Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review
Abstract
:1. Introduction
1.1. Essential Oils
1.2. Controlled Release
2. Essentials Oils Encapsulation Techniques
3. Particular Candidates to Encapsulate EOs in Order to Facilitate a Controlled Release
3.1. Alginate
3.2. Chitosan
3.3. Cyclodextrins (CDs)
4. Discussion
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CD | Cyclodextrin |
EDC | 1-Ethyl-3-(3-Eimethylaminopropyl) |
EO | Essential oil |
HMP | Sodium Hexametaphosphate |
O | Oil |
RESS | Rapid expansion of supercritical solur=tions |
scCO2 | Supercritical carbon dioxide |
TPP | Pentasodium tripolyphosphate |
W | Water |
Rpm | Rotetion per minute |
References
- El Asbahani, A.; Miladi, K.; Badri, W.; Sala, M.; Addi, E.H.A.; Casabianca, H.; El Mousadik, A.; Hartmann, D.; Jilale, A.; Renaud, F.N.R.; et al. Essential oils: From extraction to encapsulation. Int. J. Pharm. 2015, 483, 220–243. [Google Scholar] [CrossRef] [PubMed]
- Obolskiy, D.; Pischel, I.; Feistel, B.; Glotov, N.; Heinrich, M. Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J. Agric. Food Chem. 2011, 59, 11367–11384. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications, 2nd ed.; Husnu Can Baser, K., Buchbauer, G., Eds.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Pejin, B.; Vujisic, L.; Sabovljevic, M.; Tesevic, V.; Vajs, V. Preliminary Data on Essential Oil Composition of the Moss Rhodobryum ontariense (Kindb.) Kindb. Cryptogam. Bryol. 2011, 32, 113–117. [Google Scholar] [CrossRef]
- David, A.; Wang, F.; Sun, X.; Li, H.; Lin, J.; Li, P.; Deng, G.; David, A.; Wang, F.; Sun, X.; et al. Chemical Composition, Antioxidant, and Antimicrobial Activities of Vetiveria zizanioides (L.) Nash Essential Oil Extracted by Carbon Dioxide Expanded Ethanol. Molecules 2019, 24, 1897. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.P.; Rodríguez-Rojo, S.; Serra, A.T.; Vila-Real, H.; Simplicio, A.L.; Delgadilho, I.; Beirão Da Costa, S.; Beirão Da Costa, L.; Nogueira, I.D.; Duarte, C.M.M. Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innov. Food Sci. Emerg. Technol. 2013, 20, 140–145. [Google Scholar] [CrossRef]
- Sid Ali, L.; Brada, M.; Fauconnier, M.-L.; Kenne, T. Optimization of Algerian Thymus fontanesii Boiss. & amp; Reut Essential Oil Extraction by Electromagnetic Induction Heating. Nat. Prod. Sci. 2018, 24, 71. [Google Scholar]
- Vági, E.; Simándi, B.; Suhajda, Á.; Héthelyi, É. Essential oil composition and antimicrobial activity of Origanum majorana L. extracts obtained with ethyl alcohol and supercritical carbon dioxide. Food Res. Int. 2005, 38, 51–57. [Google Scholar] [CrossRef]
- Peng, Y.; Bishop, K.S.; Quek, S.Y.; Peng, Y.; Bishop, K.S.; Quek, S.Y. Compositional Analysis and Aroma Evaluation of Feijoa Essential Oils from New Zealand Grown Cultivars. Molecules 2019, 24, 2053. [Google Scholar] [CrossRef]
- Soilhi, Z.; Rhimi, A.; Heuskin, S.; Fauconnier, M.L.; Mekki, M. Essential oil chemical diversity of Tunisian Mentha spp. collection. Ind. Crops Prod. 2019, 131, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Moncada, J.; Tamayo, J.A.; Cardona, C.A. Techno-economic and environmental assessment of essential oil extraction from Citronella (Cymbopogon winteriana) and Lemongrass (Cymbopogon citrus): A Colombian case to evaluate different extraction technologies. Ind. Crops Prod. 2014, 54, 175–184. [Google Scholar] [CrossRef]
- Kakaraparthi, P.S.; Srinivas, K.V.N.S.; Kumar, J.K.; Kumar, A.N.; Rajput, D.K.; Sarma, V.U.M. Variation in the essential oil content and composition of Citronella (Cymbopogon winterianus Jowitt.) in relation to time of harvest and weather conditions. Ind. Crops Prod. 2014, 61, 240–248. [Google Scholar] [CrossRef]
