 a | 26.35 ± 5.56 a | 33.77 ± 1.11 a,b |
Feroz | 24.37 ± 2.27 a,b | 9.4 ± 43.01 c | 34.77 ± 1.31 a | 30.79 ± 2.13 a | 18.64 ± 6.04 b,c |
Tropic | 1.36 ± 0.33 e | 6.04 ± 0.85 c | 6.89 ± 1.47 b | 33.96 ± 1.57 a | 28.70 ± 3.76 a,b,c |
Rio Grande | 15.09 ± 1.20 b,c,d | 23.67 ± 1.83 b | 31.05 ± 2.44 a | 34.13 ± 0.94 a | 31.60 ± 3.74 a,b |
Floradade | 30.73 ± 2.09 a | 34.82 ± 2.01 a | 35.40 ± 0.46 a | 33.09 ± 1.54 a | 24.80 ± 2.09 a,b,c |
Vita | 18.12 ± 5.48 b,c | 33.80 ± 1.35 a | 34.41 ± 1.35 a | 35.17 ± 0.94 a | 34.94 ± 0.57 a |
Mean | 13.78 | 18.16 | 23.85 | 26.57 | 27.51 |
Peroxidase (µ mg of Protein min−1) | |||||
mM NaCl | |||||
0 | 50 | 100 | 150 | 200 | |
Missouri | 0.11 ± 0.02 a* | 0.22 ± 0.03 a | 0.24 ± 0.10 a | 0.14 ± 0.08 a | 0.14 ± 0.02 a |
Ace | 0.12 ± 0.02 a | 0.27 ± 0.06 a | 0.41 ± 0.13 a | 0.14 ± 0.05 a | 0.23 ± 0.11 a |
Yaqui | 0.54 ± 0.16 a | 0.31 ± 0.18 a | 0.30 ± 0.11 a | 0.22 ± 0.14 a | 0.59 ± 0.43 a |
Feroz | 0.23 ± 0.09 a | 0.12 ± 0.05 a | 0.34 ± 0.10 a | 0.34 ± 0.05 a | 0.28 ± 0.07 a |
Tropic | 0.16 ± 0.03 a | 0.20 ± 0.02 a | 0.21 ± 0.03 a | 0.35 ± 0.22 a | 0.13 ± 0.05 a |
Rio Grande | 0.41 ± 0.15 a | 0.18 ± 0.09 a | 0.25 ± 0.07 a | 0.22 ± 0.06 a | 0.28 ± 0.05 a |
Floradade | 0.14 ± 0.05 a | 0.20 ± 0.05 a | 0.36 ± 0.17 a | 0.46 ± 0.14 a | 0.27 ± 0.11 a |
Vita | 0.12 ± 0.03 a | 0.28 ± 0.09 a | 0.27 ± 0.10 a | 0.30 ± 0.10 a | 0.22 ± 0.09 a |
Mean | 0.23 | 0.22 | 0.30 | 0.27 | 0.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Pérez, J.J.; Ruiz-Espinoza, F.H.; Hernández-Montiel, L.G.; de Lucía, B.; Cristiano, G.; Murillo-Amador, B. Evaluation of Glycosyl-Hydrolases, Phosphatases, Esterases and Proteases as Potential Biomarker for NaCl-Stress Tolerance in Solanum lycopersicum L. Varieties. Molecules 2019, 24, 2488. https://doi.org/10.3390/molecules24132488
Reyes-Pérez JJ, Ruiz-Espinoza FH, Hernández-Montiel LG, de Lucía B, Cristiano G, Murillo-Amador B. Evaluation of Glycosyl-Hydrolases, Phosphatases, Esterases and Proteases as Potential Biomarker for NaCl-Stress Tolerance in Solanum lycopersicum L. Varieties. Molecules. 2019; 24(13):2488. https://doi.org/10.3390/molecules24132488
Chicago/Turabian StyleReyes-Pérez, Juan José, Francisco Higinio Ruiz-Espinoza, Luis Guillermo Hernández-Montiel, Barbara de Lucía, Giuseppe Cristiano, and Bernardo Murillo-Amador. 2019. "Evaluation of Glycosyl-Hydrolases, Phosphatases, Esterases and Proteases as Potential Biomarker for NaCl-Stress Tolerance in Solanum lycopersicum L. Varieties" Molecules 24, no. 13: 2488. https://doi.org/10.3390/molecules24132488
APA StyleReyes-Pérez, J. J., Ruiz-Espinoza, F. H., Hernández-Montiel, L. G., de Lucía, B., Cristiano, G., & Murillo-Amador, B. (2019). Evaluation of Glycosyl-Hydrolases, Phosphatases, Esterases and Proteases as Potential Biomarker for NaCl-Stress Tolerance in Solanum lycopersicum L. Varieties. Molecules, 24(13), 2488. https://doi.org/10.3390/molecules24132488