- Thiam, A.; Guèye, M.T.; Ndiyae, I.; Diop, S.M.; Ndiaye, E.H.B.; Fauconnier, M.-L.; Lognay, G. Effect of drying methods on the chemical composition of essential oils of Xylopia aethiopicafruits (Dunal) A. Richard (Annonaceae) from southern Senegal. Am. J. Essent. Oils Nat. Prod. 2018, 6, 25–30. [Google Scholar]
- Bettaieb Rebey, I.; Aidi Wannes, W.; Kaab, S.B.; Bourgou, S.; Tounsi, M.S.; Ksouri, R.; Fauconnier, M.L. Bioactive compounds and antioxidant activity of Pimpinella anisum L. accessions at different ripening stages. Sci. Hortic. 2019, 246, 453–461. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J. Agric. Food Chem. 2014, 62, 7652–7670. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Lei, Z.; Li, L.; Xie, R.; Xi, W.; Guan, Y.; Sumner, L.W.; Zhou, Z. Antifungal activity of citrus essential oils. J. Agric. Food Chem. 2014, 62, 3011–3033. [Google Scholar] [CrossRef] [PubMed]
- Amorati, R.; Foti, M.C.; Valgimigli, L. Antioxidant activity of essential oils. J. Agric. Food Chem. 2013, 61, 10835–10847. [Google Scholar] [CrossRef] [PubMed]
- Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S.W. Antimicrobial properties of basil and its possible application in food packaging. J. Agric. Food Chem. 2003, 51, 3197–3207. [Google Scholar] [CrossRef]
- Ben Kaab, S.; Rebey, I.B.; Hanafi, M.; Berhal, C.; Fauconnier, M.L.; de Clerck, C.; Ksouri, R.; Jijakli, H. Rosmarinus officinalis essential oil as an effective antifungal and herbicidal agent. Span. J. Agric. Res. 2019, 17, e1006. [Google Scholar] [CrossRef] [Green Version]
- Youssefi, M.R.; Moghaddas, E.; Tabari, M.A.; Moghadamnia, A.A.; Hosseini, S.M.; Farash, B.R.H.; Ebrahimi, M.A.; Mousavi, N.N.; Fata, A.; Maggi, F.; et al. In Vitro and In Vivo Effectiveness of Carvacrol, Thymol and Linalool against Leishmania infantum. Molecules 2019, 24, 2072. [Google Scholar] [CrossRef]
- Nikolić, M.; Marković, T.; Mojović, M.; Pejin, B.; Savić, A.; Perić, T.; Marković, D.; Stević, T.; Soković, M. Chemical composition and biological activity of Gaultheria procumbens L. essential oil. Ind. Crops Prod. 2013, 49, 561–567. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, J.; Yu, F.; Wang, H.; Kou, X.; Ma, C.; Zhu, S. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion. LWT-Food Sci. Technol. 2017, 80, 371–377. [Google Scholar] [CrossRef]
- Ghaderi-Ghahfarokhi, M.; Barzegar, M.; Sahari, M.A.; Ahmadi Gavlighi, H.; Gardini, F. Chitosan-cinnamon essential oil nano-formulation: Application as a novel additive for controlled release and shelf life extension of beef patties. Int. J. Biol. Macromol. 2017, 102, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Sotelo-Boyás, M.; Correa-Pacheco, Z.; Bautista-Baños, S.; Gómez y Gómez, Y. Release study and inhibitory activity of thyme essential oil-loaded chitosan nanoparticles and nanocapsules against foodborne bacteria. Int. J. Biol. Macromol. 2017, 103, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Timung, R.; Barik, C.R.; Purohit, S.; Goud, V.V. Composition and anti-bacterial activity analysis of citronella oil obtained by hydrodistillation: Process optimization study. Ind. Crops Prod. 2016, 94, 178–188. [Google Scholar] [CrossRef]
- Bourkhiss, M.; Hnach, M.; Bourkhiss, B.; Ouhssine, M.; Chaouch, A. Composition chimique et propriétés antimicrobiennes de l’huile essentielle extraite des feuilles de Tetraclinis articulata (Vahl) du Maroc. Afrique Sci. Rev. Int. des Sci. Technol. 2011, 3, 232–242. [Google Scholar] [CrossRef]
- Bouzouati, N.; Kachouri, F.; Ben Halima, M.; Chaabouni, M.M. Composition chimique et activités antioxydante, antimicrobienne et insecticide de l’huile essentielle de Juniperus phoenicea. J. Soc. Chim. Tunisie 2008, 10, 119–125. [Google Scholar]
- Tchoumbougnang, F.; Dongmo, P.M.J.; Sameza, M.L.; Mbanjo, E.G.N.; Fotso, G.B.T.; Zollo, P.H.A.; Menut, C. Activité larvicide sur Anopheles gambiae Giles et composition chimique des huiles essentielles extraites de quatre plantes cultivées au Cameroun | Tchoumbougnang | Biotechnologie, Agronomie, Société et Environnement. Biotechnol. Agron. Soc. Environ. 2009, 13, 77–84. [Google Scholar]
- Kaur, S.; Singh, H.P.; Batish, D.R.; Kohli, R.K. Chemical characterization and allelopathic potential of volatile oil of Eucalyptus tereticornis against Amaranthus viridis. J. Plant Interact. 2011, 6, 297–302. [Google Scholar] [CrossRef]
- Sumalan, R.M.; Alexa, E.; Popescu, I.; Negrea, M.; Radulov, I.; Obistioiu, D.; Cocan, I.; Sumalan, R.M.; Alexa, E.; Popescu, I.; et al. Exploring Ecological Alternatives for Crop Protection Using Coriandrum sativum Essential Oil. Molecules 2019, 24, 2040. [Google Scholar] [CrossRef]
- Chitprasert, P.; Sutaphanit, P. Holy basil (ocimum sanctum linn.) Essential oil delivery to swine gastrointestinal tract using gelatin microcapsules coated with aluminum carboxymethyl cellulose and beeswax. J. Agric. Food Chem. 2014, 62, 12641–12648. [Google Scholar] [CrossRef]
- Badea, M.L.; Iconaru, S.L.; Groza, A.; Chifiriuc, M.C.; Beuran, M.; Predoi, D.; Badea, M.L.; Iconaru, S.L.; Groza, A.; Chifiriuc, M.C.; et al. Peppermint Essential Oil-Doped Hydroxyapatite Nanoparticles with Antimicrobial Properties. Molecules 2019, 24, 2169. [Google Scholar] [CrossRef] [PubMed]
- Lardry, J.-M. Les autres indications des huiles essentielles. Kinésithérapie Rev. 2007, 7, 35–42. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, Antimicrobial Mechanisms, and Antibiotic Activities of Cinnamaldehyde against Pathogenic Bacteria in Animal Feeds and Human Foods. J. Agric. Food Chem. 2017, 65, 10406–10423. [Google Scholar] [CrossRef] [PubMed]
- Boh, B.; Knez, E. Microencapsulation of essential oils and phase change materials for applications in textile products. Indian J. Fibre Text. Res. 2006, 31, 72–82. [Google Scholar]
- Kerdudo, A. Optimisation de la conservation des cosmetiques: Impact de la formulation, recherche de nouveaux conservateurs naturels, encapsulation. Ph.D. Thesis, University of Nice, Nice, France, March 2015. [Google Scholar]
- Madene, A.; Jacquot, M.; Scher, J.; Desobry, S. Flavour encapsulation and controlled release—A review. Int. J. Food Sci. Technol. 2006, 41, 1–21. [Google Scholar] [CrossRef]
- Casanova, F.; Santos, L. Encapsulation of cosmetic active ingredients for topical application—A review. J. Microencapsul. 2016, 33, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.D.; Maudhuit, A.; Pascual-Villalobos, M.J.; Poncelet, D. Development of formulations to improve the controlled-release of linalool to be applied as an insecticide. J. Agric. Food Chem. 2012, 60, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Nuruzzaman, M.; Rahman, M.M.; Liu, Y.; Naidu, R. Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application. J. Agric. Food Chem. 2016, 64, 1447–1483. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.A.; Lipinsky, E.S.; van Voris, P. Controlled-Release Delivery Systems for Pesticides; Dekker, M., Ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Bouguéon, G.; Kauss, T.; Dessane, B.; Barthélémy, P.; Crauste-Manciet, S. Micro- and nano-formulations for bioprinting and additive manufacturing. Drug Discov. Today 2019, 24, 163–178. [Google Scholar] [CrossRef]
- Chang, Y.; McLandsborough, L.; McClements, D.J. Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification. J. Agric. Food Chem. 2013, 61, 8906–8913. [Google Scholar] [CrossRef]
- Donsì, F.; Annunziata, M.; Sessa, M.; Ferrari, G. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods. LWT-Food Sci. Technol. 2011, 44, 1908–1914. [Google Scholar] [CrossRef]
- Banerjee, S.; Chattopadhyay, P.; Ghosh, A.; Goyary, D.; Karmakar, S.; Veer, V. Influence of process variables on essential oil microcapsule properties by carbohydrate polymer-protein blends. Carbohydr. Polym. 2013, 93, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Jobdeedamrong, A.; Jenjob, R.; Crespy, D. Encapsulation and Release of Essential Oils in Functional Silica Nanocontainers. Langmuir 2018, 34, 13235–13243. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, N.D.; de Lima Pena, F.; Sartoratto, A.; Derlamelina, C.; Duarte, M.C.T.; Antunes, A.E.C.; Prata, A.S. Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Res. Int. 2017, 96, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Lamprecht, A.; Schäfer, U.; Lehr, C.M. Influences of process parameters on preparation of microparticle used as a carrier system for Ω-3 unsaturated fatty acid ethyl esters used in supplementary nutrition. J. Microencapsul. 2001, 18, 347–357. [Google Scholar] [PubMed]
- López, A.; Castro, S.; Andina, M.J.; Ures, X.; Munguía, B.; Llabot, J.M.; Elder, H.; Dellacassa, E.; Palma, S.; Domínguez, L. Insecticidal activity of microencapsulated Schinus molle essential oil. Ind. Crops Prod. 2014, 53, 209–216. [Google Scholar] [CrossRef]
- Pudziuvelyte, L.; Marksa, M.; Jakstas, V.; Ivanauskas, L.; Kopustinskiene, D.M.; Bernatoniene, J.; Pudziuvelyte, L.; Marksa, M.; Jakstas, V.; Ivanauskas, L.; et al. Microencapsulation of Elsholtzia ciliata Herb Ethanolic Extract by Spray-Drying: Impact of Resistant-Maltodextrin Complemented with Sodium Caseinate, Skim Milk, and Beta-Cyclodextrin on the Quality of Spray-Dried Powders. Molecules 2019, 24, 1461. [Google Scholar] [CrossRef] [PubMed]
- Beirão-da-Costa, S.; Duarte, C.; Bourbon, A.I.; Pinheiro, A.C.; Januário, M.I.N.; Vicente, A.A.; Beirão-da-Costa, M.L.; Delgadillo, I. Inulin potential for encapsulation and controlled delivery of Oregano essential oil. Food Hydrocoll. 2013, 33, 199–206. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, E.F.; Paula, H.C.B.; de Paula, R.C.M. Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf. B Biointerfaces 2014, 113, 146–151. [Google Scholar] [CrossRef]
- Dima, C.; Pətraşcu, L.; Cantaragiu, A.; Alexe, P.; Dima, Ş. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem. 2016, 195, 39–48. [Google Scholar] [CrossRef]
- Fernandes, R.V.D.B.; Borges, S.V.; Botrel, D.A. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr. Polym. 2014, 101, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Baranauskiené, R.; Bylaité, E.; Juraté, Ž.; Venskutonis, R.P. Flavor retention of peppermint (Mentha piperita L.) essential oil spray-dried in modified starches during encapsulation and storage. J. Agric. Food Chem. 2007, 55, 3027–3036. [Google Scholar] [CrossRef] [PubMed]
- Herculano, E.D.; de Paula, H.C.B.; de Figueiredo, E.A.T.; Dias, F.G.B.; de A. Pereira, V. Physicochemical and antimicrobial properties of nanoencapsulated Eucalyptus staigeriana essential oil. LWT-Food Sci. Technol. 2015, 61, 484–491. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Fourmentin, S. Promising applications of cyclodextrins in food: Improvement of essential oils retention, controlled release and antiradical activity. Carbohydr. Polym. 2015, 131, 264–272. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; Ho, T.M.; Bhandari, B.R. Encapsulation of tea tree oil by amorphous beta-cyclodextrin powder. Food Chem. 2017, 221, 1474–1483. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, N.; Sanchez-Contreras, A.; Canto, A.; Cauich-Rodriguez, J.V.; Vargas-Coronado, R.; Calvo-Irabien, L.M. Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crops Prod. 2018, 121, 114–123. [Google Scholar] [CrossRef]
- Guimarães, A.G.; Oliveira, M.A.; Alves, R.D.S.; Menezes, P.D.P.; Serafini, M.R.; De Souza Araújo, A.A.; Bezerra, D.P.; Quintans, L.J. Encapsulation of carvacrol, a monoterpene present in the essential oil of oregano, with β-cyclodextrin, improves the pharmacological response on cancer pain experimental protocols. Chem. Biol. Interact. 2015, 227, 69–76. [Google Scholar] [CrossRef]
- Manolikar, M.K.; Sawant, M.R. Study of solubility of isoproturon by its complexation with β-cyclodextrin. Chemosphere 2003, 51, 811–816. [Google Scholar] [CrossRef]
- Santos, E.H.; Kamimura, J.A.; Hill, L.E.; Gomes, C.L. Characterization of carvacrol beta-cyclodextrin inclusion complexes as delivery systems for antibacterial and antioxidant applications. LWT-Food Sci. Technol. 2015, 60, 583–592. [Google Scholar] [CrossRef]
- Tao, F.; Hill, L.E.; Peng, Y.; Gomes, C.L. Synthesis and characterization of β-cyclodextrin inclusion complexes of thymol and thyme oil for antimicrobial delivery applications. LWT-Food Sci. Technol. 2014, 59, 247–255. [Google Scholar] [CrossRef]
- Anaya-Castro, M.A.; Ayala-Zavala, J.F.; Muñoz-Castellanos, L.; Hernández-Ochoa, L.; Peydecastaing, J.; Durrieu, V. β-Cyclodextrin inclusion complexes containing clove (Eugenia caryophyllata) and Mexican oregano (Lippia berlandieri) essential oils: Preparation, physicochemical and antimicrobial characterization. Food Packag. Shelf Life 2017, 14, 96–101. [Google Scholar] [CrossRef]
- Kfoury, M.; Auezova, L.; Greige-Gerges, H.; Larsen, K.L.; Fourmentin, S. Release studies of trans-anethole from β-cyclodextrin solid inclusion complexes by Multiple Headspace Extraction. Carbohydr. Polym. 2016, 151, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Dou, S.; Ouyang, Q.; You, K.; Qian, J.; Tao, N. An inclusion complex of thymol into β-cyclodextrin and its antifungal activity against Geotrichum citri-aurantii. Postharvest Biol. Technol. 2018, 138, 31–36. [Google Scholar] [CrossRef]
- Mangolim, C.S.; Moriwaki, C.; Nogueira, A.C.; Sato, F.; Baesso, M.L.; Neto, A.M.; Matioli, G. Curcumin-β-cyclodextrin inclusion complex: Stability, solubility, characterisation by FT-IR, FT-Raman, X-ray diffraction and photoacoustic spectroscopy, and food application. Food Chem. 2014, 153, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Rakmai, J.; Cheirsilp, B.; Mejuto, J.C.; Torrado-Agrasar, A.; Simal-Gándara, J. Physico-chemical characterization and evaluation of bio-efficacies of black pepper essential oil encapsulated in hydroxypropyl-beta-cyclodextrin. Food Hydrocoll. 2017, 65, 157–164. [Google Scholar] [CrossRef]
- Liang, H.; Yuan, Q.; Vriesekoop, F.; Lv, F. Effects of cyclodextrins on the antimicrobial activity of plant-derived essential oil compounds. Food Chem. 2012, 135, 1020–1027. [Google Scholar] [CrossRef]
- Karathanos, V.T.; Mourtzinos, I.; Yannakopoulou, K.; Andrikopoulos, N.K. Study of the solubility, antioxidant activity and structure of inclusion complex of vanillin with β-cyclodextrin. Food Chem. 2007, 101, 652–658. [Google Scholar] [CrossRef]
- Ponce Cevallos, P.A.; Buera, M.P.; Elizalde, B.E. Encapsulation of cinnamon and thyme essential oils components (cinnamaldehyde and thymol) in β-cyclodextrin: Effect of interactions with water on complex stability. J. Food Eng. 2010, 99, 70–75. [Google Scholar] [CrossRef]
- Da Rocha Neto, A.C.; de Oliveira da Rocha, A.B.; Maraschin, M.; Di Piero, R.M.; Almenar, E. Factors affecting the entrapment efficiency of β-cyclodextrins and their effects on the formation of inclusion complexes containing essential oils. Food Hydrocoll. 2018, 77, 509–523. [Google Scholar] [CrossRef]
- Gong, L.; Li, T.; Chen, F.; Duan, X.; Yuan, Y.; Zhang, D.; Jiang, Y. An inclusion complex of eugenol into β-cyclodextrin: Preparation, and physicochemical and antifungal characterization. Food Chem. 2016, 196, 324–330. [Google Scholar] [CrossRef]
- Noppakundilograt, S.; Piboon, P.; Graisuwan, W.; Nuisin, R.; Kiatkamjornwong, S. Encapsulated eucalyptus oil in ionically cross-linked alginate microcapsules and its controlled release. Carbohydr. Polym. 2015, 131, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, A.; Asgari, A. In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int. J. Biol. Macromol. 2015, 81, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, A.; Hashemi, M.; Hosseini, S.M. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innov. Food Sci. Emerg. Technol. 2015, 28, 73–80. [Google Scholar] [CrossRef]
- Feyzioglu, G.C.; Tornuk, F. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT-Food Sci. Technol. 2016, 70, 104–110. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Hosseini, H.; Mohammadifar, M.A.; Mortazavian, A.M.; Mohammadi, A.; Khosravi-Darani, K.; Shojaee-Aliabadi, S.; Dehghan, S.; Khaksar, R. Incorporation of essential oil in alginate microparticles by multiple emulsion/ionic gelation process. Int. J. Biol. Macromol. 2013, 62, 582–588. [Google Scholar] [CrossRef] [PubMed]
- Iannitelli, A.; Grande, R.; di Stefano, A.; di Giulio, M.; Sozio, P.; Bessa, L.J.; Laserra, S.; Paolini, C.; Protasi, F.; Cellini, L. Potential antibacterial activity of carvacrol-loaded poly(dl-lactide-co-glycolide) (PLGA) nanoparticles against microbial biofilm. Int. J. Mol. Sci. 2011, 12, 5039–5051. [Google Scholar] [CrossRef] [PubMed]
- Asprea, M.; Leto, I.; Bergonzi, M.C.; Bilia, A.R. Thyme essential oil loaded in nanocochleates: Encapsulation efficiency, in vitro release study and antioxidant activity. LWT-Food Sci. Technol. 2017, 77, 497–502. [Google Scholar] [CrossRef]
- Righeschi, C.; Coronnello, M.; Mastrantoni, A.; Isacchi, B.; Bergonzi, M.C.; Mini, E.; Bilia, A.R. Strategy to provide a useful solution to effective delivery of dihydroartemisinin: Development, characterization and in vitro studies of liposomal formulations. Colloids Surf. B Biointerfaces 2014, 116, 121–127. [Google Scholar] [CrossRef]
- Liolios, C.C.; Gortzi, O.; Lalas, S.; Tsaknis, J.; Chinou, I. Liposomal incorporation of carvacrol and thymol isolated from the essential oil of Origanum dictamnus L. and in vitro antimicrobial activity. Food Chem. 2009, 112, 77–83. [Google Scholar] [CrossRef]
- Riquelme, N.; Herrera, M.L.; Matiacevich, S. Active films based on alginate containing lemongrass essential oil encapsulated: Effect of process and storage conditions. Food Bioprod. Process. 2017, 104, 94–103. [Google Scholar] [CrossRef]
- Higueras, L.; López-Carballo, G.; Hernández-Muñoz, P.; Catalá, R.; Gavara, R. Antimicrobial packaging of chicken fillets based on the release of carvacrol from chitosan/cyclodextrin films. Int. J. Food Microbiol. 2014, 188, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ramos, M.; Jiménez, A.; Garrigós, M.C. Carvacrol-Based Films. Antimicrob. Food Packag. 2016, 329–338. [Google Scholar] [CrossRef]
- Zhaveh, S.; Mohsenifar, A.; Beiki, M.; Khalili, S.T.; Abdollahi, A.; Rahmani-Cherati, T.; Tabatabaei, M. Encapsulation of Cuminum cyminum essential oils in chitosan-caffeic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2015, 69, 251–256. [Google Scholar] [CrossRef]
- Beyki, M.; Zhaveh, S.; Khalili, S.T.; Rahmani-Cherati, T.; Abollahi, A.; Bayat, M.; Tabatabaei, M.; Mohsenifar, A. Encapsulation of Mentha piperita essential oils in chitosan-cinnamic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. Ind. Crops Prod. 2014, 54, 310–319. [Google Scholar] [CrossRef]
- Chen, X.-G.; Lee, C.M.; Park, H.-J. O/W emulsification for the self-aggregation and nanoparticle formation of linoleic acid-modified chitosan in the aqueous system. J. Agric. Food Chem. 2003, 51, 3135–3139. [Google Scholar] [CrossRef]
- Wen, Z.; Liu, B.; Zheng, Z.; You, X.; Pu, Y.; Li, Q. Preparation of liposomes entrapping essential oil from Atractylodes macrocephala Koidz by modified RESS technique. Chem. Eng. Res. Des. 2010, 88, 1102–1107. [Google Scholar] [CrossRef]
- Liu, C.; Li, M.; Ji, N.; Liu, J.; Xiong, L.; Sun, Q. Morphology and Characteristics of Starch Nanoparticles Self-Assembled via a Rapid Ultrasonication Method for Peppermint Oil Encapsulation. J. Agric. Food Chem. 2017, 65, 8363–8373. [Google Scholar] [CrossRef]
- Kavetsou, E.; Koutsoukos, S.; Daferera, D.; Polissiou, M.G.; Karagiannis, D.; Perdikis, D.C.; Detsi, A. Encapsulation of Mentha pulegium Essential Oil in Yeast Cell Microcarriers: An Approach to Environmentally Friendly Pesticides. J. Agric. Food Chem. 2019, 67, 4746–4753. [Google Scholar] [CrossRef]
- Durenne, B.; Blondel, A.; Druart, P.; Fauconnier, M.-L. A laboratory high-throughput glass chamber using dynamic headspace TD-GC/MS method for the analysis of whole Brassica napus L. plantlet volatiles under cadmium-related abiotic stress. Phytochem. Anal. 2018, 29, 463–471. [Google Scholar] [CrossRef]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method for encapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Scalerandi, E.; Flores, G.A.; Palacio, M.; Defagó, M.T.; Carpinella, M.C.; Valladares, G.; Bertoni, A.; Palacios, S.M. Understanding Synergistic Toxicity of Terpenes as Insecticides: Contribution of Metabolic Detoxification in Musca domestica. Front. Plant Sci. 2018, 9, 1579. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Encapsulation Method | Capsule Type | Encapsulation Preparation | Capsule Size | Examples of Matrix | Ref. |
---|---|---|---|---|---|
Emulsification | Droplets | Simple emulsion: Spontaneous emulsification method*. The organic phase is added to an aqueous phase, then stirring at an ambient temperature (∼25 °C) for 15 min. →Nanoemulsion | 75 nm | Organic phase: oil carrier (medium chain triglyceride), EO, and surfactant (tween) Aqueous phase: citrate buffer | [22,43] |
High Pressure homogenisation (HPH) technique: Primary emulsions obtained by stirring at 24,000 rpm for 5 min are then subjected to HPH ten times at 350 MPa. Final step: crystallisation by rapid cooling in an ice bath. →Nanoemulsion | 75–175 nm | Organic phase: oil carrier (sunflower oil or palm oil), EO, and surfactant (soy lecithin, tween, or glycerol mono-oleate) Aqueous phase: water | [44] | ||
Capsules | Multiple emulsion: Emulsion of aqueous phase 1 in organic for 10 min at 800 rpm, then second emulsion in aqueous phase 2 at 500 rpm (w1/o/w2). Stirring is continued for 3 hours to allow for solvent evaporation. Finally, microcapsules are filtered, washed, and air-dried overnight at room temperature. →Microemulsion | 200–400 μm | Carbohydrate polymer–protein blends: Aqueous phase 1: sodium alginate Organic phase: EO, methylene chloride solution of ethyl cellulose, and surfactant (tween) Aqueous phase 2: gelatin and surfactant (tween) | [45] | |
Interfacial mini-emulsion: Sample emulsion (organic and aqueous phase stirring for 10 min) followed by ultrasonication for 3 min under ice cooling. End step consists of a gelification process by 20 hours stirring. | 100 nm | Tetraethyl orthosilicate | [46] | ||
Coacervation | Capsules | Simple methodology: Addition of a solvent to a hydrophilic colloidal solution at 20 °C with stirring. →Coacervates | >1 μm | Solvent: sodium sulphate solution, acetone, or alcohol Hydrophilic colloidal solution: gelatin solution | [1] |
Complex methodology*: Dispersion of EO in gelatin at 50 °C for 3 min at 14,000 rpm followed by the addition of Arabic gum at the same temperature. Then the mixture is cooled at 10 °C for 16 hours under stirring. Finally, reticulation by TPP is performed at room temperature for 2 hours. | 40 μm | Wall = gelatin and Arabic gum solution Core = EO and sodium tri-polyphosphate (TPP) | [47] *[48] | ||
Spray drying | Particles | Liquid atomization intro small droplets:
| 0.2–40 μm | Arabic gum and maltodextrin | [49,50] |
3–4.5 μm | Inulin solution to make Raftalin microparticles | [51] | |||
223–399 nm | Alginate and cashew gum | [52] | |||
9–15 μm | Chitosan, chitosan and alginate, and chitosan and inulin | [53] | |||
12–13 μm | Modified starch and Arabic gum | [54,55] | |||
28–435 μm | Cashew gum | [56] | |||
Complexation | Complex | Spontaneous complexation reaction: Add EOs to a cyclodextrin aqueous solution and thermostate at 25 °C for 30 min. | / | β-Cyclodextrin and derivatives | [57,58,59,60,61,62,63] |
Co-precipitation: Add EOs to a β-cyclodextrin solution at 55 °C under stirring for 4 hours, then cool at 4 °C overnight. Complexes are obtained by filtration and drying at 50 °C for 24 hours. | / | β-Cyclodextrin | [64,65,66] | ||
Freeze-drying: Add EOs in alcohol to an aqueous solution of cyclodextrin, stirring at 180 rpm for 7 days at 37 °C, and freeze-drying the filtered solution to obtain solid complexes. | / | β-Cyclodextrin | [67,68,69,70,71,72,73] | ||
Ionic gelation | Particles | Two step method:
| 20 μm–1 nm | Alginate Crosslinker: Calcium chloride | [74] |
| 235 nm | Chitosan crosslinker: pantasodium tripolyphosphate (TPP) and sodium hexametaphosphate (HMP) | [23] | ||
30–80 nm | [75] | ||||
125–175 nm | [76] | ||||
140–237 nm | [77] | ||||
Three step method:
| 47–117 μm | Alginate Crosslinker: calcium chloride | [78] | ||
Nanoprecipitation | Nanoparticles | Dissolution of polymers and EO in acetone, followed by stirring in aqueous phase with a surfactant for 10 min. | 210 nm | Poly(DL-lactide-co-glycolide) (PLGA) | [79] |
Nanoparticles | Addition of an acid solution of chitosan to a methanol EO solution under moderate stirring at room temperature. | 3 μm | Chitosan | [24] | |
Film hydration method | Nano-cochleates |
| 250 nm | Divalent cation: Calcium chloride | [80,81] |
Multilamellar Vesicles | Spontaneous formation of vesicles by the hydration of an organic phase containing EO and phospholipids for 2 hours in the dark at room temperature. | 0.5–100 nm | Based on phosphatidylcholine, cholesterol, and calcium ions | [1,82] | |
Other | Active film |
| / | Alginate Crosslinker: calcium carbonate Plasticiser: sorbitol | [83,84,85] |
Nanogel particles | Formation of amide linkages through an EDC-mediated reaction* (1-Ethyl-3-(3-Eimethylaminopropyl) Carbodiimide). Chitosan aqueous solution is added to the EDC and caffeic acid solution and stirred for 5 hours. Nanogel is precipited by adjusting the pH at 8.5–9 using sodium hydroxide. | ≤100 nm | Chitosan–caffeic acid nanogel | [86] | |
Chitosan–cinnamic acid nanogel | [87,88] | ||||
Particles | Rapid expansion of supercritical solutions (RESS) in a reactor. Mixing of the EO, liposomal material, organic, and supercritical solvent under pressure for 1 hour, followed by the addition of phosphate buffered saline. Fast spraying of the mixture into the collector to evaporate supercritical fluids. | 173 nm | Liposomal material Supercritical carbon dioxide fluid (scCO2) | [89] | |
Rapid ultrasonication method: Primary chain of starch and EO are dispersed in water and irradiated by the ultrasonic horn at room temperature for 10 min to form nanoparticules. | 200 nm | Starch | [90] | ||
Plasmolyze yeast cell and then fill them by diffusion through the cell membrane pores (three times a day at 40 °C). | 9 μm | Baker’s yeast | [91] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maes, C.; Bouquillon, S.; Fauconnier, M.-L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules 2019, 24, 2539. https://doi.org/10.3390/molecules24142539
Maes C, Bouquillon S, Fauconnier M-L. Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules. 2019; 24(14):2539. https://doi.org/10.3390/molecules24142539
Chicago/Turabian StyleMaes, Chloë, Sandrine Bouquillon, and Marie-Laure Fauconnier. 2019. "Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review" Molecules 24, no. 14: 2539. https://doi.org/10.3390/molecules24142539
APA StyleMaes, C., Bouquillon, S., & Fauconnier, M. -L. (2019). Encapsulation of Essential Oils for the Development of Biosourced Pesticides with Controlled Release: A Review. Molecules, 24(14), 2539. https://doi.org/10.3390/molecules24142539